In this paper, we consider the multiplicity of solutions for the following three-point boundary value problem of second-order $ p $-Laplacian differential equations with instantaneous and non-instantaneous impulses:
$ \begin{equation*} \left\{ {\begin{array}{l} -(\rho(t)\Phi_{p} (u'(t)))'+g(t)\Phi_{p}(u(t))=\lambda f_{j}(t,u(t)),\quad t\in(s_{j},t_{j+1}],\; j=0,1,...,m,\\ \Delta (\rho (t_{j})\Phi_{p}(u'(t_{j})))=\mu I_{j}(u(t_{j})), \quad j=1,2,...,m,\\ \rho (t)\Phi_{p} (u'(t))=\rho(t_{j}^{+}) \Phi_{p} (u'(t_{j}^{+})),\quad t\in(t_{j},s_{j}],\; j=1,2,...,m,\\ \rho(s_{j}^{+})\Phi_{p} (u'(s_{j}^{+}))=\rho(s_{j}^{-})\Phi_{p} (u'(s_{j}^{-})),\quad j=1,2,...,m,\\ u(0)=0, \quad u(1)=\zeta u(\eta), \end{array}} \right. \end{equation*} $
where $ \Phi_{p}(u): = |u|^{p-2}u, \; p > 1, \; 0 = s_{0} < t_{1} < s_{1} < t_{2} < ... < s_{m_{1}} < t_{m_{1}+1} = \eta < ... < s_{m} < t_{m+1} = 1, \; \zeta > 0, \; 0 < \eta < 1 $, $ \Delta (\rho (t_{j})\Phi_{p}(u'(t_{j}))) = \rho (t_{j}^{+})\Phi_{p}(u'(t_{j}^{+}))-\rho (t_{j}^{-})\Phi_{p}(u'(t_{j}^{-})) $ for $ u'(t_{j}^{\pm}) = \lim\limits_{t\to t_{j}^{\pm}}u'(t) $, $ j = 1, 2, ..., m $, and $ f_{j}\in C((s_{j}, t_{j+1}]\times\mathbb{R}, \mathbb{R}) $, $ I_{j}\in C(\mathbb{R}, \mathbb{R}) $. $ \lambda\in (0, +\infty) $, $ \mu\in\mathbb{R} $ are two parameters. $ \rho(t)\geq 1 $, $ 1\leq g(t)\leq c $ for $ t\in (s_{j}, t_{j+1}] $, $ \rho(t), \; g(t)\in L^{p}[0, 1] $, and $ c $ is a positive constant. By using variational methods and the critical points theorems of Bonanno-Marano and Ricceri, the existence of at least three classical solutions is obtained. In addition, several examples are presented to illustrate our main results.
Citation: Huiping Zhang, Wangjin Yao. Three solutions for a three-point boundary value problem with instantaneous and non-instantaneous impulses[J]. AIMS Mathematics, 2023, 8(9): 21312-21328. doi: 10.3934/math.20231086
In this paper, we consider the multiplicity of solutions for the following three-point boundary value problem of second-order $ p $-Laplacian differential equations with instantaneous and non-instantaneous impulses:
$ \begin{equation*} \left\{ {\begin{array}{l} -(\rho(t)\Phi_{p} (u'(t)))'+g(t)\Phi_{p}(u(t))=\lambda f_{j}(t,u(t)),\quad t\in(s_{j},t_{j+1}],\; j=0,1,...,m,\\ \Delta (\rho (t_{j})\Phi_{p}(u'(t_{j})))=\mu I_{j}(u(t_{j})), \quad j=1,2,...,m,\\ \rho (t)\Phi_{p} (u'(t))=\rho(t_{j}^{+}) \Phi_{p} (u'(t_{j}^{+})),\quad t\in(t_{j},s_{j}],\; j=1,2,...,m,\\ \rho(s_{j}^{+})\Phi_{p} (u'(s_{j}^{+}))=\rho(s_{j}^{-})\Phi_{p} (u'(s_{j}^{-})),\quad j=1,2,...,m,\\ u(0)=0, \quad u(1)=\zeta u(\eta), \end{array}} \right. \end{equation*} $
where $ \Phi_{p}(u): = |u|^{p-2}u, \; p > 1, \; 0 = s_{0} < t_{1} < s_{1} < t_{2} < ... < s_{m_{1}} < t_{m_{1}+1} = \eta < ... < s_{m} < t_{m+1} = 1, \; \zeta > 0, \; 0 < \eta < 1 $, $ \Delta (\rho (t_{j})\Phi_{p}(u'(t_{j}))) = \rho (t_{j}^{+})\Phi_{p}(u'(t_{j}^{+}))-\rho (t_{j}^{-})\Phi_{p}(u'(t_{j}^{-})) $ for $ u'(t_{j}^{\pm}) = \lim\limits_{t\to t_{j}^{\pm}}u'(t) $, $ j = 1, 2, ..., m $, and $ f_{j}\in C((s_{j}, t_{j+1}]\times\mathbb{R}, \mathbb{R}) $, $ I_{j}\in C(\mathbb{R}, \mathbb{R}) $. $ \lambda\in (0, +\infty) $, $ \mu\in\mathbb{R} $ are two parameters. $ \rho(t)\geq 1 $, $ 1\leq g(t)\leq c $ for $ t\in (s_{j}, t_{j+1}] $, $ \rho(t), \; g(t)\in L^{p}[0, 1] $, and $ c $ is a positive constant. By using variational methods and the critical points theorems of Bonanno-Marano and Ricceri, the existence of at least three classical solutions is obtained. In addition, several examples are presented to illustrate our main results.
[1] | H. Khan, K. Alam, H. Gulzar, S. Etemadc, S. Rezapourc, A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations, Math. Comput. Simul., 198 (2022), 455–473. https://doi.org/10.1016/j.matcom.2022.03.009 doi: 10.1016/j.matcom.2022.03.009 |
[2] | H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Solitons Fractals, 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668 |
[3] | M. Ahmad, A. Zada, M. Ghaderi, R. George, S. Rezapour, On the existence and stability of a neutral stochastic fractional differential system, Fractal Fract., 6 (2022), 203. https://doi.org/10.3390/fractalfract6040203 doi: 10.3390/fractalfract6040203 |
[4] | S. Hussain, E. N. Madi, H. Khan, H. Gulzar, S. Etemad, S. Rezapour, et al., On the stochastic modeling of COVID-19 under the environmental white noise, J. Funct. Space, 2022 (2022), 4320865. https://doi.org/10.1155/2022/4320865 doi: 10.1155/2022/4320865 |
[5] | V. D. Milman, A. D. Myshkis, On the stability of motion in the presence of impulses, Sibirsk. Mat. Zh., 1 (1960), 233–237. |
[6] | E. Hernández, D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641–1649. https://doi.org/10.1090/S0002-9939-2012-11613-2 doi: 10.1090/S0002-9939-2012-11613-2 |
[7] | R. Agarwal, D. O'Regan, S. Hristova, Stability by Lyapunov like functions of nonlinear differential equations with non-instantaneous impulses, J. Appl. Math. Comput., 53 (2017), 147–168. https://doi.org/10.1007/s12190-015-0961-z doi: 10.1007/s12190-015-0961-z |
[8] | J. L. Li, J. J. Nieto, Existence of positive solutions for multipoint boundary value problem on the half-line with impulses, Bound. Value Probl., 2009 (2009), 834158. https://doi.org/10.1155/2009/834158 doi: 10.1155/2009/834158 |
[9] | D. B. Qian, X. Y. Li, Periodic solutions for ordinary differential equations with sublinear impulsive effects, J. Math. Anal. Appl., 303 (2005), 288–303. https://doi.org/10.1016/j.jmaa.2004.08.034 doi: 10.1016/j.jmaa.2004.08.034 |
[10] | L. J. Chen, J. T. Sun, Nonlinear boundary value problem of first order impulsive functional differential equations, J. Math. Anal. Appl., 318 (2006), 726–741. https://doi.org/10.1016/j.jmaa.2005.08.012 doi: 10.1016/j.jmaa.2005.08.012 |
[11] | M. Pierri, D. O'Regan, V. Rolnik, Existence of solutions for semilinear abstract differential equations with not instantaneous impulses, Appl. Math. Comput., 219 (2013), 6743–6749. https://doi.org/10.1016/j.amc.2012.12.084 doi: 10.1016/j.amc.2012.12.084 |
[12] | V. Colao, L. Muglia, H. K. Xu, Existence of solutions for a second-order differential equation with non-instantaneous impulses and delay, Ann. Mat. Pura Appl., 195 (2016), 697–716. https://doi.org/10.1007/s10231-015-0484-0 doi: 10.1007/s10231-015-0484-0 |
[13] | Y. Tian, W. G. Ge, Applications of variational methods to boundary-value problem for impulsive differential equations, Proc. Edinburngh Math. Soc., 51 (2008), 509–527. https://doi.org/10.1017/S0013091506001532 doi: 10.1017/S0013091506001532 |
[14] | J. J. Nieto, D. O'Regan, Variational approach to impulsive differential equations, Nonlinear Anal.-Real World Appl., 10 (2009), 680–690. https://doi.org/10.1016/j.nonrwa.2007.10.022 doi: 10.1016/j.nonrwa.2007.10.022 |
[15] | Y. L. Zhao, C. L. Luo, H. B. Chen, Existence results for non-instantaneous impulsive nonlinear fractional differential equation via variational methods, Bull. Malays. Math. Sci. Soc., 43 (2020), 2151–2169. https://doi.org/10.1007/s40840-019-00797-7 doi: 10.1007/s40840-019-00797-7 |
[16] | W. J. Yao, Variational approach to non-instantaneous impulsive differential equations with $p$-Laplacian operator, AIMS Mathematics, 7 (2022), 17269–17285. https://doi.org/10.3934/math.2022951 doi: 10.3934/math.2022951 |
[17] | H. H. Wang, D. Lu, H. Q. Lu, Multiplicity results for second order impulsive differential equations via variational methods, Engineering, 13 (2021), 82–93. https://doi.org/10.4236/eng.2021.132007 doi: 10.4236/eng.2021.132007 |
[18] | X. L. Fan, T. T. Xue, Y. S. Jiang, Dirichlet problems of fractional $p$-Laplacian equation with impulsive effects, Math. Biosci. Eng., 20 (2023), 5094–5116. https://doi.org/10.3934/mbe.2023236 doi: 10.3934/mbe.2023236 |
[19] | S. H. Wang, Y. Tian, Variational methods to the fourth-order linear and nonlinear differential equations with non-instantaneous impulses, J. Appl. Anal. Comput., 10 (2020), 2521–2536. https://doi.org/10.11948/20190413 doi: 10.11948/20190413 |
[20] | Y. Tian, M. Zhang, Variational method to differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 94 (2019), 160–165. https://doi-org-ssl.3436.top/10.1016/j.aml.2019.02.034 doi: 10.1016/j.aml.2019.02.034 |
[21] | D. P. Li, F. Q. Chen, Y. H. Wu, Y. K. An, Multiple solutions for a class of $p$-Laplacian type fractional boundary value problems with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 106 (2020), 106352. https://doi.org/10.1016/j.aml.2020.106352 doi: 10.1016/j.aml.2020.106352 |
[22] | J. W. Zhou, Y. M. Deng, Y. N. Wang, Variational approach to $p$-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 104 (2020), 106251. https://doi.org/10.1016/j.aml.2020.106251 doi: 10.1016/j.aml.2020.106251 |
[23] | W. J. Yao, Variational approach to instantaneous and noninstantaneous impulsive system of differential equations, Bound. Value Probl., 2022 (2022), 71. https://doi.org/10.1186/s13661-022-01653-7 doi: 10.1186/s13661-022-01653-7 |
[24] | W. Zhang, J. B. Ni, Study on a new $p$-Laplacian fractional differential model generated by instantaneous and non-instantaneous impulsive effects, Chaos Solitons Fractals, 168 (2023), 113143. https://doi.org/10.1016/j.chaos.2023.113143 doi: 10.1016/j.chaos.2023.113143 |
[25] | Y. Qiao, F. Q. Chen, Y. K. An, Variational method for $p$-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses, Math. Meth. Appl. Sci., 44 (2021), 8543–8553. https://doi.org/10.1002/mma.7276 doi: 10.1002/mma.7276 |
[26] | X. P. Liu, M. Jia, W. G. Ge, The method of lower and upper solutions for mixed fractional four-point boundary value problem with $p$-Laplacian operator, Appl. Math. Lett., 65 (2017), 56–62. https://doi.org/10.1016/j.aml.2016.10.001 doi: 10.1016/j.aml.2016.10.001 |
[27] | X. P. Liu, M. Jia, Solvability and numerical simulations for BVPs of fractional coupled systems involving left and right fractional derivatives, Appl. Math. Comput., 353 (2019), 230–242. https://doi.org/10.1016/j.amc.2019.02.011 doi: 10.1016/j.amc.2019.02.011 |
[28] | M. ur Rehman, R. A. Khan, Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations, Appl. Math. Lett., 23 (2010), 1038–1044. https://doi.org/10.1016/j.aml.2010.04.033 doi: 10.1016/j.aml.2010.04.033 |
[29] | Y. F. Wei, Z. B. Bai, Multiple solutions for some nonlinear impulsive differential equations with three-point boundary conditions via variational approach, J. Appl. Anal. Comput., 11 (2021), 3031–3043. https://doi.org/10.11948/20210113 doi: 10.11948/20210113 |
[30] | W. Lian, Z. B. Bai, Z. J. Du, Existence of solution of a three-point boundary value problem via variational approach, Appl. Math. Lett., 104 (2020), 106283. https://doi.org/10.1016/j.aml.2020.106283 doi: 10.1016/j.aml.2020.106283 |
[31] | Y. F. Wei, S. M. Shang, Z. B. Bai, Applications of variational methods to some three-point boundary value problems with instantaneous and noninstantaneous impulses, Nonlinear Anal. Model. Control, 27 (2022), 466–478. https://doi.org/10.15388/namc.2022.27.26253 doi: 10.15388/namc.2022.27.26253 |
[32] | W. J. Yao, Existence and multiplicity of solutions for three-point boundary value problems with instantaneous and noninstantaneous impulses, Bound. Value Probl., 2023 (2023), 15. https://doi.org/10.1186/s13661-023-01702-9 doi: 10.1186/s13661-023-01702-9 |
[33] | G. Bonanno, S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal., 89 (2010), 1–10. https://doi.org/10.1080/00036810903397438 doi: 10.1080/00036810903397438 |
[34] | B. Ricceri, A further three critical points theorem, Nonlinear Anal., 71 (2009), 4151–4157. https://doi.org/10.1016/j.na.2009.02.074 doi: 10.1016/j.na.2009.02.074 |
[35] | R. Rodríguez-López, S. Tersian, Multiple solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 1016–1038. https://doi.org/10.2478/s13540-014-0212-2 doi: 10.2478/s13540-014-0212-2 |
[36] | S. Abaspour, S. Khademloo, S. H. Rasouli, On the existence of multiple solutions for a three-point nonlinear boundary value problem of $p$-Laplacian type, Afr. Mat., 31 (2020), 305–313. https://doi.org/10.1007/s13370-019-00725-9 doi: 10.1007/s13370-019-00725-9 |
[37] | J. Simon, Régularité de la solution d'une équation non linéaire dans $R^{N}$, In: Lecture notes in mathematics, Heidelberg: Springer, Berlin, 2006,205–227. https://doi.org/10.1007/BFb0061807 |
[38] | E. Zeidler, Nonlinear functional analysis and its applications: II/B: nonlinear monotone operators, New York: Springer, 1990. https://doi.org/10.1007/978-1-4612-0981-2 |
[39] | H. W. Chen, Z. M. He, New results for perturbed Hamiltonian systems with impulses, Appl. Math. Comput., 218 (2012), 9489-9497. https://doi.org/10.1016/j.amc.2012.03.038 doi: 10.1016/j.amc.2012.03.038 |