In this article, we introduce the study of corona metric space. After discussing some basic properties of these metric spaces, such as completeness, boundedness, compactness and separability, we provide a necessary and sufficient condition for the existence of universal lines, and we obtain a formula for the metric dimension of corona metric spaces.
Citation: Juan Alberto Rodríguez-Velázquez. Corona metric spaces: Basic properties, universal lines, and the metric dimension[J]. AIMS Mathematics, 2022, 7(8): 13763-13776. doi: 10.3934/math.2022758
In this article, we introduce the study of corona metric space. After discussing some basic properties of these metric spaces, such as completeness, boundedness, compactness and separability, we provide a necessary and sufficient condition for the existence of universal lines, and we obtain a formula for the metric dimension of corona metric spaces.
[1] | S. Bau, A. F. Beardon, The metric dimension of metric spaces, Comput. Methods Funct. Theory., 13 (2013), 295–305. https://doi.org/10.1007/s40315-013-0024-0 doi: 10.1007/s40315-013-0024-0 |
[2] | A. F. Beardon, J. A. Rodríguez-Velázquez, The k-metric dimension of metric spaces, Ars Math. Contemp., 16 (2019), 25–38. https://doi.org/10.26493/1855-3974.1281.c7f doi: 10.26493/1855-3974.1281.c7f |
[3] | L. M. Blumenthal, Theory and applications of distance geometry, Oxford University Press, 1953. |
[4] | X. Chen, V. Chvátal, Problems related to a de Bruijn-Erdős theorem, Discrete Appl. Math., 156 (2008), 2101–2108. https://doi.org/10.1016/j.dam.2007.05.036 doi: 10.1016/j.dam.2007.05.036 |
[5] | V. Chvátal, A de Bruijn-Erdős theorem in graphs?, In: Graph theory—favorite conjectures and open problems. 2, Probl. Books in Math., Springer, Cham, 2018,149–176. |
[6] | A. Estrada-Moreno, I. G. Yero, J. A. Rodríguez-Velázquez, On the $(k, t)$-metric dimension of graphs, Comput. J., 64 (2021), 707–720. https://doi.org/10.1093/comjnl/bxaa009 doi: 10.1093/comjnl/bxaa009 |
[7] | R. Frucht, F. Harary, On the corona of two graphs, Aequationes Math., 4 (1970), 322–325. https://doi.org/10.1007/BF01844162 doi: 10.1007/BF01844162 |
[8] | F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191–195. |
[9] | M. Heydarpour, S. Maghsoudi, The metric dimension of geometric spaces, Topology Appl., 178 (2014), 230–235. https://doi.org/10.1016/j.topol.2014.09.012 doi: 10.1016/j.topol.2014.09.012 |
[10] | A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Revised English edition, Translated from the Russian and edited by Richard A, Silverman, Prentice-Hall, Inc., Englewood Cliffs, N.Y., 1970. |
[11] | M. Ó Searcóid, Metric spaces, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2007. |
[12] | J. A. Rodríguez-Velázquez, Lexicographic metric spaces: Basic properties and the metric dimension, Appl. Anal. Discrete Math., 14 (2020), 20–32. https://doi.org/10.2298/AADM180627004R doi: 10.2298/AADM180627004R |
[13] | J. A. Rodríguez-Velázquez, Solution of the Chen-Chvátal conjecture for some specific classes of metric spaces, AIMS Math. 6 (2021), 7766–7781. https://doi.org/10.3934/math.2021452 doi: 10.3934/math.2021452 |
[14] | J. A. Rodríguez-Velázquez, Universal lines in graphs. Quaestiones Mathematicae, To appear, https://doi.org/10.2989/16073606.2021.1950862 |
[15] | P. J. Slater, Leaves of trees, Congr. Numer., 14 (1975), 549–559. |
[16] | P. J. Slater, Dominating and reference sets in a graph, J. Math. Phys. Sci., 22 (1988), 445–455. |