Research article Special Issues

Function kernels and divisible groupoids

  • Received: 28 December 2021 Revised: 29 April 2022 Accepted: 12 May 2022 Published: 20 May 2022
  • MSC : 20N02, 06F35

  • In this paper, we introduce the notion of a function kernel which was motivated from the kernel in group theory, and we apply this notion to several algebraic structures, e.g., groups, groupoids, $ BCK $-algebras, semigroups, leftoids. Using the notions of left and right cosets in groupoids, we investigate some relations with function kernels. Moreover, the notion of an idenfunction in groupoids is introduced, which is a generalization of an identity axiom in algebras by functions, and we discuss it with function kernels.

    Citation: Hee Sik Kim, Choonkil Park, Eun Hwa Shim. Function kernels and divisible groupoids[J]. AIMS Mathematics, 2022, 7(7): 13563-13572. doi: 10.3934/math.2022749

    Related Papers:

  • In this paper, we introduce the notion of a function kernel which was motivated from the kernel in group theory, and we apply this notion to several algebraic structures, e.g., groups, groupoids, $ BCK $-algebras, semigroups, leftoids. Using the notions of left and right cosets in groupoids, we investigate some relations with function kernels. Moreover, the notion of an idenfunction in groupoids is introduced, which is a generalization of an identity axiom in algebras by functions, and we discuss it with function kernels.



    加载中


    [1] O. Borůvka, Foundations of the theory of groupoids and groups, Basel: Springer, 1976. https://doi.org/10.1007/978-3-0348-4121-4
    [2] R. H. Bruck, A survey of binary systems, 3 Eds., Berlin, Heidelberg: Springer, 1971. https://doi.org/10.1007/978-3-662-43119-1
    [3] Y. S. Huang, BCI-algebra, Beijing: Science Press, 2006.
    [4] I. H. Hwang, H. S. Kim, J. Neggers, Some implicativities for groupoids and $BCK$-algebras, Mathematics, 7 (2019), 1–8. https://doi.org/10.3390/math7100973 doi: 10.3390/math7100973
    [5] Y. Imai, K. Iséki, On axiom systems of propositional calculi. XIV, Proc. Japan Acad., 42 (1966), 19–22. https://doi.org/10.3792/pja/1195522169 doi: 10.3792/pja/1195522169
    [6] A. Iorgulescu, Algebras of logic as $BCK$-algebras, Bucharest: Editura ASE, 2008.
    [7] H. S. Kim, J. Neggers, The semigroups of binary systems and some perspectives, Bull. Korean Math. Soc., 45 (2008), 651–661. https://doi.org/10.4134/BKMS.2008.45.4.651 doi: 10.4134/BKMS.2008.45.4.651
    [8] H. S. Kim, J. Neggers, S. S. Ahn, On pre-commutative algebras, Mathematics, 7 (2019), 1–7. https://doi.org/10.3390/math7040336 doi: 10.3390/math7040336
    [9] H. S. Kim, J. Neggers, S. S. Ahn, Construction of $BCK$-neighborhood systems in a $d$-algebra, AIMS Math., 6 (2021), 9422–9435. https://doi.org/10.3934/math.2021547 doi: 10.3934/math.2021547
    [10] Y. L. Liu, H. S. Kim, J. Neggers, Some special elements and pseudo inverse functions in groupoids, Mathematics, 7 (2019), 1–7. https://doi.org/10.3390/math7020173 doi: 10.3390/math7020173
    [11] J. Meng, Y. B. Jun, $BCK$-algebras, Seoul: Kyung Moon Sa Co., 1994.
    [12] J. Neggers, H. S. Kim, On $d$-algebras, Math. Slovaca, 49 (1999), 19–26.
    [13] S. Z. Song, H. S. Kim, Y. B. Jun, Commutative ideals of $BCK$-algebras and $BCI$-algebras based on soju structures, AIMS Math., 6 (2021), 8567–8584. https://doi.org/10.3934/math.2021497 doi: 10.3934/math.2021497
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1318) PDF downloads(49) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog