A stabilized finite element algorithm with different time steps on different physical variables for the coupled Stokes-Darcy flows system with the solution transport is studied. The viscosity in the model is assumed to depend on the concentration. The nonconforming piecewise linear Crouzeix-Raviart element and piecewise constant are used to approximate velocity and pressure in the coupled Stokes-Darcy flows system, and conforming piecewise linear finite element is used to approximate concentration in the transport system. The time derivatives are discretized with different step sizes for the partial differential equations in these two systems. The existence and uniqueness of the approximate solution are unconditionally satisfied. A priori error estimates are established, which also provides a guidance on the ratio of time step sizes with respect to the ratio of the physical parameters. Numerical examples are presented to verify the theoretical results.
Citation: Jingyuan Zhang, Ruikun Zhang, Xue Lin. A stabilized multiple time step method for coupled Stokes-Darcy flows and transport model[J]. AIMS Mathematics, 2023, 8(9): 21406-21438. doi: 10.3934/math.20231091
A stabilized finite element algorithm with different time steps on different physical variables for the coupled Stokes-Darcy flows system with the solution transport is studied. The viscosity in the model is assumed to depend on the concentration. The nonconforming piecewise linear Crouzeix-Raviart element and piecewise constant are used to approximate velocity and pressure in the coupled Stokes-Darcy flows system, and conforming piecewise linear finite element is used to approximate concentration in the transport system. The time derivatives are discretized with different step sizes for the partial differential equations in these two systems. The existence and uniqueness of the approximate solution are unconditionally satisfied. A priori error estimates are established, which also provides a guidance on the ratio of time step sizes with respect to the ratio of the physical parameters. Numerical examples are presented to verify the theoretical results.
[1] | C. Bernardi, F. Hecht, F. Z. Nouri, A new finite-element discretization of the Stokes problem coupled with the Darcy equations, IMA J. Numer. Anal., 30 (2010), 61–93. https://doi.org/10.1093/imanum/drn054 doi: 10.1093/imanum/drn054 |
[2] | Y. Boubendir, S. Tlupova, Domain decomposition methods for solving Stokes-Darcy problems with boundary integrals, SIAM J. Sci. Comput., 35 (2013), B82–B106. https://doi.org/10.1137/110838376 doi: 10.1137/110838376 |
[3] | S. C. Brenner, Korn's inequalities for piecewise $H^1$ vector field, Math. Comput., 73 (2004), 1067–1087. |
[4] | F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, New York: Springer Verlag, 1991. https://doi.org/10.1007/978-1-4612-3172-1 |
[5] | J. Camaño, G. N. Gatica, R. Oyarzúa, R. R. Baier, P. Venegas, New fully-mixed finite element methods for the Stokes-Darcy coupling, Comput. Method. Appl. M., 295 (2015), 362–395. https://doi.org/10.1016/j.cma.2015.07.007 doi: 10.1016/j.cma.2015.07.007 |
[6] | Y. Cao, M. Gunzburger, X. He, X. Wang, Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems, Math. Comput., 83 (2014), 1617–1644. https://doi.org/10.1090/s0025-5718-2014-02779-8 doi: 10.1090/s0025-5718-2014-02779-8 |
[7] | Y. Cao, M. Gunzburger, X. Hu, F. Hua, X. Wang, W. Zhao, Finite element approximation for Stokes-Darcy flow with Beavers-Joseph interface conditions, SIAM J. Numer. Anal., 47 (2010), 4239–4256. https://doi.org/10.1137/080731542 doi: 10.1137/080731542 |
[8] | A. Cesmelioglu, B. Riviére, Existence of a weak solution for the fully coupled Navier-Stokes/Darcy-transport problem, J. Differ. Equations, 252 (2012), 4138–4175. https://doi.org/10.1016/j.jde.2011.12.001 doi: 10.1016/j.jde.2011.12.001 |
[9] | W. Chen, M. Gunzburger, F. Hua, X. Wang, A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system, SIAM J. Numer. Anal., 49 (2011), 1064–1084. https://doi.org/10.2307/23074323 doi: 10.2307/23074323 |
[10] | W. Chen, M. Gunzburger, D. Sun, X. Wang, Efficient and long-time accurate second-order methods for the Stokes-Darcy system, SIAM J. Numer. Anal., 51 (2013), 2563–2584. https://doi.org/10.1137/120897705 doi: 10.1137/120897705 |
[11] | W. Chen, F. Wang, Y. Wang, Weak Galerkin method for the coupled Darcy-Stokes flow, IMA J. Numer. Anal., 36 (2016), 897–921. https://doi.org/10.1093/imanum/drv012 doi: 10.1093/imanum/drv012 |
[12] | Y. Chen, X. Zhao, Y. Huang, Mortar element method for the time dependent coupling of Stokes and Darcy flows, J. Sci. Comput., 80 (2019), 1310–1329. https://doi.org/10.1007/s10915-019-00977-4 doi: 10.1007/s10915-019-00977-4 |
[13] | P. G. Ciarlet, The finite element method for elliptic problems, Society for Industrial and Applied Mathematics, 2002. https://doi.org/10.1137/1.9780898719208 |
[14] | M. Crouzeix, P. A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equation, RAIRO Anal. Numer., 7 (1973), 33–75. https://doi.org/10.1051/m2an/197307R300331 doi: 10.1051/m2an/197307R300331 |
[15] | M. Discacciati, E. Miglio, A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43 (2002), 57–74. https://doi.org/10.1016/S0168-9274(02)00125-3 doi: 10.1016/S0168-9274(02)00125-3 |
[16] | J. Douglas, R. E. Ewing, M. F. Wheeler, The approximation of the pressure by a mixed method in the simulation of miscible displacement, RAIRO Anal. Numer., 17 (1983), 17–33. https://doi.org/10.1093/qjmam/36.4.505 doi: 10.1093/qjmam/36.4.505 |
[17] | V. J. Ervin, Approximation of coupled Stokes-Darcy flow in an axisymmetric domain, Comput. Method. Appl. M., 258 (2013), 96–108. https://doi.org/10.1016/J.CMA.2013.02.004 doi: 10.1016/J.CMA.2013.02.004 |
[18] | V. J. Ervin, E. W. Jenkins, S. Sun, Coupled generalized nonlinear Stokes flow with flow through a porous medium, SIAM J. Numer. Anal., 47 (2009), 929–952. https://doi.org/10.1137/070708354 doi: 10.1137/070708354 |
[19] | G. N. Gatica, R. Oyarzúa, F. J. Sayas, A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes-Darcy coupled problem, Comput. Method. Appl. M., 200 (2011), 1877–1891. https://doi.org/10.1016/j.cma.2011.02.009 doi: 10.1016/j.cma.2011.02.009 |
[20] | V. Girault, P. A. Raviart, Finite element methods for Navier-Stokes equations, Berlin: Springer Verlag, 1986. https://doi.org/10.1007/978-3-642-61623-5 |
[21] | V. Girault, D. Vassilev, I. Yotov, Mortar multiscale finite element methods for Stokes-Darcy flows, Numer. Math., 127 (2014), 93–165. https://doi.org/10.1007/s00211-013-0583-z doi: 10.1007/s00211-013-0583-z |
[22] | P. Hessari, Pseudospectral least squares method for Stokes-Darcy equations, SIAM J. Numer. Anal., 53 (2015), 1195–1213. https://doi.org/10.1137/140954350 doi: 10.1137/140954350 |
[23] | T. Karper, K. A. Mardal, R. Winther, Unified finite element discretizations of coupled Darcy-Stokes flow, Numer. Meth. Part. D. E., 25 (2009), 311–326. https://doi.org/10.1002/num.20349 doi: 10.1002/num.20349 |
[24] | W. J. Layton, F. Schieweck, I. Yotov, Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40 (2003), 2195–2218. https://doi.org/10.1137/S003614290139276 doi: 10.1137/S003614290139276 |
[25] | R. Li, J. Li, X. He, Z. Chen, A stabilized finite volume element method for a coupled Stokes-Darcy problem, Appl. Numer. Math., 133 (2018), 2–24. https://doi.org/10.1016/j.apnum.2017.09.013 doi: 10.1016/j.apnum.2017.09.013 |
[26] | K. Lipnikov, D. Vassilev, I. Yotov, Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids, Numer. Math., 126 (2014), 321–360. https://doi.org/10.1007/s00211-013-0563-3 doi: 10.1007/s00211-013-0563-3 |
[27] | A. Márquez, S. Meddahi, F. J. Sayas, A decoupled preconditioning technique for a mixed Stokes-Darcy model, J. Sci. Comput., 57 (2013), 174–192. https://doi.org/10.1007/s10915-013-9700-5 doi: 10.1007/s10915-013-9700-5 |
[28] | A. Márquez, S. Meddahi, F. J. Sayas, Strong coupling of finite element methods for the Stokes-Darcy problem, IMA J. Numer. Anal., 35 (2015), 969–988. https://doi.org/10.1093/imanum/dru023 doi: 10.1093/imanum/dru023 |
[29] | G. Pacquaut, J. Bruchon, N. Moulin, S. Drapier, Combining a level-set method and a mixed stabilized P1/P1 formulation for coupling Stokes-Darcy flows, Int. J. Numer. Meth. Fl., 69 (2012), 459–480. https://doi.org/10.1002/fld.2569 doi: 10.1002/fld.2569 |
[30] | B. Riviére, Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems, J. Sci. Comput., 22 (2005), 479–500. https://doi.org/10.1007/s10915-004-4147-3 doi: 10.1007/s10915-004-4147-3 |
[31] | B. Riviére, I. Yotov, Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal., 42 (2005), 1959–1977. https://doi.org/10.1137/S0036142903427640 doi: 10.1137/S0036142903427640 |
[32] | H. Rui, R. Zhang, A unified stabilized mixed finite element method for coupling Stokes and Darcy flows, Comput. Method. Appl. M., 198 (2009), 2692–2699. https://doi.org/10.1016/j.cma.2009.03.011 doi: 10.1016/j.cma.2009.03.011 |
[33] | H. Rui, J. Zhang, A stabilized mixed finite element method for coupled Stokes and Darcy flows with transport, Comput. Method. Appl. M., 315 (2017), 169–189. https://doi.org/10.1016/j.cma.2016.10.034 doi: 10.1016/j.cma.2016.10.034 |
[34] | I. Rybak, J. Magiera, A multiple-time-step technique for coupled free flow and porous medium system, J. Comput. Phys., 272 (2014), 327–342. https://doi.org/10.1016/j.jcp.2014.04.036 doi: 10.1016/j.jcp.2014.04.036 |
[35] | L. Shan, H. Zheng, W. J. Layton, A decoupling method with different subdomain time steps for the nonstationary Stokes-Darcy model, Numer. Meth. Part. D. E., 29 (2013), 549–583. https://doi.org/10.1002/num.21720 doi: 10.1002/num.21720 |
[36] | M. C. Shiue, K. C. Ong, M. C. Lai, Convergence of the MAC Scheme for the Stokes/Darcy Coupling Problem, J. Sci. Comput., 76 (2018), 1216–1251. https://doi.org/10.1007/s10915-018-0660-7 doi: 10.1007/s10915-018-0660-7 |
[37] | D. Vassilev, C. Wang, I. Yotov, Domain decomposition for coupled Stokes and Darcy flows, Comput. Method. Appl. M., 268 (2014), 264–283. https://doi.org/10.1016/j.cma.2013.09.009 doi: 10.1016/j.cma.2013.09.009 |
[38] | D. Vassilev, I. Yotov, Coupling Stokes-Darcy flow with transport, SIAM J. Sci. Comput., 31 (2009), 3661–3684. https://doi.org/10.1137/080732146 doi: 10.1137/080732146 |
[39] | W. Wang, C. Xu, Spectral methods based on new formulations for coupled Stokes and Darcy equations, J. Comput. Phys., 257 (2014), 126–142. https://doi.org/10.1016/j.jcp.2013.09.036 doi: 10.1016/j.jcp.2013.09.036 |
[40] | M. F. Wheeler, A priori $L^2$ error estimate for Galerkin approximation to parobolic partial differential equations, SIAM J. Numer. Anal., 10 (1973), 723–759. https://doi.org/10.1137/0710062 doi: 10.1137/0710062 |
[41] | J. Zhang, H. Rui, A stabilized Crouzeix-Raviart element method for coupling Stokes and Darcy-Forchheimer flows, Numer. Meth. Part. D. E., 33 (2017), 1070–1094. https://doi.org/10.1002/num.22129 doi: 10.1002/num.22129 |
[42] | L. Zhao, E. T. Chung, E. J. Park, G. Zhou, Staggered DG method for coupling of the Stokes and Darcy-Forchheimer problems, SIAM J. Numer. Anal., 59 (2021), 1–31. https://doi.org/10.1137/19M1268525 doi: 10.1137/19M1268525 |