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1. Introduction

General topology and graph theory are main subjects in discrete mathematics. Leonhard Euler, in
1736 [6], introduced the graph theory to give some solutions of problems in discrete mathematics. In
the graph theory, the notion of topologizing the vertices set or the edges set can was introduced by
many researchers. For example, in 2013, Amiri [2] used the special neighborhoods of a locally finite
graph to construct a topology on its vertices set, called graphic topology, on the set V of vertices of
simple graph G1 = (V,E) by giving the subbasis family S G = {Ax : x ∈ V} such that Ax is the set of
all adjacent vertices of x. For the directed graphs, Abdu and Kiliciman [1], structured the topologies
on the set of edges in directed graphs, called incompatible edge and compatible topologies. In 2019,
Nianga and Canoy [13] used the Hop neighborhoods of a graph to structure a finite topological space,
that is, they presented a way of structuring a topology on a graph via the hop neighborhoods of a
graph. In [14], Nianga and Canoy described some topologies induced by the complements of simple
undirected graphs. In 2019, Gamorez et al. [10], described topologies induced by the corona, edge
corona and tensor product of two graphs. In 2020, Sari and Kopuzlu [17] structured some topologies by
using simple undirected graphs on the set of vertices. In 2021, Anabel et al. [3] constructed topologies
on a vertices set by using monophonic eccentric neighborhoods of the graphs.

Nianga and Canoy [13] studied graph structure in finite topological spaces by Hop neighbourhood.
In nano topology, Othman [15] studied some new graph structures. Recently, Sari and Kopuzlu [17]
generated topological spaces from simple undirected graphs and investigated several properties. Graph
theoretical structures in Alexandroff topology can be found in [20]. Similar studies also can be obtained
in rough set [16] theoretical settings. El Atik et al. [4] studied rough set based graph theoretical
structures in neighbourhood systems. Moreover, one may refer to [8] for graph theoretical attribute
reduction in terms of rough set theory. Moreover, several results were investigated in digraphs from
the perspective of rough set theory in [7]. A directed graph [5, 6], (shortly, dirgraph) G is a pair (V,E)
of a non-empty vertices setV and a set E of directed edges Ex1 x2 such that x1 ∈ V is called the initial
vertex of a directed edge Ex1 x2 and x2 ∈ V is called the terminal vertex of a directed edge Ex1 x2 . By
Ends(Ex1 x2) we mean the set {x1, x2} of ends vertices of Ex1 x2 . The adjacent edges are distinct edges
that have a common vertex. Two directed adjacent edges Ex1 x2 and E′x′1 x′2

are said to have the different
directed (or adjacent different directed edges) if x1 = x′1 or x2 = x′x. An alternate sequence of directed
edge of the form {E1

x1 x2
, E2

x2 x3
, E3

x3 x4
, ....} is called directed path. For x ∈ V, the directed edge Exx is

called a loop. The parallel edges are directed edges which have the same started vertex and the same
end vertex. The dirgraph which has no parallel edges or loops is called simple.

In this work we give the notion of pathless property of subsets of vertices set in directed graph
to structure topology on vertices set. In Section 2 we structure pathless directed topological spaces
of directed graphs and study Alexandroff property on this structure. In Section 3, we study relation
between the relative topologies and pathless directed topological spaces of E-generated subdirected
graphs with giving the relation of connectedness in graphs and in pathless directed topological spaces.
In Section 4, we present the relation between isomorphically in graphs and homeomorphically pathless
directed topological spaces.
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2. Pathless directed topological spaces

Let G = (V,E) be a dirgraph. A set H ⊆ V is called C-set in V if |H| ≥ 2 and for every u ∈ H
there is at last one vertex v ∈ H such that there is directed edge between u and v.

For any digraph G = (V,E) and for any C-set H ⊆ V, we define HE = {Ex1 x2 ∈ E : x1, x2 ∈ H}.
|HE| denotes the number of adjacent different directed edges in E(H). If E(H) is single then we
consider |HE| = 1. For any directed edge Ex1 x2 ∈ E, (Ex1 x2)E denotes the set of all adjacent edges with
Ex1 x2 in the different direction.

Definition 2.1. LetG = (V,E) be a digraph. A C-setH inV is called pathless set inG if the following
conditions hold:

(1) 0 < |HE| < 3;
(2) if E ∈ HE and E′ is adjacent different directed edge with E then E′ ∈ HE.

The pathless directed topological space of G is a pair (V,TPG), where TPG is a topology onV induced
by a subbasis PG, where PG denotes the collection of all pathless sets in G.

Remark 2.2. It is clear from the above definition that 1 < |H| < 4, for any pathless setH in G.

Example 2.3. In Figure 1, we consider a digraph G = (V,E), whereV = {x1, x2, x3, x4, x5, x6, x7}. We
have PG = {{x1, x2, x7}, {x4, x5}, {x2, x3}}. Thus, the pathless directed topology TPG is given below.

TPG = {∅,V, {x1, x2, x7}, {x4, x5}, {x2, x3}, {x2}, {x1, x2, x7, x3}, {x1, x2, x7, x4, x5},

{x4, x5, x2}, {x2, x3, x4, x5}}.

Figure 1. Representation of pathless 1.

Example 2.4. For the digraph of Figure 2, the pathless directed topology TPG is an indiscrete.

Figure 2. Representation of pathless 2.
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Theorem 2.5. Let G = (V,E) be a digraph. Then, Ends(Ex1 x2) is an open set in (V,TPG), for all
Ex1 x2 ∈ E with |(Ex1 x2)E| = 0 or |(Ex1 x2)E| ≥ 2.

Proof. If |(Ex1 x2)E| = 0, then it is clear by definition of PG that Ends(Ex1 x2) ∈ PG. It means the set
Ends(Ex1 x2) is an open set in (V,TPG). Let |(Ex1 x2)E| ≥ 2. Then, there is at least two directed edges
E1

y1y2
, E2

z1z2
∈ (Ex1 x2)E such that one of the following cases occurs. They cases are as follow: (i)

x2 = y2 = z2 or (ii) x1 = y1 = z1 or (iii) z2 = x2 and y1 = x1 or (iv) y2 = x2 and x1 = z1.

If x2 = y2 = z2, then {y1, x2 = y2 = z2, x1}, {z1, x2 = y2 = z2, x1} ∈ PG, i.e.,

{y1, x2 = y2 = z2, x1} ∩ {z1, x2 = y2 = z2, x1} = {x1, x2} ∈ TPG.

Similarly, we get {x1, x2} = Ends(Ex1 x2) ∈ TPG for the other three cases. Thus, Ends(Ex1 x2) is an open
set in (V,TPG). �

Corollary 2.6. Let G = (V,E) be a digraph. If one of the following conditions holds.

(1) |(Exy1)E| = 0 and |(E′xy2
)E| = 0,

(2) |(Exy1)E| = 0 and |(E′xy2
)E| ≥ 2,

(3) |(Exy1)E| ≥ 2 and |(E′xy2
)E| = 0,

(4) |(Exy1)E| ≥ 2 and |(E′xy2
)E| ≥ 2,

for all y1 , y2, x ∈ V and Exy1 , E
′
xy2
∈ E, then {x} is an open set in (V,TPG).

Proof. Using Theorem 2.5, we get that Ends(Exy1) and Ends(E′xy2
) are open sets in (V,TPG). Thus,

Ends(Exy1) ∩ Ends(E′xy2
) = {x} is an open set in (V,TPG). �

Theorem 2.7. Let G = (V,E) be a digraph. Then, the pathless directed topological space (V,TPG) of
G is an Alexandroff space.

Proof. To prove that (V,TPG) is an Alexandroff space, it is enough to prove that arbitrary intersection
of elements of PG is an open set in (V,TPG). Let {Fα : α ∈ I} be the collection of elements of PG.
Then, it clear by the definition of PG that |Fα| = 2 or |Fα| = 3 for all α ∈ I. Then, one of the following
conditions holds: ∩α∈IFα = ∅ or ∩α∈IFα = {u, x} or ∩α∈IFα = {u}, for some u, x ∈ V. If ∩α∈IFα = ∅,
then ∩α∈IFα is an open set in (V,TPG). If ∩α∈IFα = {u, x}, for some u, x ∈ V then by Theorem 2.5,
∩α∈IFα is an open set in (V,TPG). If ∩α∈IFα = {u}, for some u ∈ V then, one of the following three
cases holds:

∩α∈IFα = {u} = F1 ∩ F2,

where |F1| = |F2| = 3 or |F1| = 2 and |F2| = 3 or |F1| = 2 and |F2| = 2.
Case 1: If |F1| = |F2| = 3, then F1, F2 ∈ PG. Hence, ∩α∈IFα is an open set in (V,TPG).
Case 2: If |F1| = 2 and |F2| = 3, then F2 ∈ PG and hence, F2 is an open set in (V,TPG). For |F1| = 2, we
have one of the following conditions in both cases: F1 ∈ PG or F1 = H1 ∩H2, where |H1| = |H2| = 3,
i.e.,H1,H2 ∈ PG. Thus, F1 is an open set in (V,TPG). Therefore, ∩α∈IFα is an open set in (V,TPG).
Case 3: If |F1| = 2 and |F2| = 2, then we have one of the following conditions: F1, F2 ∈ PG or F2 ∈ PG
and F1 = H1 ∩ H2, where |H1| = |H2| = 3, i.e., H1,H2 ∈ PG or F1 ∈ PG and F2 = H1 ∩ H2, where
|H1| = |H2| = 3,H1,H2 ∈ PG or F1 = H1 ∩H2 and F2 = H ′1 ∩H

′
2, where

|H1| = |H2| = |H
′
1| = |H

′
2| = 3,

i.e.,H1,H2,H
′
1,H

′
2 ∈ PG. Thus, ∩α∈IFα is an open set in (V,TPG). �
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Let G = (V,E) be a digraph. For every x ∈ V, we write UG(x) to denote the intersection of all open
sets in (V,TPG) containing x. From above theorem, (V,TPG) is Alexandroff space and thus, UG(H) is
the smallest open set in (V,TPG) containing x. It is clear that the collection PG(V) = {UG(x) : x ∈ V}
forms a minimal basis of (V,TPG). For everyH ⊆ V, UG(H) denotes the intersection of all open sets
in (V,TPG) containingH .

Theorem 2.8. If G = (V,E) is a digraph, then UG(H) = ∩{G ∈ PG : H ⊆ G}, for allH ⊆ V.

Proof. It is clear that G is an open set in (V,TPG), for all G ∈ PG. Using Theorem 2.7, we have that
∩{G ∈ PG : H ⊆ G} is an open set in (V,TPG). Since H ⊆ G for all G ∈ {G ∈ PG : H ⊆ G},
thus H ⊆ ∩{G ∈ PG : H ⊆ G} and so UG(H) ⊆ ∩{G ∈ PG : H ⊆ G}. Again, the collection of all
intersections of members of PG forms a basis for (V,TPG), thus ∩{G ∈ PG : H ⊆ G} ⊆ UG(H). Hence,
UG(H) = ∩{G ∈ PG : H ⊆ G}. �

Corollary 2.9. If G = (V,E) is a digraph then for all x ∈ V, UG(x) = ∩{G ∈ PG : x ∈ G}.

Corollary 2.10. If G = (V,E) be a digraph, E ∈ E and |(E)E| = 0 or |(E)E| ≥ 2. Then, UG(Ends(E)) =

Ends(E).

Proof. Let G = (V,E) be a digraph and E ∈ E. If |(E)E| = 0, then Ends(E) ∈ PG is an open set in
(V,TPG). So, UG(Ends(E)) = Ends(E).

If |(E)E| ≥ 2, then by Theorem 2.5, Ends(E) is an open set in (V,TPG). So, UG(Ends(E)) =

Ends(E). �

Corollary 2.11. If |(E)E| = 1, then there is E′ ∈ (E)E such that UG(Ends(E)) = Ends(E) ∪ Ends(E′).

Proof. If |(E)E| = 1, then there is E′ ∈ (E)E such that Ends(E) ∪ Ends(E′) ∈ PG. So, UG(Ends(E)) =

Ends(E) ∪ Ends(E′). �

Corollary 2.12. Let E, E′ ∈ E be two directed edges in a digraph G = (V,E). Then, (E)E = {E′} if
and only if Ends(E′) ⊆ UG(Ends(E)).

Proof. Suppose that E, E′ ∈ E and (E)E = {E′}, i.e., |(E)E| = 1. Then, UG(Ends(E)) = Ends(E) ∪
Ends(E′). Hence, Ends(E′) ⊆ UG(Ends(E)).

Conversely, suppose that Ends(E′) ⊆ UG(Ends(E)). Since, Ends(E) ⊆ UG(Ends(E)), then
Ends(E′) = Ends(E) or Ends(E′) , Ends(E). If Ends(E′) = Ends(E), then the proof is complete.
If Ends(E′) , Ends(E) and we have Ends(E)∪Ends(E′) ⊆ UG(Ends(E)), then |Ends(E)∪Ends(E′)| =
3, since UG(Ends(E)) is the smallest open set in (V,TPG) containing Ends(E). Then, UG(Ends(E)) ∈
PG and (E)E = {E′}, since if E′′ ∈ (E)E, then by Corollary 2.10, UG(Ends(E)) = Ends(E). �

Throughout the paper, A denotes closure of a subset A in a topological space.

Corollary 2.13. Let G = (V,E) be a digraph and E, E′ ∈ E. Then, (E′)E = {E} if and only if
Ends(E′) ⊆ UG(Ends(E)).

Proof. Suppose that Ends(E′) ⊆ UG(Ends(E)).Then for all open set A containing Ends(E′), A ∩
UG(Ends(E)) , ∅. So, UG(Ends(E′)) ∩ UG(Ends(E)) , ∅. Then, Ends(E) ∪ Ends(E′) ∈ PG and
(E′)E = {E}, since if E′′ ∈ (E′)E, then by Corollary 2.10, we have UG(Ends(E′)) = Ends(E′).
Conversely, suppose that (E′)E = {E}. Then by Corollary 2.12, Ends(E) ⊆ UG(Ends(E′)). Thus for
all open set A containing Ends(E′), we have Ends(E) ⊆ A and A ∩ Ends(E) = Ends(E) , ∅. Since
Ends(E) ⊆ UG(Ends(E)) then A ∩ UG(Ends(E)) , ∅. Hence, Ends(E′) ⊆ UG(Ends(E)). �
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Let G = (V,E) be a digraph. Recall [9] that an Alexandroff space (V,TPG) is T0-space if and only
if UG(x) , UG(u), for all u , x ∈ V. An Alexandroff space (V,TPG) is T1-space if and only if
UG(x) = {x}, for all u , x ∈ V i.e., if and only if (V,TPG) is discrete.

Proposition 2.14. If G = (V,E) is a digraph, then ∪E∈E{Ends(E) : |(E)E| = 0 or |(E)E| ≥ 2} is an open
set in (V,TPG).

Proof. By Theorem 2.5, for E ∈ E with |(E)E| = 0 or |(E)E| ≥ 2, Ends(E) is an open set in (V,TPG).
So, ∪E∈E{Ends(E) : |(E)E| = 0 or |(E)E| ≥ 2} is an open set in (V,TPG). �

Proposition 2.15. If G = (V,E) is a digraph, then ∪E∈E{Ends(E) : |(E)E| = 1} is a closed set in
(V,TPG).

Proof. Let C = ∪E∈E{Ends(E) : |(E)E| = 1}. It is clear that C = ∪E∈E{Ends(E) : |(E)E| = 1}. By
Proposition 2.14, Ends(E) ⊆ C, for all Ends(E) ⊆ C. So, C ⊆ C. Thus, C = C and hence, C is a
closed set in (V,TPG). �

Let G = (V,E) be a digraph. For x ∈ V, E(x) denotes the set of all E ∈ H such that x ∈ Ends(E) and
V(x) denotes the set of all x′ ∈ V such that x is joined with x′ by a directed edge.

Proposition 2.16. If G = (V,E) is a digraph, then ∩E∈E(x)UG(Ends(E)) = UG(x), for x ∈ V.

Proof. It is clear that UG(x) ⊆ ∩E∈E(x)UG(Ends(E)). Since, UG(x) is the intersection of all open sets in
(V,TPG) containing x and PG is the subbasis of (V,TPG), thus UG(x) = ∩E∈E′UG(Ends(E)), for some
subset E′ of E. Then, x ∈ UG(Ends(E)), for all E ∈ E′. Hence, E ∈ E(x), for all E ∈ E′ i.e., E′ ⊆ E(x).
So, ∩E∈E(x)UG(Ends(E)) ⊆ UG(x). Hence, the proof is done. �

3. Relative topology and subdigraph

A digraph H is called subdigraph of a digraph G = (V,E), if the direction function of H is the
restriction of the direction function of G onHE and all edges and vertices ofH are in G. A collection
of the edges in a digraph G = (V,E) together with their terminals is called E-generated subdigraph of
G = (V,E). For any E-generated subdigraph GH of G = (V,E), VH denotes the set of all vertices
of GH , EH denotes the set of all edges of GH , TPGH denotes the pathless directed topology of GH and
PGH is the subbasis of (VH ,TPGH ).

Theorem 3.1. For any E-generated subdigraph GH of G = (V,E), TPGH ⊆ TPG|VH , where TPG|VH is
the relative topology of TPG onVH .

Proof. Let G ∈ TPGH . We will prove that G = F ∩ VH , for some open set F in (V,TPG). Let
F′ = ∩{D ∈ TPG : G ⊆ D}. Then by Theorem 2.7, F′ is an open set in (V,TPG) and F′ ∩ VH = G.
Thus, G ∈ TPG|VH . �

In general, for any E-generated subdigraph GH of G = (V,E), we have TPGH , TPG|VH , we have the
following example for it.

In Figure 3, V = {x1, x2, x3, x4} and TPG = {∅,V, {x1, x2, x3}, {x2, x3, x4}, {x2, x3}}. We consider
VH = {x1, x2, x3} and EH = {x1x2, x3x2}. Thus, we find that TPGH = {∅,VH } and TPG|VH =

{∅,VH , {x2, x3}}.

AIMS Mathematics Volume 7, Issue 10, 18158–18172.
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Figure 3. E-generated subdigraph.

An E-generated subdigraph GH = (VH ,EH ) of G = (V,E) is called an adjacent with G if |(E)E| ≥ 2
in G implies |(E)EH | ≥ 2 in GH , for all E ∈ EH .

Theorem 3.2. Let GH = (VH ,EH ) be an E-generated subdigraph of G = (V,E). Then, GH is an
adjacent with G if and only if TPGH = TPG|VH .

Proof. Suppose that GH is an adjacent with G. Let G ∈ TPG|VH and G < TPGH . Since VH ∈ TPGH ∩

TPG|VH , then G = Ends(E), for some E ∈ EH such that |(E)E| ≥ 2 in G and |(E)EH | = 1 in GH . This
is a contradiction to the hypothesis, that TPG|VH ⊆ TPGH . For the other hand, TPGH ⊆ TPG|VH by
Theorem 5.7. Thus, TPGH = TPG|VH .
Conversely, let TPGH = TPG|VH . Suppose that there is E ∈ EH such that |(E)E| ≥ 2 in G and |(E)EH | < 2
in GH . Then, by Theorem 2.5, Ends(E) is an open set in (V,TPG). Hence, Ends(E) ∩VH = Ends(E)
is an open set in (VH ,TPG|VH ) but Ends(E) is not open set in (VH ,TPGH ). This is a contradiction to
the hypothesis, that GH is an adjacent with G. �

Theorem 3.3. Let G = (V,E) be a digraph without isolated points. If the pathless directed topological
space (V,TPG) is connected space, then G is a connected digraph.

Proof. Suppose that the digraph G is a disconnected graph. Let {Gα : α ∈ ∆} be the collection of all
directed subgraphs of G. Then for every α ∈ ∆, we haveVGα = ∪{Ends(E) : E ∈ E(Gα)}, which is an
open set in (V,TPG). Since G has no isolated points, thus Vc

Gα
= V −VGα is an open set in (V,TPG)

and V = Vc
Gα
∪ VGα . Thus, the pathless directed topological space (V,TPG) is disconnected space.

This is a contradiction to the hypothesis. So, graph G is a connected digraph. �

Converse of the above theorem above is not true in general. For example, in Figure 4, the pathless
directed topological space (V,TPG) is disconnected space but the graph G is connected, where TPG =

{∅,V, {x1, x2}{x3, x2}, {x3, x4}, {x2}, {x3}, {x1, x2, x3}, {x2, x3, x4}}.

Figure 4. Path directed graph.
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4. Digraph isomorphic property

For any two digraphs G1 = (V1,E1) and G2 = (V2,E2), by graph function of G1 into G2 we mean a
pair (ΦV1V2 ,ΦE1E2) : G1 → G2 of two functions ΦV1V2 : V1 → V2 and ΦE1E2 : E1 → E2. Recall [19]
that the isomorphism of G1 onto G2 is a graph function (ΦV1V2 ,ΦE1E2) : G1 → G2 of two bijective
functions ΦV1V2 : V1 → V2 and ΦE1E2 : E1 → E2 such that ΦE1E2(Ex1 x2) = ΦE1E2(EΦV1V2 (x1)ΦV1V2 (x2)),
for all Ex1 x2 ∈ E1 and x1, x2 ∈ V1. Here, Ex1 x2 ∈ E1 is an edge directed from x1 to x2 in G1 if and only
if ΦE1E2(Ex1 x2) is an edge directed from ΦV1V2(x1) to ΦV1V2(x2) in G2. If there exists an isomorphism
of G1 onto G2, then we say that G1 and G2 are isomorphic and write G1 � G2.

Theorem 4.1. If the two digraphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic , then the two
pathless directed topological spaces (V1,TPG1) and (V2,TPG2) are homeomorphic.

Converse of Theorem 4.1 is not true in general. In Figure 5, two pathless directed topological
spaces (V1,TPG1) and (V2,TPG2) are homeomorphic, where V1 = {x1, x2}, V2 = {y1, y2}, TPG1 =

{∅,V1} and TPG2 = {∅,V2}, but the two graphs G1 and G2 are not isomorphic.

Figure 5. An isomorphic graphs 1.

Theorem 4.2. If G1 and G2 are two simple digraphs and µ : V1 → V2 is continuous function, then
(Eyx)E1 = {Ezx} ( resp. (Eyx)E1 = {Eyz}) implies (Eµ(y)µ(x))E2 = {Eµ(z)µ(x)} ( resp.
(Eµ(y)µ(x))E2 = {Eµ(y)µ(z)}), for all y, x, z ∈ V1.

Proof. Suppose that µ : V1 → V2 is continuous function and y, x, z ∈ V1 such that (Eyx)E1 = {Ezx}.
By Corollary 2.14, Ends(Eyx) ⊆ UG1(Ends(Ezx)). Then, µ[Ends(Eyx)] ⊆ µ[UG1(Ends(Ezx))]. i.e.
Ends(Eµ(y)µ(x)) ⊆ µ[UG1(Ends(Ezx))]. Since µ is continuous, thus µ

(
UG1(Ends(Ezx))

)
⊆ UG1(Ends(Eµ(z)µ(x))). Hence, Ends(Eµ(y)µ(x)) ⊆ UG1(Ends(Eµ(z)µ(x))). Thus, (Eµ(y)µ(x))E2 = {Eµ(x)µ(z)}

from Corollary 2.14. Similarly, we prove the other case. �

Converse of the above theorem is not true in general. For example, in Figure 6 we consider V =

{x1, x2, x3}, V
′ = {x′1, x

′
2, x

′
3, x

′
4}, TPG = {∅,V} and TPG′ = {∅,V′, {x′1, x

′
2, x

′
3}, {x

′
3, x

′
4}, {x

′
3}}. Let µ :

V → V′ be a function given by µ(x1) = x′1, µ(x2) = x′2, and µ(x3) = x′3. Note that µ is not continuous
while (Ex1 x2)E = {Ex2 x3} implies (Eµ(x1)µ(x2))E′ = {Eµ(x2)µ(x3)} and (Ex2 x3)E = {Ex1 x2} implies (Eµ(x2)µ(x3))E′ =

{Eµ(x1)µ(x2)}.
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Figure 6. An isomorphic graphs 2.

5. Pathless directed topology in human heart

Recently, many ideas were generated in topology using graph theory, in particular neighbourhood
of a vertex in a graph. In this section, we consider Figures 7 and 8 from [12] and Nada et al. [11]
respectively. Before going further, we procure following definition.

Figure 7. A diagram of a human heart.

Figure 8. A digraph representation of the circulation of blood in heart.
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Definition 5.1. [5] A graph H is a subgraph of a graph G if V(H) ⊆ V(G) and E(H) ⊆ E(G) so that
the edges in E(H) use only vertices in V(H). We write H ⊆ G and say G contains H. An induced
subgraph is a subgraph G[S ] with vertex S ⊆ V(G) and all edges with both ends in S .

In Shokry and Aly [18], open-path in graph and topology were connected. As an application, Shokry
and Aly [18] studied the circulation process of blood in a human heart. It is important to note that they
were unable to write all the elements of the topology τ in Section 5.1. Thus, it is raising question on
the validation of their claims cl(X(p)) = {v1, v2, v3, e1, e2, e3}, where X(p) = {v1, v2, e1.e2, e3}. Similarly,
their claim int(X(p)) = {v4, e4, v5, e6}, where X(p) = {v4, e4, v5, e6, v6} is also doubtful. Moreover, it
is unclear to us about their biological justifications in Section 5.1 from cl(X(p)) and int(X(p)) which
fail when any of v6 or v7 remains in X(p). Thus, it clearly indicates that their methodology is not
biologically feasible to justify the circulation process of blood in a human heart. In 2017, Nada et
al. [11] introduced a new kind of topological structure using graphs and proved some fundamental
properties. They introduced a topology on a set of vertices by considering post class for each vertex as
an element of the subbasis. Moreover, they applied their results to the circulation process of blood
in a human heart. Similar to [18], Nada et al. [11] also did not mention ways to get biological
implications regarding the circulation of blood in a human heart from closure and interior of a subset
from a subgraph. While developing the theory, they considered topology on V of the graph G = (V, E).
At the time of application, Nada et al. [11] considered H = {v1, v2, e1, e2, e3} as a subgraph and found
cl(V(H)), where V(H) = {v1, v2}. But from Definition 5.1, it is easy to find that H is not a subgraph.
Thus, their application is not flawless.

Again, Nawar et al. [12] and Othman [15] introduced nano topology induced by different
neighbourhoods. Their methodology was inspired from upper approximation and lower approximation
of rough set theory, but in neighbourhood sense. It was claimed from Figure 4 and Tables 4–7 of [12],
that blood flows into a heart in a directed path. It means that blood must be passed through each
successive point until completing its cycle. We agree with the flow process of blood in a heart as a
directed graph, but we have disagreement with their mathematics since they never stated whether the
open sets indicate the parts of the heart from which blood flows in a directed path. For example, from
Table 4 of [12], it can be easily seen that if V(H) = {v2, v6}, then τNr (V(H)) = {V(G), ∅, {v2, v5, v6}}.
Now, because of topology defined Definition 2.3 of [12], it is necessary that V(G) ∈ τNr (V(H)). But,
it is not clear to us about the biological interpretation of {v2, v5, v6} since, if we consider two parts of
the heart v2 and v6, then according to Figure 8, blood does not flow from v2 to v6 via only v5. Thus
their claim “From Figure 4 and Tables 4–7, we show that the blood flows into a heart in a directed
path, that’s mean the blood must be passed through each successive point until completing its cycle” is
not correct in case of V(H) = {v2, v6}. Thus, we are unable to agree with their mathematical ideas for
biological conclusions. Hence, the theories of [11, 12, 18] in biological applications are doubtful. We
shall show that pathless directed topological spaces are useful to describe the above biological process
in better ways than [11, 12, 18].

Nada et al. [11] procured same notions as of Shokry and Aly [18] to identify different parts
of a heart of human body for their calculations. For our purpose, we procure same notions
of Shokry and Aly [18]. Let us consider superior vena cava, inferior vena cava, right atrium,
right ventricle, pulmonary trunk, right lung ,left lung, left atrium, left ventricle and aorta by the
vertices v1, v2, v3, v4, v5, v6, v7, v8, v9 and v10, respectively. Figures 7 and 8 represent a digram of
a heart and a diagraph representation of the circulation of blood in a heart respectively. Let
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G = (V, E) represents the digraph representation of the heart of human body. Then, V =

{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10} and E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10}. In this case, we have
PG = {{v1, v2, v3}, {v3, v4}, {v4, v5}, {v5, v6, v7}, {v6, v7, v8}, {v8, v9}, {v9, v10}}. Now, to proceed further we
shall find the topology τPG generated from the subbasis PG.

Then, τPG={V, ∅, {v1, v2, v3}, {v3, v4}, {v4, v5}, {v5, v6, v7}, {v6, v7, v8}, {v8, v9}, {v10, v9},

{v3}, {v4}, {v5}, {v6, v7}, {v8}, {v9}, {v1, v2, v3, v4}, {v1, v2, v3, v4, v5}, {v1, v2, v3, v5, v6, v7},

{v1, v2, v3, v6, v7, v8}, {v1, v2, v3, v8, v9}, {v1, v10, v2, v3, v9}, {v1, v2, v3, v5}, {v1, v2, v3, v6, v7},

{v1, v2, v3, v8}, {v1, v2, v3, v9}, {v3, v4, v5}, {v3, v4, v5, v6, v7}, {v3, v4, v6, v7, v8}, {v3, v4, v8, v9},

{v10, v3, v4, v9}, {v3, v4, v6, v7}, {v3, v4, v8}, {v3, v4, v9}, {v4, v5, v6, v7}, {v4, v5, v6, v7, v8}

, {v4, v5, v8, v9}, {v10, v4, v5, v9}, {v4, v5, v8}, {v4, v5, v9}, {v5, v6, v7, v8}, {v5, v6, v7, v8, v9},

{v10, v5, v6, v7, v9}, {v3, v5, v6, v7}, {v5, v6, v7, v9}, {v6, v7, v8, v9}, {v10, v6, v7, v8, v9}, {v3, v6, v7, v8},

{v4, v6, v7, v8}, {v10, v8, v9}, {v3, v8, v9}, {v4, v8, v9}, {v5, v8, v9}, {v10, v3, v9}, {v10, v4, v9}, {v10, v5, v9},

{v10, v6, v7, v9}, {v3, v5}, {v3, v6, v7}, {v3, v8}, {v3, v9}, {v4, v6, v7}, {v4, v8}, {v4, v9}, {v5, v8}, {v5, v9}

, {v6, v7, v9}, {v1, v2, v3, v4, v5, v6, v7}, {v1, v2, v3, v4, v6, v7, v8}, {v1, v2, v3, v4, v8, v9}, {v1, v10, v2, v3, v4, v9},

{v1, v2, v3, v4, v6, v7}, {v1, v2, v3, v4, v8}, {v1, v2, v3, v4, v9}, {v1, v2, v3, v4, v5, v6, v7, v8},

{v1, v2, v3, v4, v5, v8, v9}, {v1, v10, v2, v3, v4, v5, v9}, {v1, v2, v3, v4, v5, v8}, {v1, v2, v3, v4, v5, v9},

{v1, v2, v3, v5, v6, v7, v8}, {v1, v2, v3, v5, v6, v7, v8, v9}, {v1, v10, v2, v3, v5, v6, v7, v9}, {v1, v2, v3, v5, v6, v7, v9}

, {v1, v2, v3, v6, v7, v8, v9}, {v1, v10, v2, v3, v6, v7, v8, v9}, {v1, v10, v2, v3, v8, v9},

{v1, v2, v3, v5, v8, v9}, {v1, v10, v2, v3, v5, v9}, {v1, v10, v2, v3, v6, v7, v9}, {v1, v2, v3, v5, v8}, {v1, v2, v3, v5, v9}

, {v1, v2, v3, v6, v7, v9}, {v3, v4, v5, v6, v7, v8}, {v3, v4, v5, v8, v9}, {v10, v3, v4, v5, v9}, {v3, v4, v5, v8},

{v3, v4, v5, v9}, {v3, v4, v5, v6, v7, v8, v9}, {v10, v3, v4, v5, v6, v7, v9}, {v3, v4, v5, v6, v7, v9}, {v3, v4, v6, v7, v8, v9},

{v10, v3, v4, v6, v7, v8, v9}, {v10, v3, v4, v8, v9}, {v10, v3, v4, v6, v7, v9}, {v3, v4, v6, v7, v9},

{v4, v5, v6, v7, v8, v9}, {v10, v4, v5, v6, v7, v9}, {v4, v5, v6, v7, v9}, {v10, v4, v5, v6, v7, v8, v9},

{v10, v4, v5, v8, v9}, {v10, v5, v6, v7, v8, v9}, {v3, v5, v6, v7, v8}, {v3, v5, v6, v7, v8, v9}, {v10, v3, v5, v6, v7, v9},

{v3, v5, v6, v7, v9}, {v3, v6, v7, v8, v9}, {v4, v6, v7, v8, v9}, {v10, v3, v6, v7, v8, v9},

{v10, v4, v6, v7, v8, v9}, {v10, v3, v8, v9}, {v10, v4, v8, v9}, {v10, v5, v8, v9}, {v3, v5, v8, v9},

{v10, v3, v5, v9}, {v10, v3, v6, v7, v9}, {v10, v4, v6, v7, v9}, {v3, v5, v8}, {v3, v5, v9}, {v3, v6, v7, v9},

{v4, v6, v7, v9}, {v1, v2, v3, v4, v5, v6, v7, v8, v9}, {v1, v10, v2, v3, v4, v5, v6, v7, v9},

{v1, v2, v3, v4, v5, v6, v7, v9}, {v1, v2, v3, v4, v6, v7, v8, v9}, {v1, v10, v2, v3, v4, v6, v7, v8, v9},

{v1, v10, v2, v3, v4, v8, v9}, {v1, v10, v2, v3, v4, v6, v7, v9}, {v1, v2, v3, v4, v6, v7, v9},

{v1, v10, v2, v3, v4, v5, v6, v7, v8, v9}, {v1, v10, v2, v3, v4, v5, v8, v9}, {v1, v10, v2, v3, v5, v6, v7, v8, v9},

{v1, v10, v2, v3, v5, v8, v9}, {v10, v3, v4, v5, v6, v7, v8, v9}, {v10, v3, v4, v5, v8, v9},

{v10, v3, v5, v6, v7, v8, v9}, {v10, v3, v5, v8, v9}}

Now, before going further we procure following Definitions 5.5 and 5.6 from [18].

Definition 5.2. [18] The closure of the path on the graph is:
cl(X(p)) = X(p) ∪ {{vi, ei} : vi ∈ V,N(vi) ∩ X(p) , ∅ and {ei} ∩ X(p) , ∅}.

Definition 5.3. [18] The interior of any path on the graph is:
int(X(p)) = {{vi, ei} : vi ∈ V, ei ∈ E,N(vi) ⊆ X(p) and {ei} ∈ X(p)}.

Here, p indicates a path and thus, X(p) indicates the set containing vertices and edges of the path p.
But, it is natural to find that the Definition 5.1 does not follow the following property of closure of

a subset [21] in a topological space (X, τ).
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Theorem 5.4. Let (X, τ) be a topological space and A ⊆ X. Then, x ∈ cl(A) if and only if A ∩ U , ∅

∀U ∈ τ, x ∈ U.

Similarly, the Definition 5.6 does not follow property of interior in a topological space because no
neighbourhood of ei was considered in this definition. The reason follows from X = V ∪ E of [18].
Thus, neighborhoods of edges must play the role to define closure and interior of X(p) of any path p.
Thus, we rectify their notions below.

Definition 5.5. The closure of the path on the graph is:
cl(X(p)) = X(p) ∪ {{vi, ei} : vi ∈ V,N(vi) ∩ X(p) , ∅ and N(ei) ∩ X(p) , ∅}.

Definition 5.6. The interior of any path on the graph is:
int(X(p)) = {vi, ei : vi ∈ V, ei ∈ E,N(vi) ⊆ X(p) and N(ei) ⊆ X(p)}.

Now, we procure following two subsets to compare the circulation of blood in a heart of human
body with refer to [18]. For this purpose, we prepare the following Table 1 using the subset H and its
closure in the sense of [18] and us.

Table 1. Comparison of our method with Shokry and Aly [18] for cl(H).

Authors H cl(H)
Shokry and Aly [18] v1, v2, e1, e2, e3 v1, v2, v3, e1, e2, e3

Othman et al. (present paper) v1, v2 v1, v2

Thus, it can be checked that our method is more precise than [18] and in our method, cl(H) =

{v1, v2}, i.e., blood flows from v1 and v2. Since, the flow of blood is a digraph, thus this can be easily
concluded. Moreover, Theorem 5.7 clearly concludes that cl(H) = {v1, v2, v3, e1, e2, e3} is not correct
because it does not satisfy this fundamental property. Moreover, our calculation cl(H) = {v1, v2} clearly
tells the above phenomenon.

Again, we prepare the following table using the subset H and its interior in the sense of [18] and us.
In Table 2, Shokry and Aly [18] found two interiors {v4, e4, v5, e6, v6}, {v4, e4, v5, e6} of

{v4, e4, v5, e6, v6}. But, due to the medical application, they neglected {v4, e4, v5, e6, v6}. But, it is to
remember that neither general topology nor any of its generalized form supports existence of two
interiors of a same subset. Thus, their methodology is neither mathematically feasible nor biologically
correct. Similar flaws can be observed in Nada et al. [11]. We procure the following definition of Nada
et al. [11].

Table 2. Comparison of our method with Shokry and Aly [18] for int(H).

Authors H int(H)
Shokry and Aly [18] {v4, e4, v5, e6, v6} {v4, e4, v5, e6, v6}, {v4, e4, v5, e6}

Othman et al. (present paper) {v4, v5, v6 } {v4, v5 }

Definition 5.7. Let G = (V, E) be a graph and R be a relation on G, then for each vi ∈ V as defined
above, we define the post class for each vi as the open neighbourhood of vi in R. It is denoted by viR.
We construct a subbase for a topology by S G =

⋃
{viR : vi ∈ V(G)}. By the intersection of members of

S G, we define a base βG and by the arbitrary union of members of βG which is the topological structure
τG on a grpah G.
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In case of a heart, Nada et al. [11] considered a subgraph H = {v1, v2, e1, e2, e3}, where V(H) =

{v1, v2}. They calculated cl(V(H)) = {v1, v2, v3}. But, we observed two interesting facts in Nada et
al. [11]. At first, H is not a subgraph by Definition 5.1 and after recalculation, we found that cl(V(H)) =

{v1, v2}, not {v1, v2, v3} of Nada et al. [11]. Thus, both the claims of Nada et al. [11] are not true.
Thus, their biological claims also have flaws while describing the biological phenomena regarding the
circulation of blood in a heart.

Now, we shall discuss our observation regarding int(H) and cl(H) from our methods in terms of
biological phenomena of the circulation of blood in a heart. If either v1 or v2 is in H, then int(H)
contains neither v1 or v2. It practically indicates that blood flows from both v1 and v2 but not from
only anyone of theses two vertices. Moreover, the flow-path of blood splits from the vertex v5 and
blood reaches to v8 either by passing through v6 or v7 or by both. Moreover, since the flow-path of
blood splits from the vertex v5, thus it is uncertain to us about v6 or v7. If both v1 and v2 is in H, then
int(H) contains both v1 and v2. If either v6 or v7 is in H, then int(H) contains neither v6 or v7. It shows
that uncertainty is present in the flow-path after reaching the vertex v5. We observed that int(H) in
general contains those points which are either forming directed paths or only the isolated vertices (but
not the starting points of blood flow, i.e., v1 and v2). Thus, int(H) is assuring us the directed paths
or isolated points which are important for a healthy heart functioning. We procure some examples.
We have int({v1, v2}) = ∅, which indicates that there is no vertex in {v1, v2} which may need medical
treatments to be cured if blood flows from both v1 and v2. Again, int({v1, v2, v3}) = {v1, v2, v3} and it
indicates that if blood flows from v1 and v2, then it will reach to v3, but the directed paths v1 to v3

and v2 to v3 are both needed to be functioned well for the well functioning of the remaining vertices.
Interestingly, int({v1, v3}) = {v3} and int({v2, v3}) = {v3}. These indicates that blood can’t flow from
only v1 or v2, we need both of them. But v3 must be functioned well, if blood flows from v1 or v2 for
the well functioning of the next points. Similarly, we can find that int({v2, v3, v5}) = {v3, v5}. Here, v2

and v3 are connected by a directed path and v5 is an isolated vertex, if we consider a subgraph having
three vertices v2, v3, v5 and the directed edge e2. Thus, int({v2, v3, v5}) = {v3, v5} indicates that blood will
pass through v3 and v5, but they should be well functioned for the well functioning of the remaining
vertices, but since the blood flows from both v1 and v2, thus v2 is excluded. Now, we show an interesting
fact. We find that int({v2, v3, v5, v6}) = {v3, v5}, int({v2, v3, v5, v7}) = {v3, v5}, int({v2, v3, v5, v7, v8}) =

{v3, v5, v8}, int({v2, v3, v5, v7, v9}) = {v3, v5, v9}, int({v2, v3, v5, v7, v9, v10}) = {v3, v5, v9, v10} and so on.
One may observe that the flow-path of blood splits from v5 and uncertainty is present between
the paths to reach blood at v8. Thus all the interiors do not contain anyone of v6 or v7, but we
can observe that int({v2, v3, v5, v6, v7}) = {v3, v5, v6, v7}, int({v2, v3, v5, v6, v7, v8}) = {v3, v5, v6, v7, v8},
int({v2, v3, v5, v6, v7, v9}) = {v3, v5, v6, v7, v9}, int({v2, v3, v5, v6, v7, , v9, v10}) = {v3, v5, v6, v7, v9, v10} and so
on. Thus, it can be concluded that our methodology to define the subbase PG and then finding interior
of a subset has biological feasibility in case of the circulation of blood in a heart of human body.

Now, we discuss about closure from the same perspective of a heart. In case of the circulation
of blood in a heart, cl(H) indicates the flow-path of blood from the vertices of H alongwith the
starting vertices v1 or v2, if v3 ∈ H. Since, the flow-path splits after reaching v5, thus cl(H) will
also reflect this biological phenomena of the heart via our methodologies. We only write closures of
some subsets without discussing briefly. We find that cl({v1, v2}) = {v1, v2}, cl({v1, v2, v3}) = {v1, v2, v3},
cl({v1, v2, v3, v4}) = {v1, v2, v3, v4}, cl({v1, v2, v3, v4, v5}) = {v1, v2, v3, v4, v5}, cl({v1, v3, v4, v5}) =

{v1, v2, v3, v4, v5}, cl({v2, v3, v4, v5}) = {v1, v2, v3, v4, v5}, cl({v3, v4, v5}) = {v1, v2, v3, v4, v5}, cl({v4, v5}) =
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{v4, v5}, cl({v4, v5, v6}) = {v4, v5, v6, v7}, cl({v4, v5, v7}) = {v4, v5, v6, v7}, cl({v4, v6}) = {v4, v6, v7},
cl({v4, v7}) = {v4, v6, v7}, cl({v4, v6, v7}) = {v4, v6, v7} and so on. It is easy to check that both interior
and closure explain the flow-path very well and accurately in comparison to Shokry and Aly [18],
Nada et al. [11] and Nawar et al. [12].

6. Conclusions

In this paper, we defined a new kind of topology named “pathless directed topology”. This
topological structure was defined over a digraph. Later, we proved some results connecting to
Alexandroff space. We also established connections between pathless directed topology and connected
digraph. Several properties were studied related to digraph isomorphicity. At the end, we proved that
our methodologies describe the circulation of blood in a heart of human body more accurately than
Shokry and Aly [18], Nada et al. [11] and Nawar et al. [12]. We also found that our methodologies of
pathless directed topology is biologically feasible.
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