In this paper, we study the existence and uniqueness of common fixed point of $ \alpha_{i, j} $-$ \varphi_{{E}_{M, N}} $-Geraghty contraction mappings and the existence of coincidence point of $ \alpha_{i, j} $-$ \varphi_{E_N} $-Geraghty contraction mapping in the framework of $ b $-metric spaces. We also give two examples to support our results.
Citation: Chen Lang, Hongyan Guan. Common fixed point and coincidence point results for generalized $ \alpha $-$ \varphi_{E} $-Geraghty contraction mappings in $ b $-metric spaces[J]. AIMS Mathematics, 2022, 7(8): 14513-14531. doi: 10.3934/math.2022800
In this paper, we study the existence and uniqueness of common fixed point of $ \alpha_{i, j} $-$ \varphi_{{E}_{M, N}} $-Geraghty contraction mappings and the existence of coincidence point of $ \alpha_{i, j} $-$ \varphi_{E_N} $-Geraghty contraction mapping in the framework of $ b $-metric spaces. We also give two examples to support our results.
[1] | M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604–608. https://doi.org/10.1090/S0002-9939-1973-0334176-5 doi: 10.1090/S0002-9939-1973-0334176-5 |
[2] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal.-Theor., 75 (2012), 2154–2165. |
[3] | S. Cho, J. S. Bae, E. Karapinar, Fixed point theorems for $\alpha$-Geraghty contraction type maps in metric spaces, Fixed Point Theory A., 2013 (2013), Article ID 329. |
[4] | E. Karapinar, A. Fulga, H. Aydi, Study on Pata $E$-contractions, Adv. Differ. Equ., 2020 (2020), 539. https://doi.org/10.1186/s13662-020-02992-4 doi: 10.1186/s13662-020-02992-4 |
[5] | E. Karapinar, B. Samet, A note on $\psi$-Geraghty type contractions, Fixed Point Theory A., 2014 (2014), 26. |
[6] | E. Karapinar, A. Fulga, A. Petrusel, On Istratescu type contractions in $b$-metric spaces, Mathematics, 8 (2020), 388. |
[7] | M. A. Alghamdi, S. Gulyaz-Ozyurt, E. Karapinar, A note on extended $Z$-contraction, Mathematics, 8 (2020), 195. https://doi.org/10.3390/math8030388 doi: 10.3390/math8030388 |
[8] | H. Afshari, H. Aydi, E. Karapinar, On generalized $\alpha$-$\psi$-geraghty contractions on $b$-metric spaces, Georgian Math. J., 27 (2020), 9–21. https://doi.org/10.3390/math8020195 doi: 10.3390/math8020195 |
[9] | A. Fulga, A. Proca, Fixed point for $\varphi_E$-Geraghty contractions, Nonlinear Sci. Appl., 10 (2017), 5125–5131. |
[10] | P. Debnath, Set-valued Meir-Keeler, Geraghty and Edelstein type fixed point results in $b$-metricspaces, Rend. Circ. Mat. Palerm., 70 (2021), 1389–1398. |
[11] | H. Aydi, Fixed points for $\alpha$-$\beta_E$-Geraghty contractions on $b$-metric spaces and applications to matrix equations, Filomat, 33 (2019), 3737–3750. |
[12] | B. Alqahtani, A short note on the common fixed points of the Geraghty contraction of type $E_{S, T}$, Demonstr. Math., 51 (2018), 233–240. |
[13] | P. Debnath, M. De, L. Sen, Contractive inequalities for some asymptotically regular set-valued mappings and their fixed points, Symmetry, 12 (2020), 411. |
[14] | G. A. Okeke, D. Francis, M. Sen, Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with applications, Heliyon, 6 (2020). https://doi.org/10.1016/j.heliyon.2020.e04785 |
[15] | S. Gulyaz-Ozyurt, On some $\alpha$-admissible contraction mappings on Branciari $b$-metric spaces, Adv. Theor. Nonlinear Anal. Appl., 1 (2018), 1–13. |
[16] | E. Karapinar, A. Pitea, On alpha-psi-Geraghty contraction type mappings on quasi-Branciari metric spaces, J. Nonlinear Convex Anal., 17 (2016), 1291–1301. https://doi.org/10.31197/atnaa.318445 doi: 10.31197/atnaa.318445 |
[17] | H. Afshari, H. H. Alsulam, E. Karapinar, On the extended multivalued Geraghty type contractions, J. Nonlinear Sci. Appl., 9 (2016), 4695–4706. https://doi.org/10.22436/jnsa.009.06.108 doi: 10.22436/jnsa.009.06.108 |
[18] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta. Math. Inform. Univ. Ostrav., 1 (1993), 5–11. |
[19] | H. Aydi, M. Bota, E Karapinar, S. Moradi, A common fixed points for weak $\phi$-contractions on $b$-metric spaces, Fixed Point Theor., 13 (2012), 337–346. |
[20] | V. Berinde, Generalized contractions in quasimetric spaces, Semin. Fixed Point Theor., 3 (1993), 3–9. |
[21] | H. Lakzian, B. Samet, Fixed points for $(\psi, \varphi)$-weakly contractive mappings in generalized metric spaces, Appl. Math. Lett., 25 (2012), 902–906. |
[22] | S. Moradi, A. Farajzadeh, On fixed point of $(\psi-\varphi)$-weak and generalized $(\psi-\varphi)$-weak contraction mappings, Appl. Math. Lett., 25 (2012), 1257–1262. |
[23] | O. Popescu, Fixed points for $(\psi, \varphi)$-weak contractions, Appl. Math. Lett., 24 (2011), 1–4. |
[24] | Y. Hao, H. Guan, On some common fixed point results for weakly contraction mappings with application, J. Funct. Space., 2021 (2021), 5573983. https://doi.org/10.1155/2021/5573983 doi: 10.1155/2021/5573983 |
[25] | M. Pacurar, A fixed point result for $\phi$-contractions and fixed points on $b$-metric spaces without the boundness assumption, Fasc. Math., 43 (2010), 127–136. |
[26] | M. Zada, B. M. Sarwar, P. Kumam, Fixed point results for rational type contraction in $b$-metric spaces, Int. J. Anal. Appl., 16 (2018), 904–920. |
[27] | M. Abbas, V. Parvaneh, A. Razani, Periodic points of $T$-Ciric generalized contraction mappings in ordered metric spaces, Georgian Math. J., 19 (2012), 597–610. https://doi.org/10.1515/gmj-2012-0036 doi: 10.1515/gmj-2012-0036 |
[28] | J. R. Roshan, N. Shobkolaei, S. Sedghi, V. Parvaneh, S. Radenovic, Common fixed point theorems for three maps in discontinuous $G_b$ metric spaces, Acta Math. Sci., 34 (2014), 1643–1654. |
[29] | Z. Mustafa, V. Parvaneh, M. M. Jaradat, Z. Kadelburg, Extended rectangular $b$-metric spaces and some fixed point theorems for contractive mappings, Symmetry, 11 (2019), 594. https://doi.org/10.3390/sym11040594 doi: 10.3390/sym11040594 |
[30] | Z. Mustafa, V. Parvaneh, M. Abbas, J. R. Roshan, Some coincidence point results for generalized $(\psi, \varphi)$-weakly contractive mappings in ordered $G$-metric spaces, Fixed Point Theory A., 2013 (2013), 326. |
[31] | W. Sintunavarat, Nonlinear integral equations with new admissibility types in $b$-metric spaces, J. Fixed Point Theory A., 18 (2016), 397–416. https://doi.org/10.1007/s11784-015-0276-6 doi: 10.1007/s11784-015-0276-6 |
[32] | H. Aydi, E. Karapinar, M. F. Bota, S. Mitrovic, A fixed point theorem for set-valued quasi-contractions in $b$-metric spaces, Fixed Point Theory A., 2012 (2012), 88. https://doi.org/10.1186/1687-1812-2012-88 doi: 10.1186/1687-1812-2012-88 |
[33] | A. Aghaiani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered $b$-metric spaces, Math. Slovaca., 2014 (2014), 941–960. |
[34] | N. Hussain, D. Doric, Z. Kadelburg, S. Radenovic, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory A., 2012 (2012), 1–12. https://doi.org/10.1186/1687-1812-2012-126 doi: 10.1186/1687-1812-2012-126 |
[35] | J. R. Roshan, N. Shobkolaei, S. Sedghi, M. Abbas, Common fixed point of four maps in $b$-metric spaces, Hacet. J. Math. Stat., 43 (2014), 613–624. |
[36] | G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Sci., 9 (1986), 771–779. https://doi.org/10.1155/S0161171286000935 doi: 10.1155/S0161171286000935 |
[37] | O. Popescu, Some new fixed point theorems for $\alpha$-Geraghty contraction type maps in metric spaces, Fixed Point Theory A., 190 (2014), 1–12. |