Research article Special Issues

Computational analysis of COVID-19 model outbreak with singular and nonlocal operator

  • Received: 30 March 2022 Revised: 10 June 2022 Accepted: 14 June 2022 Published: 13 July 2022
  • MSC : 37C75, 65L07, 93B05

  • The SARS-CoV-2 virus pandemic remains a pressing issue with its unpredictable nature, and it spreads worldwide through human interaction. Current research focuses on the investigation and analysis of fractional epidemic models that discuss the temporal dynamics of the SARS-CoV-2 virus in the community. In this work, we choose a fractional-order mathematical model to examine the transmissibility in the community of several symptoms of COVID-19 in the sense of the Caputo operator. Sensitivity analysis of $ R_{0} $ and disease-free local stability of the system are checked. Also, with the assistance of fixed point theory, we demonstrate the existence and uniqueness of the system. In addition, numerically we solve the fractional model and presented some simulation results via actual estimation parameters. Graphically we displayed the effects of numerous model parameters and memory indexes. The numerical outcomes show the reliability, validation, and accuracy of the scheme.

    Citation: Maryam Amin, Muhammad Farman, Ali Akgül, Mohammad Partohaghighi, Fahd Jarad. Computational analysis of COVID-19 model outbreak with singular and nonlocal operator[J]. AIMS Mathematics, 2022, 7(9): 16741-16759. doi: 10.3934/math.2022919

    Related Papers:

  • The SARS-CoV-2 virus pandemic remains a pressing issue with its unpredictable nature, and it spreads worldwide through human interaction. Current research focuses on the investigation and analysis of fractional epidemic models that discuss the temporal dynamics of the SARS-CoV-2 virus in the community. In this work, we choose a fractional-order mathematical model to examine the transmissibility in the community of several symptoms of COVID-19 in the sense of the Caputo operator. Sensitivity analysis of $ R_{0} $ and disease-free local stability of the system are checked. Also, with the assistance of fixed point theory, we demonstrate the existence and uniqueness of the system. In addition, numerically we solve the fractional model and presented some simulation results via actual estimation parameters. Graphically we displayed the effects of numerous model parameters and memory indexes. The numerical outcomes show the reliability, validation, and accuracy of the scheme.



    加载中


    [1] J. Brownlee, Certain considerations on the causation and course of epidemics, P. Roy. Soc. Med., 2 (1909), 243–258. http://dx.doi.org/10.1177/003591570900201307 doi: 10.1177/003591570900201307
    [2] J. Brownlee, The mathematical theory of random migration and epidemic distribution, P. Roy. Soc. Edinb., 31 (1912), 262–289. http://dx.doi.org/10.1017/S0370164600025116 doi: 10.1017/S0370164600025116
    [3] L. Frunzo, R. Garra, A. Giusti, V. Luongo, Modeling biological systems with an improved fractional Gompertz law, Commun. Nonlinear Sci., 74 (2019), 260–267. http://dx.doi.org/10.1016/j.cnsns.2019.03.024 doi: 10.1016/j.cnsns.2019.03.024
    [4] I. Zada, M. Naeem Jan, N. Ali, D. Alrowail, K. S. Nisar, G. Zaman, Mathematical analysis of hepatitis B epidemic model with optimal control, Adv. Differ. Equ., 2012 (2021), 451. https://doi.org/10.1186/s13662-021-03607-2 doi: 10.1186/s13662-021-03607-2
    [5] M. Farman, A. Ahmad, M. U. Saleem, A. Hafeez, A mathematical analysis and modelling of hepatitis B model with non-integer time fractional derivative, Commun. Math. Appl., 10 (2019), 571–584. https://doi.org/10.26713/cma.v10i3.1154 doi: 10.26713/cma.v10i3.1154
    [6] M. H. Alshehri, F. Z. Duraihem, A. Alalyani, A. Saber, A Caputo (discretization) fractional-order model of glucose-insulin interaction: Numerical solution and comparisons with experimental data, J. Taibah Univ. Sci., 15 (2021), 26–36. https://doi.org/10.1080/16583655.2021.1872197 doi: 10.1080/16583655.2021.1872197
    [7] M. U. Saleem, M. Farman, A. Ahmad, H. Ehsan, M. O. Ahmad, A Caputo Fabrizio fractional order model for control of glucose in insulintherapies for diabetes, Ain Shams Eng. J., 11 (2020), 1309–1316. https://doi.org/10.1016/j.asej.2020.03.006 doi: 10.1016/j.asej.2020.03.006
    [8] A. Ahmad, M. Farman, F. Muhammad, P. A. Naik, A. Akgül, N. Zafar, et al., Modeling and numerical investigation of fractional-order bovine babesiosis disease, Numer. Meth. Part. Differ. D. E., 37 (2021), 1946–1964. https://doi.org/10.1002/num.22632 doi: 10.1002/num.22632
    [9] A. Raza, M. Farman, A. Akgül, S. Iqbal, A. Ahmad, Simulation and numerical solution of fractional order ebola virus model with novel technique, Bio. Eng. J., 7 (2020), 194–207. https://doi.org/10.3934/bioeng.2020017 doi: 10.3934/bioeng.2020017
    [10] A. Ahmad, M. Farman, A. Akgül, N. Bukhari, S. Imtiaz, Mathematical analysis and numerical simulation of co-infection of TB-HIV, Arab J. Basic Appl. Sci., 27 (2020), 431–441. https://doi.org/10.1080/25765299.2020.1840771 doi: 10.1080/25765299.2020.1840771
    [11] S. W. Yao, M. Farman, M. Amin, M. İnç, A. Akgül, A. Ahmad, Fractional order COVID-19 model with transmission rout infected through environment, AIMS Math., 7 (2022), 5156–5174. https://doi.org/10.3934/math.2022288 doi: 10.3934/math.2022288
    [12] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 198 (1998).
    [13] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Diff. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [14] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [15] S. Ullah, M. A. Khan, M. Farooq, Z. Hammouch, D. Baleanu, A fractional model for the dynamics of tuberculosis infection using caputo-fabrizio derivative, Discrete Contin. Dyn.-S, 13 (2020), 975–993. http://dx.doi.org/10.3934/dcdss.2020057 doi: 10.3934/dcdss.2020057
    [16] M. Abdullah, A. Ahmad, N. Raza, M. Farman, M. O. Ahmad, Approximate solution and analysis of smoking epidemic model with caputo fractional derivatives, Int. J. Appl. Comput. Math., 4 (2018), 112. https://doi.org/10.1007/s40819-018-0543-5 doi: 10.1007/s40819-018-0543-5
    [17] S. Kumar, A. Ahmadian, R. Kumar, D. Kumar, J. Singh, D. Baleanu, et al., An efficient numerical method for fractional sir epidemic model of infectious disease by using Bernstein wavelets, Mathematics, 8 (2020), 558. https://doi.org/10.3390/math8040558 doi: 10.3390/math8040558
    [18] M. A. Khan, M. Azizah, S. Ullah, A fractional model for the dynamics of competition between commercial and rural banks in Indonesia, Chaos Soliton. Fract., 122 (2019), 32–46. https://doi.org/10.1016/j.chaos.2019.02.009 doi: 10.1016/j.chaos.2019.02.009
    [19] S. Kumar, S. Ghosh, B. Samet, E. F. D. Goufo, An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator, Math. Methods Appl. Sci., 43 (2020), 6062–6080. https://doi.org/10.1002/mma.6347 doi: 10.1002/mma.6347
    [20] D. Baleanu, H. Mohammadi, S. Rezapour, A fractional differential equation model for the covid-19 transmission by using the Caputo-Fabrizio derivative, Adv. Differ. Equ., 2020 (2020), 299. https://doi.org/10.1186/s13662-020-02762-2 doi: 10.1186/s13662-020-02762-2
    [21] M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033
    [22] A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination? Chaos Soliton. Fract., 136 (2020). https://doi.org/10.1016/j.chaos.2020.109860 doi: 10.1016/j.chaos.2020.109860
    [23] M. Amin, M. Farman, A. Akgül, R. T. Alqahtani, Effect of vaccination to control COVID-19 with fractal fractional operator, Alex. Eng. J., 61 (2022), 3551–3557. http://dx.doi.org/10.1016/j.aej.2021.09.006 doi: 10.1016/j.aej.2021.09.006
    [24] A. Akgül, N. Ahmed, A. Raza, Z. Iqbal, M. Rafiq, D. Baleanu, et al., New applications related to COVID-19, Results Phys., 20 (2021), 1–6.
    [25] A. Din, Y. Li, F. M. Khan, Z. U. Khan, P. Liu, On analysis of fractional order mathematical model of hepatitis b using Atangana-Baleanu Caputo ABC derivative, Fractals, 30 (2021), 224001. https://doi.org/10.1142/S0218348X22400175 doi: 10.1142/S0218348X22400175
    [26] O. J. Peter, S. Qureshi, A. Yusuf, M. Al-shomrani, A. A. Idowu, A new mathematical model of COVID-19 using real data from Pakistan, Results Phys., 24 (2021), 104098. https://doi.org/10.1016/j.rinp.2021.104098 doi: 10.1016/j.rinp.2021.104098
    [27] A. S. Alshomrani, M. Z. Ullah, D. Baleanu, Caputo SIR model for COVID-19 under optimized fractional order, Adv. Differ. Equ., 2021 (2021), 185. https://doi.org/10.1186/s13662-021-03345-5 doi: 10.1186/s13662-021-03345-5
    [28] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modeling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 1–7. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
    [29] A. Hussain, D. Baleanu, M. Adeel, Existence of solution and stability for the fractional-order novel coronavirus (nCoV-2019) model, Adv. Differ. Equ., 2020 (2020), 384. https://doi.org/10.1186/s13662-020-02845-0 doi: 10.1186/s13662-020-02845-0
    [30] A. Atangana, S. I. Araz, Mathematical model of COVID-19 spread in Turkey and South Africa: Theory, methods, and applications, Adv. Differ. Equ., 2020 (2020), 659. https://doi.org/10.1186/s13662-020-03095-w doi: 10.1186/s13662-020-03095-w
    [31] A. A. Khan, R. Amin, S. Ullah, W. Sumelka, M. Altanji, Numerical simulation of a Caputo fractional epidemic model for the novel coronavirus with the impact of environmental transmission, Alex. Eng. J., 61 (2022), 5083–5095. https://doi.org/10.1016/j.aej.2021.10.008 doi: 10.1016/j.aej.2021.10.008
    [32] P. J. Liu, T. Munir, T. Cui, A. Din, P. Wu, Mathematical assessment of the dynamics of the tobacco smoking model: An application of fractional theory, AIMS Math., 7 (2022), 7143–7165. https://doi.org/10.3934/math.2022398 doi: 10.3934/math.2022398
    [33] A. Atangana, K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Pheno., 13 (2018). https://doi.org/10.1051/mmnp/2021039 doi: 10.1051/mmnp/2021039
    [34] M. Amouch, N. Karim, Modeling the dynamic of COVID-19 with different types of transmissions, Chaos Soliton. Fract., 150 (2021), 111188. https://doi.org/10.1016/j.chaos.2021.111188 doi: 10.1016/j.chaos.2021.111188
    [35] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [36] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2022), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [37] S. Djennadi, N. Shawagfeh, O. A. Arqub, A numerical algorithm in reproducing kernel-based approach for solving the inverse source problem of the time-space fractional diffusion equation, Part. Diff. Equ. Appl. Math., 4 (2021), 100164. https://doi.org/10.1016/j.padiff.2021.100164 doi: 10.1016/j.padiff.2021.100164
    [38] S. Djennadi, N. Shawagfeh, O. A. Arqub, A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations, Chaos Soliton. Fract., 150 (2021), 111127. https://doi.org/10.1016/j.chaos.2021.111127 doi: 10.1016/j.chaos.2021.111127
    [39] S. Djennadi, N. Shawagfeh, M. Inc, M. S. Osman, J. F. Gómez-Aguilar, O. A. Arqub, The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique, Phys. Scripta, 96 (2021). https://doi.org/10.1088/1402-4896/ac0867 doi: 10.1088/1402-4896/ac0867
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1363) PDF downloads(90) Cited by(2)

Article outline

Figures and Tables

Figures(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog