Research article Special Issues

Existence of solutions for the boundary value problem of non-instantaneous impulsive fractional differential equations with $ p $-Laplacian operator

  • Received: 04 May 2022 Revised: 22 July 2022 Accepted: 24 July 2022 Published: 29 July 2022
  • MSC : 34A08, 34B37

  • In this paper, we consider a boundary value problem of impulsive fractional differential equations with the nonlinear $ p $-Laplacian operator, where impulses are non-instantaneous. By converting the given problem into an equivalent integral form and applying the Schauder fixed point theorem, we obtain some sufficient conditions for the existence of solutions. An illustrative example is presented to demonstrate the validity of our results.

    Citation: Yiyun Li, Jingli Xie, Luping Mao. Existence of solutions for the boundary value problem of non-instantaneous impulsive fractional differential equations with $ p $-Laplacian operator[J]. AIMS Mathematics, 2022, 7(9): 17592-17602. doi: 10.3934/math.2022968

    Related Papers:

  • In this paper, we consider a boundary value problem of impulsive fractional differential equations with the nonlinear $ p $-Laplacian operator, where impulses are non-instantaneous. By converting the given problem into an equivalent integral form and applying the Schauder fixed point theorem, we obtain some sufficient conditions for the existence of solutions. An illustrative example is presented to demonstrate the validity of our results.



    加载中


    [1] V. S. Erturk, E. Godwe, D. Baleanu, P. Kumar, J. Asad, A. Jajarmi, Novel fractional order Lagrangian to describe motion of beam on nanowire, Acta Phys. Pol. A., 140 (2021), 265–272. https://doi.org/10.12693/APhysPolA.140.265
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [3] K. S. Miller, B. Ross, An Introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [4] R. P. Agarwal, B. de Andrade, C. Cuevas, Type of periodicity and ergodicity to a class of fractional order differential equations, Adv. Differ. Equations., 2010 (2010), 1–25. https://doi.org/10.1155/2010/179750
    [5] F. Metzler, W. Schick, H. G. Kilian, T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys., 103 (1995), 7180–7186. https://doi.org/10.1063/1.470346
    [6] W. G. Gl$\ddot{o}$ckle, T. F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J., 68 (1995), 46–53. https://doi.org/10.1016/S0006-3495(95)80157-8
    [7] E. Sousa, How to approximate the fractional derivative of order $1 < \alpha\le2$, Int. J. Bifurcat. Chaos., 22 (2012), 1–13. https://doi.org/10.1142/S0218127412500757
    [8] K. Kavitha, V. Vijayakumar, A. Shukla, K. S. Nisar, R. Udhayakumar, Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type, Chaos. Soliton. Fract., 151 (2021), 1–8. https://doi.org/10.1016/j.chaos.2021.111264
    [9] Y. Zhou, V. Vijayakumar, C. Ravichandran, R. Murugesu, Controllability results for fractional order neutral functional differential inclusions with infinite delay, Fixed Point Theory., 18 (2017), 773–798. https://doi.org/10.24193/fpt-ro.2017.2.62
    [10] K. S. Nisar, V. Vijayakumar, Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system, Numer. Math. Method. Appl. Sci., 44 (2021), 13615–13632. https://doi.org/10.1002/mma.7647
    [11] V. Vijayakumar, C. Ravichandran, K. S. Nisar, K. D. Kucche, New discussion on approximate controllability results for fractional Sobolev type Volterra-Fredholm integro-differential systems of order $1 < r < 2$, Numer. Meth. Part. D. E., 37 (2021), 1–19. https://doi.org/10.1002/num.22772
    [12] A. Singh, A. Shukla, V. Vijayakumar, R. Udhayakumar, Asymptotic stability of fractional order $(1, 2]$ stochastic delay differential equations in Banach spaces, Chaos. Soliton. Fract., 150 (2021), 1–9. https://doi.org/10.1016/j.chaos.2021.111095
    [13] C. Dineshkumar, K. S. Nisar, R. Udhayakumar, V. Vijayakumar, A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions, Asian J. Control., 24 (2021), 1–17. https://doi.org/10.1002/asjc.2650
    [14] L. S. Leibenson, General problem of the movement of a compressible fluid in a porous medium, Izv. Akad. Nauk Kirg. SSSR., 9 (1983), 7–10.
    [15] X. Liu, M. Jia, The method of lower and upper solutions for the general boundary value problems of fractional differential equations with $p$-Laplacian, Adv. Differ. Equations., 2018 (2018), 1–15. https://doi.org/10.1186/s13662-017-1446-1
    [16] J. Xie, L. Duan, Existence of solutions for fractional differential equations with $p$-Laplacian operator and integral boundary conditions, J. Funct. Spaces., 2020 (2020), 1–7. https://doi.org/10.1155/2020/4739175
    [17] J. Wu, X. Zhang, L. Liu, Y. Wu, Y. Cui, The convergence analysis and error estimation for unique solution of a $p$-Laplacian fractional differential equation with singular decreasing nonlinearity, Bound Value Probl., 2018 (2018), 1–15. https://doi.org/10.1186/s13661-018-1003-1
    [18] X. Liu, M. Jia, X. Xiang, On the solvability of a fractional differential equation model involving the $p$-Laplacian operator, Comput. Math. Appl., 64 (2012), 3267–3275. https://doi.org/10.1016/j.camwa.2012.03.001
    [19] V. D. Milman, A. D. Myshkis, On the stability of motion in the presence of impulses, Sibirski$\breve{i}$ Matematicheski$\breve{i}$ Zhurnal., 1 (1960), 233–237.
    [20] E. Hern$\acute{a}$ndez, D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641–1649. https://doi.org/10.1090/S0002-9939-2012-11613-2
    [21] J. Zhou, Y. Deng, Y. Wang, Variational approach to $p$-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 104 (2020), 1–9. https://doi.org/10.1016/j.aml.2020.106251
    [22] A. Khaliq, M. ur Rehman, On variational methods to non-instantaneous impulsive fractional differential equation, Appl. Math. Lett., 83 (2018), 95–102. https://doi.org/10.1016/j.aml.2018.03.014
    [23] R. Nesmoui, D. Abdelkader, J. J. Nieto, A. Ouahab, Variational approach to non-instantaneous impulsive system of differential equations, Nonlinear Stud., 28 (2021), 564–537.
    [24] M. Muslim, A. Kumar, Controllability of fractional differential equation of order $\alpha\in(1, 2]$ with non-instantaneous impulses, Asian J. Control., 20 (2018), 935–942. https://doi.org/10.1002/asjc.1604
    [25] R. Dhayal, M. Malik, S. Abbas, Solvability and optimal controls of non-instantaneous impulsive stochastic fractional differential equation of order $q\in(1, 2)$, Stochastics, 93 (2021), 780–802. https://doi.org/10.1080/17442508.2020.1801685 doi: 10.1080/17442508.2020.1801685
    [26] R. Agarwal, S. Hristova, D. O'Regan, Iterative techniques for the initial value problem for Caputo fractional differential equations with non-instantaneous impulses, Appl. Math. Comput., 334 (2018), 407–421. https://doi.org/10.1016/j.amc.2018.04.004
    [27] F. E. Browder, A new generalization of the Schauder fixed point theorem, Math. Ann., 174 (1967), 285–290.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1291) PDF downloads(97) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog