Research article

Pathless directed topology in connection to the circulation of blood in the heart of human body

  • Received: 19 April 2022 Revised: 02 August 2022 Accepted: 03 August 2022 Published: 10 August 2022
  • MSC : 05C20, 05C99, 54A05, 92B05, 92C42

  • We introduce a topology on the set of vertices of a directed graph and we call the topological space as pathless directed topological space. We study relation between the relative topologies and pathless directed topological spaces of E-generated subdirected graphs. Then, we study connectedness, isomorphic and homeomorphic properties in digraphs and pathless directed topological spaces. Moreover, we apply our results to blood circulation process in human heart and disprove Shokry and Aly [M. Shokry and R. E. Aly, Topological properties on graph vs medical application in human heart, Int. J. Appl. Math., 15 (2013), 1103-1109], Nada et al. [S. Nada, A. E. F. El Atik and M. Atef, New types of topological structures via graphs, Math. Method. Appl. Sci., 41 (2018), 5801-5810] and Nawar et al. [A. S. Nawar and A. E. F. A. El-Atik, A model of a human heart via graph nano topological spaces, Int. J. Biomath., 12 (2019), p.1950006]. We show that pathless directed topology is accurately describing the circulation of blood in the heart of human body.

    Citation: Hakeem A. Othman, Mohammed M. Al-Shamiri, Amin Saif, Santanu Acharjee, Tarik Lamoudan, Rashad Ismail. Pathless directed topology in connection to the circulation of blood in the heart of human body[J]. AIMS Mathematics, 2022, 7(10): 18158-18172. doi: 10.3934/math.2022999

    Related Papers:

  • We introduce a topology on the set of vertices of a directed graph and we call the topological space as pathless directed topological space. We study relation between the relative topologies and pathless directed topological spaces of E-generated subdirected graphs. Then, we study connectedness, isomorphic and homeomorphic properties in digraphs and pathless directed topological spaces. Moreover, we apply our results to blood circulation process in human heart and disprove Shokry and Aly [M. Shokry and R. E. Aly, Topological properties on graph vs medical application in human heart, Int. J. Appl. Math., 15 (2013), 1103-1109], Nada et al. [S. Nada, A. E. F. El Atik and M. Atef, New types of topological structures via graphs, Math. Method. Appl. Sci., 41 (2018), 5801-5810] and Nawar et al. [A. S. Nawar and A. E. F. A. El-Atik, A model of a human heart via graph nano topological spaces, Int. J. Biomath., 12 (2019), p.1950006]. We show that pathless directed topology is accurately describing the circulation of blood in the heart of human body.



    加载中


    [1] K. A. Abdu, A. Kilicman, Topologies on the edges set of directed graphs, J. Math. Comput. Sci., 18 (2018), 232–241. https://doi.org/10.12988/ijma.2018.814 doi: 10.12988/ijma.2018.814
    [2] S. M. Amiri, A. Jafarzadeh, H. Khatibzadeh, An Alexandroff topology on graphs, Bull. Iran. Math. Soc., 39 (2013), 647–662.
    [3] E. Anabel, R. Sergio, S. Canoy, On a topological space generated by monophonic eccentric neighborhoods of a graph, Eur. J. Pure Appl. Math., 14 (2021), 695–705. https://doi.org/10.29020/nybg.ejpam.v14i3.3990 doi: 10.29020/nybg.ejpam.v14i3.3990
    [4] A. E. F. El Atik, A. Nawar, M. Atef, Rough approximation models via graphs based on neighborhood systems, Granul. Comput., 6 (2021), 1025–1035. https://doi.org/10.1007/s41066-020-00245-z doi: 10.1007/s41066-020-00245-z
    [5] A. Bickle, Fundamentals of graph theory, Am. Math. Soc., 43 (2020). https://doi.org/10.1007/978-1-84628-970-5 doi: 10.1007/978-1-84628-970-5
    [6] J. A. Bondy, U. S. R. Murty, Graph theory, Springer, Berlin, 2008.
    [7] G. Chiaselotti, D. Ciucci, T. Gentile, F. Infusino, Rough set theory and digraphs, Fund. Inform., 153 (2017), 291–325. https://doi.org/10.3233/FI-2017-1542 doi: 10.3233/FI-2017-1542
    [8] J. Dai, Q. Hu, H. Hu, D. Huang, Neighbor inconsistent pair selection for attribute reduction by rough set approach, IEEE T. Fuzzy Syst., 26 (2017), 937–950. https://doi.org/10.1109/TFUZZ.2017.2698420 doi: 10.1109/TFUZZ.2017.2698420
    [9] J. Dugundji, Topology, series in advanced mathematics, Allyn and Bacon Inc., Boston, 1966.
    [10] A. Gamorez, C. G. Nianga, S. Canoy, Topologies induced by neighborhoods of a graph under some binary operations, Eur. J. Pure Appl. Math., 12 (2019), 749–755. https://doi.org/10.29020/nybg.ejpam.v12i3.3464 doi: 10.29020/nybg.ejpam.v12i3.3464
    [11] S. Nada, A. E. F. El Atik, M. Atef, New types of topological structures via graphs, Math. Method. Appl. Sci., 41 (2018), 5801–5810. https://doi.org/10.1002/mma.4726 doi: 10.1002/mma.4726
    [12] A. S. Nawar, A. E. F. A. El Atik, A model of a human heart via graph nano topological spaces, Int. J. Biomath., 12 (2019), 1950006. https://doi.org/10.1142/S1793524519500062 doi: 10.1142/S1793524519500062
    [13] C. G. Nianga, S. Canoy, On a finite topological space induced by Hop neighborhoods of a graph, Adv. Appl. Dis. Math., 21 (2019), 79–89. https://doi.org/10.17654/DM021010079 doi: 10.17654/DM021010079
    [14] C. G. Nianga, S. Canoy, On topologies induced by graphs under some unary and binary operations, Eur. J. Pure. Appl. Math., 12 (2019), 499–505. https://doi.org/10.29020/nybg.ejpam.v12i2.3421 doi: 10.29020/nybg.ejpam.v12i2.3421
    [15] H. A. Othman, New nano operator for a new nano topology, Adv. Math. Sci. J., 9 (2020), 253–265. https://doi.org/10.37418/amsj.9.1.21 doi: 10.37418/amsj.9.1.21
    [16] Z. Pawlak, Rough sets: Theoretical aspects of reasoning about data, Kluwer Academic Publishers, Dordrecht, 1991.
    [17] H. K. Sari, A. Kopuzlu, On topological spaces generated by simple undirected graphs, AIMS Math., 5 (2020), 5541–5550. https://doi.org/10.3934/math.2020355 doi: 10.3934/math.2020355
    [18] M. Shokry, R. E. Aly, Topological properties on graph vs medical application in human heart, Int. J. Appl. Math., 15 (2013), 1103–1109.
    [19] C. Vasudev, Graph theory with applications, New Age International Publishers, New Delhi, 2006.
    [20] H. O. Zomam, H. A. Othman, M. Dammak, Alexandroff spaces and graphic topology, Adv. Math. Sci. J., 10 (2021), 2653–2662. https://doi.org/10.37418/amsj.10.5.28 doi: 10.37418/amsj.10.5.28
    [21] S. Willard, General topology, Dover publications, USA, 2004.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1931) PDF downloads(142) Cited by(6)

Article outline

Figures and Tables

Figures(8)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog