Research article

Reliability analysis of constant partially accelerated life tests under progressive first failure type-II censored data from Lomax model: EM and MCMC algorithms

  • Received: 19 July 2022 Revised: 25 August 2022 Accepted: 01 September 2022 Published: 27 September 2022
  • MSC : 60E05, 62F10, 62N05, 62P10

  • Examining life-testing experiments on a product or material usually requires a long time of monitoring. To reduce the testing period, units can be tested under more severe than normal conditions, which are called accelerated life tests (ALTs). The objective of this study is to investigate the problem of point and interval estimations of the Lomax distribution under constant stress partially ALTs based on progressive first failure type-II censored samples. The point estimates of unknown parameters and the acceleration factor are obtained by using maximum likelihood and Bayesian approaches. Since reliability data are censored, the maximum likelihood estimates (MLEs) are derived utilizing the general expectation-maximization (EM) algorithm. In the process of Bayesian inference, the Bayes point estimates as well as the highest posterior density credible intervals of the model parameters and acceleration factor, are reported. This is done by using the Markov Chain Monte Carlo (MCMC) technique concerning both symmetric (squared error) and asymmetric (linear-exponential and general entropy) loss functions. Monte Carlo simulation studies are performed under different sizes of samples for comparison purposes. Finally, the proposed methods are applied to oil breakdown times of insulating fluid under two high-test voltage stress level data.

    Citation: Mohamed S. Eliwa, Essam A. Ahmed. Reliability analysis of constant partially accelerated life tests under progressive first failure type-II censored data from Lomax model: EM and MCMC algorithms[J]. AIMS Mathematics, 2023, 8(1): 29-60. doi: 10.3934/math.2023002

    Related Papers:

  • Examining life-testing experiments on a product or material usually requires a long time of monitoring. To reduce the testing period, units can be tested under more severe than normal conditions, which are called accelerated life tests (ALTs). The objective of this study is to investigate the problem of point and interval estimations of the Lomax distribution under constant stress partially ALTs based on progressive first failure type-II censored samples. The point estimates of unknown parameters and the acceleration factor are obtained by using maximum likelihood and Bayesian approaches. Since reliability data are censored, the maximum likelihood estimates (MLEs) are derived utilizing the general expectation-maximization (EM) algorithm. In the process of Bayesian inference, the Bayes point estimates as well as the highest posterior density credible intervals of the model parameters and acceleration factor, are reported. This is done by using the Markov Chain Monte Carlo (MCMC) technique concerning both symmetric (squared error) and asymmetric (linear-exponential and general entropy) loss functions. Monte Carlo simulation studies are performed under different sizes of samples for comparison purposes. Finally, the proposed methods are applied to oil breakdown times of insulating fluid under two high-test voltage stress level data.



    加载中


    [1] N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions, New York: Wiley, 1994.
    [2] K. S. Lomax, Business failures: Another example of the analysis of failure data, J. Am. Stat. Assoc., 49 (1954), 847–852. https://doi.org/10.1080/01621459.1954.10501239 doi: 10.1080/01621459.1954.10501239
    [3] M. C. Bryson, Heavy-tailed distributions: Properties and tests, Technometrics, 16 (1974), 61–68. https://doi.org/10.1080/00401706.1974.10489150 doi: 10.1080/00401706.1974.10489150
    [4] B. David, P. Kumar, K. Kour, Entropy of Lomax probability distribution and its order statistics, Int. J. Stat. Syst., 12 (2017), 175–181.
    [5] C. M. Harris, The Pareto distribution as a queue service discipline, Oper. Res., 16 (1968), 307–313. https://doi.org/10.1287/opre.16.2.307 doi: 10.1287/opre.16.2.307
    [6] A. Atkinson, A. J. Harrison, Distribution of personal wealth in Britain, Cambridge: Cambridge University Press, 1978.
    [7] S. D. Dubey, Compound gamma, beta and F distributions, Metrika, 16 (1970), 27–31. https://doi.org/10.1007/BF02613934
    [8] P. R. Tadikamalla, A look at the Burr and related distributions, Int. Stat. Rev., 48 (1980), 337–344. https://doi.org/10.2307/1402945 doi: 10.2307/1402945
    [9] S. A. Al-Awadhi, M. E. Ghitany, Statistical properties of Poisson-Lomax distribution and its application to repeated accidents data, J. Appl. Stat. Sci., 10 (2001), 365–372.
    [10] M. E. Ghitany, F. A. Al-Awadhi, L. A. Alkhalfan, Marshal-Olkin extended Lomax distribution and its application to censored data, Commun. Stat-Theor. M., 36 (2007), 1855–1866. https://doi.org/10.1080/03610920601126571 doi: 10.1080/03610920601126571
    [11] B. Punathumparambath, Estimation of $P(X>Y)$ for the double Lomax distribution, Probstat Forum, 4 (2011), 1–11.
    [12] W. B. Nelson, Accelerated life testing, statistical models, test plans, and data analysis, New York: Wiley, 1990.
    [13] W. Q. Meeker, L. A. Escobar, Statistical methods for reliability data, New York: Wiley, 1998.
    [14] V. Bagdonavicius, M. Nikulin, Accelerated life models: Modeling and statistical analysis, New York: Chapman & Hall/CRC Press, 2001.
    [15] A. Ismail, Likelihood inference for a step-stress partially accelerated life test model with type-I progressively hybrid censored data from Weibull distribution, J. Stat. Comput. Sim., 84 (2014), 2486–2494. https://doi.org/10.1080/00949655.2013.836195 doi: 10.1080/00949655.2013.836195
    [16] G. K. Bhattacharyya, Z. Soejoeti, A tampered failure rate model for step-stress accelerated life test, Commun. Stat. Theor. M., 8 (1989), 1627–1643. https://doi.org/10.1080/03610928908829990 doi: 10.1080/03610928908829990
    [17] E. Gouno, A. Sen, N. Balakrishnan, Optimal step-stress test under progressive type-I censoring, IEEE T. Reliab., 53 (2004), 388–393. https://doi.org/10.1109/TR.2004.833320 doi: 10.1109/TR.2004.833320
    [18] M. El-Morshedy, H. M. Aljohani, M. S. Eliwa, M. Nassar, M. K. Shakhatreh, A. Z. Afify, The exponentiated Burr-Hatke distribution and its discrete version: Reliability properties with CSALT model, inference and applications, Mathematics, 9 (2021), 2277. https://doi.org/10.3390/math9182277 doi: 10.3390/math9182277
    [19] M. Nassar, M. Farouq, Analysis of modified kies exponential distribution with constant stress partially accelerated life tests under type-II censoring, Mathematics, 10 (2022), 8–19. https://doi.org/10.3390/math10050819 doi: 10.3390/math10050819
    [20] B. R. Rao, Equivalence of the tampered random variables and tampered failure rate models in ALT for a class of life distribution having the setting the clock back to zero property, Commun. Stat-Theor. M., 21 (1992), 647–664. https://doi.org/10.1080/03610929208830805 doi: 10.1080/03610929208830805
    [21] D. S. Bai, S. W. Chung, Optimal design of partially accelerated life tests for the exponential distribution under type-I censoring, IEEE T. Reliab., 7 (1992), 400–406. https://doi.org/10.1109/24.159807 doi: 10.1109/24.159807
    [22] A. S. Hassan, A. S. Al-Ghamdi, Optimum step stress accelerated life testing for Lomax distribution, J. Appl. Sci. Res., 5 (2009), 2153–2164.
    [23] S. J. Wu, C. Kus, On estimation based on progressive first failure censored sampling, Comput. Stat. Data An., 53 (2009), 3659–3670. https://doi.org/10.1016/j.csda.2009.03.010 doi: 10.1016/j.csda.2009.03.010
    [24] S. J. Wu, Y. P. Lin, S. T. Chen, Optimal step-stress test under type-I progressive group censoring with random removals, J. Stat. Plan. Infer., 138 (2008), 817–826. https://doi.org/10.1016/j.jspi.2007.02.004 doi: 10.1016/j.jspi.2007.02.004
    [25] T. H. Fan, W. L. Wang, N. Balakrishnan, Exponential progressive step-stress life-testing with link function based on Box-Cox transformation, J. Stat. Plan. Infer., 138 (2008), 2340–2354. https://doi.org/10.1016/j.jspi.2007.10.002 doi: 10.1016/j.jspi.2007.10.002
    [26] Y. Lio, T. Tsai, Estimation of $\delta = P(XX Y)$ for Burr XII distribution based on the progressively first failure-censored sample, J. Appl. Stat., 39 (2012), 309–322. https://doi.org/10.1080/02664763.2011.586684 doi: 10.1080/02664763.2011.586684
    [27] N. Balakrishnan, R. Aggarwala, Progressive censoring, Boston: Birkhauser, 2000. https://doi.org/10.1007/978-1-4612-1334-5
    [28] L. G. Johnson, Theory and technique of variation research, Amsterdam: Elsevier, 1964.
    [29] A. Soliman, H. A. Ahmed, A. A. Naser, A. A. Gamal, Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data, Comput. Stat. Data An., 56 (2012), 2471–2485. https://doi.org/10.1016/j.csda.2012.01.025 doi: 10.1016/j.csda.2012.01.025
    [30] E. A. Ahmed, Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application, J. Appl. Stat., 44 (2017), 1576–1608. https://doi.org/10.1080/02664763.2016.1214692 doi: 10.1080/02664763.2016.1214692
    [31] H. Krishna, M. Dube, R. Garg, Estimation of $P(Y < X)$ for progressively first-failure censored generalized inverted exponential distribution, J. Stat. Comput. Sim., 87 (2017), 2274–2289. https://doi.org/10.1080/00949655.2017.1326119 doi: 10.1080/00949655.2017.1326119
    [32] K. Kumar, H. Krishna, R. Garg, Estimation of $P(Y < X)$ in Lindley distribution using progressively first failure censoring, Int. J. Syst. Assur. Eng., 6 (2015), 330–341. https://doi.org/10.1007/s13198-014-0267-9 doi: 10.1007/s13198-014-0267-9
    [33] M. M. El-Din, H. M. Okasha, B. Al-Zahrani, Empirical Bayes estimators of reliability performances using progressive type-II censoring from Lomax model, J. Adv. Res. App. Math., 5 (2013), 74–83.
    [34] M. V. Ahmadi, M. Doostparast, Pareto analysis for the lifetime performance index of products on the basis of progressively first-failure-censored batches under balanced symmetric and asymmetric loss functions, J. Appl. Stat., 46 (2018), 1196–1227. http://dx.doi.org/10.1080/02664763.2018.1541170 doi: 10.1080/02664763.2018.1541170
    [35] S. Saini, S. Tomer, R. Garg, On the reliability estimation of multicomponent stress-strength model for Burr XII distribution using progressively first-failure censored samples, J. Stat. Comput. Sim., 92 (2022), 667–704. https://doi.org/10.1080/00949655.2021.1970165 doi: 10.1080/00949655.2021.1970165
    [36] A. M. Elfattah, F. Alaboud, A. Alharby, On sample size estimation for Lomax distribution, Aust. J. Basic Appl. Sci., 1 (2007), 373–378.
    [37] M. Z. Raqab, A. Asgharzadeh, R. Valiollahi, Prediction for Pareto distribution based on progressively type-II censored samples, Comput. Stat. Data An., 54 (2010), 1732–1743. https://doi.org/10.1016/j.csda.2010.02.005 doi: 10.1016/j.csda.2010.02.005
    [38] E. Cramer, A. B. Schmiedt, Progressively type-II censored competing risks data from Lomax distributions, Comput. Stat. Data An., 55 (2011), 1285–1303. https://doi.org/10.1016/j.csda.2010.09.017 doi: 10.1016/j.csda.2010.09.017
    [39] B. Al-Zahrani, M. Al-Sobhi, On parameters estimation of Lomax distribution under general progressive censoring, J. Qual. Reliab. Eng., 2013 (2013), 1–7. https://doi.org/10.1155/2013/431541 doi: 10.1155/2013/431541
    [40] A. Helu, H. Samawi, M. Z. Raqab, Estimation on Lomax progressive censoring using the em algorithm, J. Stat. Comput. Sim., 85 (2015), 1035–1052. https://doi.org/10.1080/00949655.2013.861837 doi: 10.1080/00949655.2013.861837
    [41] S. Wei, C. Wang, Z. Li, Bayes estimation of Lomax distribution parameter in the composite LINEX loss of symmetry, J. Interdiscip. Math., 20 (2017), 1277–1287. https://doi.org/10.1080/09720502.2017.1311043 doi: 10.1080/09720502.2017.1311043
    [42] M. N. Asl, R. A. Belaghi, H. Bevrani, Classical and Bayesian inferential approaches using Lomax model under progressively type-I hybrid censoring, J. Comput. Appl. Math., 343 (2018), 397–412.
    [43] N. Chandra, M. A. Khan, Analysis, optimum plan for 3-step step-stress accelerated life tests with Lomax model under progressive type-I censoring, Commun. Math. Stat., 6 (2018), 73–90. https://doi.org/10.1007/s40304-017-0123-8 doi: 10.1007/s40304-017-0123-8
    [44] K. Mahto, C. Lodhi, Y. M. Tripathi, L. Wang, On partially observed competing risk model under generalized progressive hybrid censoring for Lomax distribution, Qual. Technol. Quant. M., 19 (2022), 1–25. https://doi.org/10.1080/16843703.2022.2049507 doi: 10.1080/16843703.2022.2049507
    [45] X. Qin, W. Gui, Statistical inference of Lomax distribution based on adaptive progressive type-II hybrid censored competing risks data, Commun. Stat-Theor. M., 2022. https://doi.org/10.1080/03610926.2022.2056750
    [46] B. Pradhan, D. Kundu, On progressively censored generalized exponential distribution, Test, 18 (2009), 497–515. https://doi.org/10.1007/s11749-008-0110-1 doi: 10.1007/s11749-008-0110-1
    [47] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. B, 39 (1977), 1–22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x doi: 10.1111/j.2517-6161.1977.tb01600.x
    [48] G. J. McLachlan, T. Krishnan, The EM algorithm and extensions, 2 Eds., New Jersey: Wiley, 2008.
    [49] H. K. T. Ng, P. S. Chan, N. Balakrishnan, Estimation of parameters from progressively censored data using EM algorithm, Comput. Stat. Data An., 39 (2002), 371–386. https://doi.org/10.1016/S0167-9473(01)00091-3 doi: 10.1016/S0167-9473(01)00091-3
    [50] T. A. Louis, Finding the observed information matrix when using the EM algorithm, J. R. Stat. Soc. B, 44 (1982), 226–233.
    [51] R. Calabria, G. Pulcini, Point estimation under asymmetric loss functions for left truncated exponential samples, Commun. Stat-Theor. M., 25 (1996), 585–600. https://doi.org/10.1080/03610929608831715 doi: 10.1080/03610929608831715
    [52] N. A. W. Metropolis, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys., 21 (1953). https://doi.org/10.1063/1.1699114
    [53] N. Balakrishnan, R. A. Sandhu, A simple simulational algorithm for generating progressive type-II censored samples, Am. Stat., 49 (1995), 229–230. http://dx.doi.org/10.1080/00031305.1995.10476150 doi: 10.1080/00031305.1995.10476150
    [54] R. Arabi Belaghi, M. Noori Asl, S. Singh, On estimating the parameters of the Burr XII model under progressive type-I interval censoring, J. Stat. Comput. Sim., 87 (2017), 3132–3151. https://doi.org/10.1080/00949655.2017.1359600 doi: 10.1080/00949655.2017.1359600
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1966) PDF downloads(220) Cited by(10)

Article outline

Figures and Tables

Figures(4)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog