
Let d3(n) denote the 3-th divisor function. In this paper, we study the asymptotic formula of the sum
∑1⩽n1,n2⩽X121⩽n3⩽X1kd3(n21+n22+nk3)
with n1,n2,n3∈Z+ and k⩾3 be an integer. Previously only the case of k=2 is studied.
Citation: Li Zhou, Liqun Hu. Sum of the triple divisor function of mixed powers[J]. AIMS Mathematics, 2022, 7(7): 12885-12896. doi: 10.3934/math.2022713
[1] | Mashail M. Al Sobhi . The modified Kies-Fréchet distribution: Properties, inference and application. AIMS Mathematics, 2021, 6(5): 4691-4714. doi: 10.3934/math.2021276 |
[2] | M. G. M. Ghazal, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr . Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields. AIMS Mathematics, 2024, 9(7): 17634-17656. doi: 10.3934/math.2024857 |
[3] | Dawlah Alsulami . A new extension of the Rayleigh distribution: Properties, different methods of estimation, and an application to medical data. AIMS Mathematics, 2025, 10(4): 7636-7663. doi: 10.3934/math.2025350 |
[4] | Ahmed Sedky Eldeeb, Muhammad Ahsan-ul-Haq, Mohamed S. Eliwa . A discrete Ramos-Louzada distribution for asymmetric and over-dispersed data with leptokurtic-shaped: Properties and various estimation techniques with inference. AIMS Mathematics, 2022, 7(2): 1726-1741. doi: 10.3934/math.2022099 |
[5] | Fiaz Ahmad Bhatti, Azeem Ali, G. G. Hamedani, Mustafa Ç. Korkmaz, Munir Ahmad . The unit generalized log Burr XII distribution: properties and application. AIMS Mathematics, 2021, 6(9): 10222-10252. doi: 10.3934/math.2021592 |
[6] | Naif Alotaibi, A. S. Al-Moisheer, Ibrahim Elbatal, Salem A. Alyami, Ahmed M. Gemeay, Ehab M. Almetwally . Bivariate step-stress accelerated life test for a new three-parameter model under progressive censored schemes with application in medical. AIMS Mathematics, 2024, 9(2): 3521-3558. doi: 10.3934/math.2024173 |
[7] | Khaled M. Alqahtani, Mahmoud El-Morshedy, Hend S. Shahen, Mohamed S. Eliwa . A discrete extension of the Burr-Hatke distribution: Generalized hypergeometric functions, different inference techniques, simulation ranking with modeling and analysis of sustainable count data. AIMS Mathematics, 2024, 9(4): 9394-9418. doi: 10.3934/math.2024458 |
[8] | Ayed. R. A. Alanzi, Muhammad Imran, M. H. Tahir, Christophe Chesneau, Farrukh Jamal, Saima Shakoor, Waqas Sami . Simulation analysis, properties and applications on a new Burr XII model based on the Bell-X functionalities. AIMS Mathematics, 2023, 8(3): 6970-7004. doi: 10.3934/math.2023352 |
[9] | Nuran M. Hassan, M. Nagy, Subhankar Dutta . Statistical inference for the bathtub-shaped distribution using balanced and unbalanced sampling techniques. AIMS Mathematics, 2024, 9(9): 25049-25069. doi: 10.3934/math.20241221 |
[10] | SidAhmed Benchiha, Amer Ibrahim Al-Omari, Naif Alotaibi, Mansour Shrahili . Weighted generalized Quasi Lindley distribution: Different methods of estimation, applications for Covid-19 and engineering data. AIMS Mathematics, 2021, 6(11): 11850-11878. doi: 10.3934/math.2021688 |
Let d3(n) denote the 3-th divisor function. In this paper, we study the asymptotic formula of the sum
∑1⩽n1,n2⩽X121⩽n3⩽X1kd3(n21+n22+nk3)
with n1,n2,n3∈Z+ and k⩾3 be an integer. Previously only the case of k=2 is studied.
Data analysis has been received a great interest in several applied fields such as medicine, reliability analysis, engineering, environmental studies, and economics. Several authors have proposed more flexible statistical distributions to model and predict various experimental and phenomenal data encountered in applied fields.
The Fréchet (Fr) distribution is also known as the inverse-Weibull distribution and it is one of the useful distributions in extreme value theory. The Fr model has some important applications in life testing, floods, earthquakes, and wind speeds, among others. Further information about the applications of the Fr distribution can be explored in [1,2,3,4,5].
The Fr distribution is specified by the following cumulative distribution function (CDF)
F(x;θ,λ)=e−λx−θ,θ,λ>0,x>0. | (1.1) |
Its probability density function (PDF) reduces to
f(x;θ,λ)=θλx−(θ+1)e−λx−θ,θ,λ>0,x>0, | (1.2) |
where θ and λ are, respectively, the shape and scale parameters. The PDF (1.2) exhibits a unimodal shape or a decreasing shape depending on θ while its hazard rate function (HRF) is always unimodal.
There is a clear need to define and develop more flexible versions of the Fr model using the well-known families to model several datasets encountered in many applied fields such as medicine, geology, engineering, and economics, among others. Hence, many authors have proposed several generalized forms of the Fr distribution to improve its flexibility and capability in modeling real-life data. Some notable extensions are the following: the exponentiated-Fr [6], beta-Fr [7], Marshall–Olkin Fr [8], transmuted Marshall–Olkin Fr [9], Weibull–Fr [10], beta exponential-Fr [11], Burr-X Fr [12], odd Lindley–Fr [13], logarithmic-transformed Fr [14], and modified Kies–Fr distributions [15].
This article introduces a new flexible extension of the Fr distribution called the extended Weibull–Fréchet (EWFr) distribution, which provides more flexibility to model real-life data than other competing distributions. Then, the first motivation to this article is devoted to introducing the EWFr distribution as a new extension of the Fr distribution via the extended Weibull-G (EW-G) family [16]. The useful characteristics of the EWFr distribution can be summarized as follows: The EWFr distribution is a more flexible version for the Fr distribution, and it improves the fitting of real-life data; it produces more flexible kurtosis than the baseline Fr model. The HRF of the EWFr distribution can exhibit an upside-down bathtub shape, an increasing shape, and a decreasing shape. Its density function can exhibit a symmetrical shape, a unimodal shape, an asymmetrical shape, a J shape, and a reversed-J shape. Furthermore, the EWFr distribution can be adopted to model various data in the medicine and engineering sciences. This fact was illustrated by modeling two real datasets from both fields, showing its superiority fit over other competing distributions.
Another motivation to this article is to show how several classical estimators of the EWFr distribution perform for different parameter combinations and several sample sizes. Hence, the EWFr parameters are estimated using different estimation approaches including: the maximum product of spacings estimators (MPSEs), least-squares estimators (LSEs), the right-tail Anderson-Darling estimators (RADEs), the maximum likelihood estimators (MLEs), the weighted least-squares estimators (WLSEs), the percentiles estimators (PCEs), the Cramér–von Mises estimators (CRVMEs), and the Anderson–Darling estimators (ADEs). Extensive simulation results were introduced to explore the performance of these estimators. Furthermore, these estimators are compared using partial and overall ranks to determine the best method for estimation the parameters of the EWFr distribution.
The paper is organized in six sections as follows: Section 2 introduces the EWFr distribution and its related functions. The distribution properties are determined in Section 3. Section 4 presents some classical estimators of the EWFr parameters. The simulation results for the classical methods are provided in the same section. Two real-life datasets are fitted using the EWFr distribution in Section 5. Some final remarks are presented in Section 6.
The EWFr distribution is constructed based on the EW-G family [16] which is specified, for any baseline CDF G(x;ζ), by the CDF
F(x;ϑ,φ,ζ)=1−{1+φ[G(x;ζ)1−G(x;ζ)]ϑ}−1φ,ϑ,φ>0,x∈ℜ. | (2.1) |
The corresponding PDF of (2.1) takes the form
f(x;ϑ,φ,ζ)=ϑg(x;ζ)G(x;ζ)ϑ−1[1−G(x;ζ)]ϑ+1{1+φ[G(x;ζ)1−G(x;ζ)]ϑ}−1φ−1. | (2.2) |
where g(x;ζ)=dG(x;ζ)/dx refers to the baseline density with parameter vector ζ.
To this end, by inserting Eq (1.1) in (2.1), the CDF of the EWFr model follows as
F(x;η)=1−{1+φ(eλx−θ−1)−ϑ}−1φ,ϑ,φ,λ,θ>0,x>0, | (2.3) |
where η=(ϑ,φ,λ,θ)⊺. The PDF of the EWFr model reduces to
\begin{equation} f(x;\, \mathit{\boldsymbol{\eta}}) = \vartheta\, \theta \, \lambda \, x^{-(\theta+1)}e^{\lambda{x}^{-\theta}} \left(e^{\lambda{x}^{-\theta}}-1\right)^{-(\vartheta+1)} \left\{1+{\varphi{\left(e^{\lambda{x}^{-\theta}}-1\right)^{-\vartheta}}}\right\}^{-(\frac{1}{\varphi}+1)}, \end{equation} | (2.4) |
where \vartheta, \, \varphi and \theta are shape parameters whereas \lambda is a scale parameter.
The survival function (SF) of the EWFr distribution is given as
\begin{equation} \label{EOWFrsfx} S(x;\, \mathit{\boldsymbol{\eta}}) = \left\{1+{\varphi{\left(e^{\lambda{x}^{-\theta}}-1\right)^{-\vartheta}}}\right\}^{-\frac{1}{\varphi}}. \notag \end{equation} |
Long-term SF (LT-SF) is a useful feature in the modeling process, because a portion of the population may no longer be eligible to the event of interest with probability p (see [17,18]).
The general form of the LT-SF is S_{LT}(x; p, \mathit{\boldsymbol{\eta}}) = p+(1-p)S(x; \mathit{\boldsymbol{\eta}}) , where S(x; \mathit{\boldsymbol{\eta}}) denotes the SF of any distribution and p denotes the probability of being cured. Hence, the PDF of the LT-SF can be derived as
\begin{equation} \label{L_pdf} f_{LT}(x;p, \mathit{\boldsymbol{\eta}}) = - \frac{\partial}{\partial{x}}S_{LT}(x;p, \mathit{\boldsymbol{\eta}}) = (1-p)f(x;p, \mathit{\boldsymbol{\eta}}), p\in(0, 1). \notag \end{equation} |
Using Eq (2.4), the PDF of the LT-SF of the EWFr distribution takes the form
\begin{equation} \label{LEWFrPDF} f_{LT}(x;\, p, \mathit{\boldsymbol{\eta}}) = \frac{\vartheta \theta \lambda (1-p)e^{\lambda{x}^{-\theta}}}{x^{\theta+1}} \left(e^{\lambda{x}^{-\theta}}-1\right)^{-(\vartheta+1)} \left\{1+{\varphi{\left(e^{\lambda{x}^{-\theta}}-1\right)^{-\vartheta}}}\right\}^{-(\frac{1}{\varphi}+1)}.\notag \end{equation} |
The HRF of the EWFr distribution takes the form
\begin{equation} \label{EWFrHFR} h(x;\, \mathit{\boldsymbol{\eta}}) = \frac{\vartheta \, \theta \, \lambda \, x^{-(\theta+1)}\, e^{\lambda{x}^{-\theta}}\, \left(e^{\lambda{x}^{-\theta}}-1\right)^{-(\vartheta+1)}} {1+{\varphi{\left(e^{\lambda{x}^{-\theta}}-1\right)^{-\vartheta}}}}.\notag \end{equation} |
Its reversed HRF has the form
\begin{equation} \label{EWFrreversed} r(x;\, \mathit{\boldsymbol{\eta}}) = \frac{\vartheta \, \theta \, \lambda \, x^{-(\theta+1)}e^{\lambda{x}^{-\theta}}\left(e^{\lambda{x}^{-\theta}}-1\right)^{-(\vartheta+1)} \left\{1+{\varphi{\left(e^{\lambda{x}^{-\theta}}-1\right)^{-\vartheta}}}\right\}^{-(\frac{1}{\varphi}+1)}} {1-\left\{1+{\varphi{\left(e^{\lambda{x}^{-\theta}}-1\right)^{-\vartheta}}}\right\}^{-\frac{1}{\varphi}}}.\notag \end{equation} |
The odd ratio of the EWFr model is derived as
\begin{equation} \label{EWFrodds} O(x;\, \mathit{\boldsymbol{\eta}}) = \frac{F(x|\mathit{\boldsymbol{\eta}})}{S(x|\mathit{\boldsymbol{\eta}})} = {\left\{1+{\varphi{\left(e^{\lambda{x}^{-\theta}}-1\right)^{-\vartheta}}}\right\}^{\frac{1}{\varphi}}}-1. \notag \end{equation} |
Figure 1 presents some possible shapes of the EWFr PDF for different values of its parameters. The EWFr PDF can be a symmetrical shape, a unimodal shape, an asymmetrical shape, a J shape, and a reversed-J shape. The hazard rate plots of the EWFr model are depicted in Figure 2. The EWFr HRF can be an increasing shape, a unimodal shape, and a decreasing shape.
The quantile function (QF) of the EWFr distribution, say, Q(u) , can be calculated by solving F(x) = p in (2.3) in terms of p . Then, the EWFr QF follows as
\begin{equation} Q(p) = \lambda^{\frac{1}{\theta}}\left\{\ln\left({\frac{\left[(1-p)^{-\varphi}-1\right]^{\frac{1}{\vartheta}}} {\varphi^{\frac{1}{\vartheta}}+\left[(1-p)^{-\varphi}-1\right]^{\frac{1}{\vartheta}}}}\right)\right\}^{\frac{1}{\theta}}, 0 < p < 1. \end{equation} | (3.1) |
The median of the EWFr distribution follows by substituting p = 0.5 in Eq (3.1).
A useful linear representation for the PDF of the EWFr model is provided based on [16]. Alizadeh et al. [16] introduced a simple representation for the density of the EW-G class as follows
\begin{equation} f(x) = \sum\limits_{w, u = 0}^{\infty}\psi_{w, u}\, h_{{\vartheta}w+u}(x), \end{equation} | (3.2) |
where \psi_{w, u} = -\varphi^{w}\, \Gamma({\vartheta}w+u)\, (-\frac{1}{\varphi})_{w}/ [\, w!\, \, \, u! \, \Gamma({\vartheta}w)] and
\begin{equation*} h_{\vartheta\, w+u}(x) = (\vartheta\, w+u)\, \, g(x)\, \, G(x)^{\vartheta\, w+u-1}, \end{equation*} |
is the exponentiated-G PDF with a power parameter (\vartheta\, w+u) > 0 . Using Eqs (1.1) and (1.2) of the Fr distribution, Eq (3.2) can be expressed as
\begin{equation} f(x) = \sum\limits_{w, u = 0}^{\infty}\psi_{w, u}\, (\vartheta\, w+u)\, \theta \, \lambda\, x^{-(\theta+1)}\, e^{-{(\vartheta\, w+u)\, \lambda}\, x^{-\theta}}. \end{equation} | (3.3) |
Equation (3.3) can be rewritten as
\begin{equation} f(x) = \sum\limits_{w, u = 0}^{\infty}\psi_{w, u} \, \, g_{({\vartheta}w+u)}(x), \end{equation} | (3.4) |
where g_{({\vartheta}w+u)}(x) denotes the Fr PDF with two-parameter \theta and ({\vartheta}w+u)\lambda . Then, the density function of the EWFr model is expressed as a linear representation of Fr densities. Let Y be a random variable having the Fr distribution in (1.1). Hence, the r- th ordinary, \mu^\prime_{r, Y} , and incomplete moments, \phi_{(r, Y)}(t) , of Y are, respectively, given (for r < \lambda , ) by
\begin{equation*} \mu^\prime_{r, Y} = \lambda^{\frac{r}{\theta}}\, \Gamma(1-\frac{r}{\theta})\quad \text{and} \quad \phi_{(r, Y)}(t) = \lambda^{\frac{r}{\theta}}\gamma(1-\frac{r}{\theta}, \lambda t^{-\theta}), \end{equation*} |
where \Gamma(s) = \int_{0}^{\infty}w^{s-1}\, e^{-w} \, dw is the complete gamma function (GF) and \gamma(s, z) = \int_{0}^{z}w^{s-1}\, e^{-w}\, dw is the lower incomplete GF.
This section was devoted to deriving the r- th ordinary moment and incomplete moments of the EWFr distribution.
Proposition: Based on (3.4), the r- th moment of the EWFr distribution is defined by
\begin{equation*} \label{rmNM} \mu^\prime_r = \sum\limits_{w, u = 0}^{\infty}\psi_{w, u} \, \, \int_{0}^{\infty}x^r g_{\vartheta {w}+u}(x) dx \, \, \text{for} \quad r\in\mathbb{N}. \end{equation*} |
\begin{equation} \mu^\prime_r = \sum\limits_{w, u = 0}^{\infty}\psi_{w, u} \, \, \left(\vartheta{w}+u\right)^{\frac{r}{\theta}}\, \, \Gamma\left(1-\frac{r}{\theta}\right). \end{equation} | (3.5) |
Setting r = 1 in Eq (3.5), we get the mean of x .
The s- th incomplete moment, say \phi_{s}(x) , of the EWFr distribution takes the form
\begin{equation*} \phi_{s}(t) = \int_{0}^{t} x^{s}\, \, f(x)\, \, dx = \sum\limits_{w, u = 0}^{\infty}\psi_{w, u}\, \, \int_{0}^{t} \, \, x^{s}\, \, g_{(\vartheta\, w+u)}(x)dx. \end{equation*} |
Then, we obtain (for s < \theta)
\begin{equation} \label{incomplete_final} \phi_{s}(t) = \sum\limits_{w, u = 0}^{\infty} \psi_{w, u}\, \, (\vartheta\, w+u)^{\frac{s}{\theta}}\, \, \gamma\left(1-\frac{s}{\theta}, \, (\vartheta\, w+u){\lambda} \, t^{-\theta}\right).\notag \end{equation} |
The mean ( \mu ), variance ( \sigma^{2} ), skewness ( \xi_{1}(X) ), and kurtosis ( \xi _{2}(X) ) of the EWFr distribution are calculated numerically with \lambda = 1 and different values of \vartheta , \varphi and \theta . Table 1 displays these numerical results. Table 1 shows that the EWFr model can be right-skewed and it can be leptokurtic (i.e., \xi _{2}(X) > 3 ).
\mathit{\boldsymbol{\eta}}^{\intercal} | \mu | \sigma^{2} | \xi_{1}(X) | \xi_{2}(X) |
(\vartheta=1.50, \; \varphi=0.50, \; \theta=1.50) | 1.3511 | 0.4752 | 3.1421 | 56.2021 |
(\vartheta=2.50, \; \varphi=0.75, \; \theta=1.75) | 1.2701 | 0.1329 | 1.9395 | 16.1410 |
(\vartheta=2.25, \; \varphi=1.00, \; \theta=2.75) | 1.1904 | 0.0780 | 2.2648 | 19.2907 |
(\vartheta=2.25, \; \varphi=0.25, \; \theta=0.75) | 1.6154 | 0.7600 | 1.6132 | 9.0569 |
(\vartheta=2.25, \; \varphi=1.25, \; \theta=3.25) | 1.1831 | 0.0747 | 2.8068 | 27.8064 |
(\vartheta=5.50, \; \varphi=1.50, \; \theta=2.50) | 1.1927 | 0.0223 | 1.7507 | 11.7806 |
Let X_{1}, \, X_{2}, \, \dots \, X_{n} be a random sample from the EWFr (2.4) and X_{1:n}\leq X_{2:n}\leq\dots\leq X_{n:n} be their corresponding order statistics (OS). The PDF and the CDF of the of r- th OS, say, X_{r:n} and 1\leq r \leq n are, respectively, defined by
\begin{equation} \begin{aligned} f_{r:n}(x)& = \frac{n!}{(n-r)!\, (r-1)!}\, [F(x)]^{r-1}\, \, [1-F(x)]^{n-r}\, \, f(x) \\ & = \frac{n!}{(n-r)!\, (r-1)!}\sum\limits_{u = 0}^{n-r}(-1)^{u}\left(\begin{array}{c}n-r\\u\end{array}\right)\, \, [F(x)]^{r-1+u}\, \, f(x) \end{aligned} \end{equation} | (3.6) |
and (for k = 1, 2, \dots, n )
\begin{equation} \begin{aligned} F_{r:n}(x) = \sum\limits_{l = k}^{n}\left(\begin{array}{c}n\\l\end{array}\right)\, \, [F(x)]^{l}\, \, [1-F(x)]^{n-l} = \sum\limits_{l = k}^{n}\sum\limits_{u = 0}^{n-r}(-1)^{u}\, \, \left(\begin{array}{c}n\\l\end{array}\right) \left(\begin{array}{c}n-r\\u\end{array}\right)\, \, [F(x)]^{l+u}. \end{aligned} \end{equation} | (3.7) |
Using Eqs (3.6) and (3.7), the PDF and CDF of the r- th OS of the EWFr reduce to
\begin{equation*} \begin{aligned} f_{r:n}(x) = &\frac{\vartheta\; \theta\; \lambda \; x^{-(\theta+1)\; n!}}{(r-1)!(n-r)!}e^{\lambda{t}^{-\theta}} \left(e^{\lambda{x}^{-\theta}}-1\right)^{-(\vartheta+1)} \left\{1+{\varphi{\left(e^{\lambda{x}^{-\theta}}-1\right)^{-\vartheta}}}\right\}^{-(\frac{1}{\varphi}+1)} \\ & \sum\limits_{u = 0}^{n-r}(-1)^{u}\left(\begin{array}{c}n-r\\u\end{array}\right) \left[1-\left\{1+{\varphi{\left(e^{\lambda{x}^{-\theta}}-1\right)^{-\vartheta}}}\right\}^{-\frac{1}{\varphi}}\right]^{r+u-1} \end{aligned} \end{equation*} |
and
\begin{equation*} F_{r:n}(x) = \sum\limits_{l = k}^{n}\sum\limits_{u = 0}^{n-r}(-1)^{u}\left(\begin{array}{c}n\\l\end{array}\right)\left(\begin{array}{c}n-r\\u\end{array}\right) \left[1-\left\{1+{\varphi{\left(e^{\lambda{x}^{-\theta}}-1\right)^{-\vartheta}}}\right\}^{-\frac{1}{\varphi}}\right]^{l+u}. \end{equation*} |
In this section, the EWFr parameters \vartheta , \lambda , \varphi and \theta are estimated using different frequentist approaches. We also provide detailed simulation results to compare and order their performances using partial and overall ranks.
The MLEs of the parameters \vartheta , \lambda , \varphi and \theta of the EWFr distribution are introduced in this sub-section. Let x_1, \dots, x_n be a sample from the EWFr distribution in (2.4). Hence, the log-likelihood function of \mathit{\boldsymbol{\eta}} = (\vartheta, \varphi, \lambda, \theta)^{\intercal} takes the form
\begin{equation} \label{logMLE} \begin{aligned} l(\mathit{\boldsymbol{\eta}};\mathit{\boldsymbol{x}}) = n\log\left(\vartheta\right)&+ n\log\left(\theta\right)+n\log\left(\lambda\right)-(\theta+1)\sum\limits_{i = 1}^{n}\log(x_{i})-(\vartheta+1)\sum\limits_{i = 1}^{n}\log\left(e^{\lambda{x_{i}}^{-\theta}}-1\right)&& \notag\\ &+\lambda\sum\limits_{i = 1}^{n}{x_{i}}^{-\theta}-(\frac{1}{\varphi}+1)\sum\limits_{i = 1}^{n}\log\left\{1+\varphi\left(e^{\lambda{x_{i}}^{-\theta}}-1\right)^{-\vartheta}\right\}.&& \end{aligned} \end{equation} |
The MLEs follow by maximizing the above equation by several programs such as {SAS} ({PROC NLMIXED}) or {R} ({optim} function).
Let x_{(1)} , x_{(2)} , \cdots , x_{(n)} be the OS of a random sample from the PDF (2.4), then the LSEs [19] of the EWFr parameters are obtained by minimizing the function:
\begin{equation*} S(\mathit{\boldsymbol{\eta}}) = \sum\limits_{i = 1}^{n}\left[F(x_{(i)})-\frac{i}{n+1}\right]^{2}. \end{equation*} |
Similarly, these estimators are also obtained by solving the following equation (for k = 1, 2, 3, 4 )
\begin{equation*} \sum\limits_{i = 1}^{n}\left(\left\{1+\varphi\left(e^{\lambda{x_{i}}^{-\theta}}-1\right)^{-\vartheta}\right\}^{-\frac{1}{\varphi}} -\frac{i}{n+1}\right)\Omega _{k}\left( x_{(i)}|\mathit{\boldsymbol{\eta}} \right) = 0, \\ \end{equation*} |
where
\begin{equation} \label{LSEs1} \Omega _{1}\left( x_{(i)}|\mathit{\boldsymbol{\eta}} \right) = \frac{\partial }{\partial \vartheta }F\left(x_{(i)}|\mathit{\boldsymbol{\eta}} \right) = \quad\frac{1}{\varphi}\left(1+{\varphi{w_{i}^{-\vartheta}}}\right)^{-(\frac{1}{\varphi}+1)}-{\varphi} w_{i}^{-\vartheta} \ln{w_{i}}, \notag \end{equation} |
\begin{equation} \label{LSEs2} \Omega_{2}\left( x_{(i)}|\mathit{\boldsymbol{\eta}} \right) = \frac{\partial }{\partial\varphi }F\left( x_{(i)}|\mathit{\boldsymbol{\eta}} \right) = \quad\left(1+{\varphi{w_{i}^{-\vartheta}}}\right)^{-\frac{1}{\varphi}}\ln{\left(1+{\varphi{w_{i}^{-\vartheta}}}\right)}, \notag \end{equation} |
\begin{equation} \label{LSEs3} \Omega_{3}\left( x_{(i)}|\mathit{\boldsymbol{\eta}} \right) = \frac{\partial }{\partial\lambda }F\left( x_{(i)}|\mathit{\boldsymbol{\eta}} \right) = \quad\frac{1}{\varphi}\left(1+{\varphi{w_{i}^{-\vartheta}}}\right)^{-(\frac{1}{\varphi}+1)} -\vartheta\varphi{x_{i}^{-\theta}}{w_{i}^{-(\vartheta+1)}}e^{\lambda{x_{i}}^{-\theta}}\notag \end{equation} |
and
\begin{equation} \label{LSEs4} \Omega_{4}\left( x_{(i)}|\mathit{\boldsymbol{\eta}} \right) = \frac{\partial }{\partial\theta }F\left( x_{(i)}|\mathit{\boldsymbol{\eta}} \right) = \quad\vartheta\lambda{w_{i}^{-(\vartheta+1)}}e^{\lambda{x_{i}}^{-\theta}}{x_{i}^{-\theta}} \left(1+{\varphi{w_{i}^{-\vartheta}}}\right)^{-(\frac{1}{\varphi}+1)}\ln{x_{i}}, \notag \end{equation} |
where w_{i} = e^{\lambda{x_{i}}^{-\theta}}-1 . The solution of \Omega _{k} for k = 1, 2, 3, 4 may be obtained numerically.
The WLSEs of the EWFr parameters can be determined by minimizing the equation (see [19]):
\begin{equation*} W\left(\mathit{\boldsymbol{\eta}} \right) = \sum\limits_{i = 1}^{n}\frac{\left( n+1\right) ^{2}\left( n+2\right) }{i\left( n-i+1\right) }\left[ F\left( x_{(i)}|\mathit{\boldsymbol{\eta}} \right) -\frac{i}{n+1}\right]^{2}. \end{equation*} |
The uniform spacings of a random sample from the EWFr distribution are defined (for i = 1, 2, \dots, n+1 ) by { D_{i}(\mathit{\boldsymbol{\eta}}) = F\left(x_{(i)}|\mathit{\boldsymbol{\eta}} \right) -F\left(x_{(i-1)}|\mathit{\boldsymbol{\eta}}\right) }, where F\left(x_{(0)}|\mathit{\boldsymbol{\eta}} \right) = 0 , F\left(x_{(n+1)}|\mathit{\boldsymbol{\eta}} \right) = 1 and \sum_{i = 1}^{n+1}D_{i}(\mathit{\boldsymbol{\eta}}) = 1 . The MPSEs of the EWFr parameters can be determined by maximizing the following geometric mean (GM) of spacings
\begin{equation*} G\left(\mathit{\boldsymbol{\eta}} \right) = \left[ \prod\limits_{i = 1}^{n+1}D_{i}( \mathit{\boldsymbol{\eta}} )\right] ^{\frac{1}{n+1}} \end{equation*} |
or by maximizing the logarithm of the GM of sample spacings
\begin{equation*} H\left(\mathit{\boldsymbol{\eta}} \right) = \frac{1}{n+1}\sum\limits_{i = 1}^{n+1}\log D_{i}(\mathit{\boldsymbol{\eta}}), \end{equation*} |
The CRVMEs can be obtained using the difference between the estimated and empirical CDFs. The CRVMEs [20] of the EWFr parameters are determined by minimizing
\begin{equation*} C(\mathit{\boldsymbol{\eta}}) = \frac{1}{12n}+\sum\limits_{i = 1}^{n}\left[ F\left(x_{(i)}|\mathit{\boldsymbol{\eta}} \right) -{\frac{2i-1}{2n}}\right] ^{2}. \end{equation*} |
The ADEs [21] of the EWFr parameters are calculated by minimizing
\begin{equation*} A(\mathit{\boldsymbol{\eta}}) = -n-\frac{1}{n}\sum\limits_{i = 1}^{n}\left( 2i-1\right) \, \left[\log F\left( x_{(i)}|\mathit{\boldsymbol{\eta}} \right) +\log S\left( x_{(i)}|\mathit{\boldsymbol{\eta}} \right) \right]. \end{equation*} |
The RADEs of the EWFr parameters are calculated by minimizing
\begin{equation*} R(\mathit{\boldsymbol{\eta}} ) = \frac{n}{2}-2\sum\limits_{i = 1}^{n}F\left( x_{i:n}|\mathit{\boldsymbol{\eta}} \right) -\frac{1}{n}\sum\limits_{i = 1}^{n}\left( 2i-1\right) \log S\left( x_{n+1-i:n}|\mathit{\boldsymbol{\eta}} \right). \end{equation*} |
Consider the unbiased estimator of F\left(x_{(i)}|\mathit{\boldsymbol{\eta}} \right) which is defined by u_{i} = i/\left(n+1\right) . Hence, the PCEs of the EWFr parameters can be calculated by minimizing
\begin{equation*} P(\mathit{\boldsymbol{\eta}}) = \sum\limits_{i = 1}^{n}\left( x_{(i)}-\left\{\ln\left({\frac{\left[(1-u_{i})^{-\varphi}-1\right]^{\frac{1}{\vartheta}}}{\varphi^{\frac{1}{\vartheta}} +\left[(1-u_{i})^{-\varphi}-1\right]^{\frac{1}{\vartheta}}}}\right)^{\lambda}\right\}^{\frac{1}{\theta}} \right)^{2}. \end{equation*} |
To compare and explore the behavior of different estimators of the EWFr parameters, we presented the numerical simulation results and ranked them with respect to their: average of absolute biases ( |Bias(\widehat{\mathit{\boldsymbol{\eta}}})| ), |Bias(\widehat{\mathit{\boldsymbol{\eta}}})| = \frac{1}{N}\sum_{i = 1}^{N}|\widehat{\mathit{\boldsymbol{\eta}}}-\mathit{\boldsymbol{\eta}}| , average of mean relative errors (MREs), MREs = \frac{1}{N}\sum_{i = 1}^{N}|\widehat{\mathit{\boldsymbol{\eta}}}-\mathit{\boldsymbol{\eta}}|/\mathit{\boldsymbol{\eta}} , and average mean square errors (MSEs), MSEs = \frac{1}{N}\sum_{i = 1}^{N}(\widehat{\mathit{\boldsymbol{\eta}}}-\mathit{\boldsymbol{\eta}})^2 .
The following algorithm can be adopted to explore the behavior of different estimators of the EWFr parameters:
Step 1: A random sample x_{1}, x_{2}, \dots, x_{n} of sizes n = 20, 80, 200, and 500 are generated from the QF (3.1).
Step 2: The required results are obtained based on eight combinations of the parameters \vartheta = \{0.25, 0.75, 1.75, 3.50, 3.50\} , \varphi = \{0.50, 0.75, 2.00, 2.50, 3.50\} , \lambda = \{0.25, 0.50, 1.50, 3.00, 4.25\} and \theta = \{0.25, 1.25, 2.50\} .
Step 3: Each sample is replicated N = 5,000 times.
Step 4: Results of the biases, MSEs, and MREs are computed for the eight combinations, and to save more space, we present just the result of 5 combinations in Tables 2–6.
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
20 | |BIAS| | \hat{\vartheta} | 0.58150 ^{\{3\}} | 0.59477 ^{\{4\}} | 0.53422 ^{\{1\}} | 0.54541 ^{\{2\}} | 0.60555 ^{\{5\}} | 0.71685 ^{\{8\}} | 0.67445 ^{\{7\}} | 0.61466 ^{\{6\}} |
\hat{\varphi} | 0.47550 ^{\{4\}} | 0.54812 ^{\{7\}} | 0.46820 ^{\{2\}} | 0.53093 ^{\{6\}} | 0.19120 ^{\{1\}} | 0.55104 ^{\{8\}} | 0.46906 ^{\{3\}} | 0.51894 ^{\{5\}} | ||
\hat{\lambda} | 0.08930 ^{\{2\}} | 0.10351 ^{\{7\}} | 0.08402 ^{\{1\}} | 0.10057 ^{\{5\}} | 0.10077 ^{\{6\}} | 0.11204 ^{\{8\}} | 0.09758 ^{\{3\}} | 0.09866 ^{\{4\}} | ||
\hat{\theta} | 0.49749 ^{\{7\}} | 0.47497 ^{\{4\}} | 0.46884 ^{\{3\}} | 0.48364 ^{\{5\}} | 0.45238 ^{\{1\}} | 0.53285 ^{\{8\}} | 0.46505 ^{\{2\}} | 0.48608 ^{\{6\}} | ||
MSEs | \hat{\vartheta} | 0.47425 ^{\{2\}} | 0.52401 ^{\{4\}} | 0.52337 ^{\{3\}} | 0.46463 ^{\{1\}} | 0.54588 ^{\{6\}} | 0.64689 ^{\{8\}} | 0.59726 ^{\{7\}} | 0.53428 ^{\{5\}} | |
\hat{\varphi} | 0.27624 ^{\{1\}} | 0.38734 ^{\{7\}} | 0.29294 ^{\{2\}} | 0.36212 ^{\{6\}} | 0.31849 ^{\{4\}} | 0.39577 ^{\{8\}} | 0.30160 ^{\{3\}} | 0.35513 ^{\{5\}} | ||
\hat{\lambda} | 0.01107 ^{\{2\}} | 0.01423 ^{\{7\}} | 0.00983 ^{\{1\}} | 0.01356 ^{\{5\}} | 0.01357 ^{\{6\}} | 0.01651 ^{\{8\}} | 0.01289 ^{\{3\}} | 0.01296 ^{\{4\}} | ||
\hat{\theta} | 0.37764 ^{\{7\}} | 0.33320 ^{\{3\}} | 0.35778 ^{\{4\}} | 0.36101 ^{\{5\}} | 0.29381 ^{\{1\}} | 0.38887 ^{\{8\}} | 0.32193 ^{\{2\}} | 0.36311 ^{\{6\}} | ||
MREs | \hat{\vartheta} | 0.33229 ^{\{3\}} | 0.33987 ^{\{4\}} | 0.17807 ^{\{1\}} | 0.31166 ^{\{2\}} | 0.34603 ^{\{5\}} | 0.40963 ^{\{8\}} | 0.38540 ^{\{7\}} | 0.35123 ^{\{6\}} | |
\hat{\varphi} | 0.95101 ^{\{3\}} | 1.09624 ^{\{7\}} | 0.93641 ^{\{1\}} | 1.06186 ^{\{6\}} | 0.97231 ^{\{4\}} | 1.10208 ^{\{8\}} | 0.93811 ^{\{2\}} | 1.03788 ^{\{5\}} | ||
\hat{\lambda} | 0.35719 ^{\{2\}} | 0.41405 ^{\{7\}} | 0.33607 ^{\{1\}} | 0.40230 ^{\{5\}} | 0.40307 ^{\{6\}} | 0.44817 ^{\{8\}} | 0.39034 ^{\{3\}} | 0.39464 ^{\{4\}} | ||
\hat{\theta} | 0.39799 ^{\{7\}} | 0.37998 ^{\{4\}} | 0.37507 ^{\{3\}} | 0.38691 ^{\{5\}} | 0.36190 ^{\{1\}} | 0.42628 ^{\{8\}} | 0.37204 ^{\{2\}} | 0.38886 ^{\{6\}} | ||
\sum{Ranks} | 43 ^{\{2\}} | 65 ^{\{7\}} | 23 ^{\{1\}} | 53 ^{\{5\}} | 46 ^{\{4\}} | 96 ^{\{8\}} | 44 ^{\{3\}} | 62 ^{\{6\}} | ||
80 | |BIAS| | \hat{\vartheta} | 0.65720 ^{\{2\}} | 0.73260 ^{\{6\}} | 0.64523 ^{\{1\}} | 0.71780 ^{\{4\}} | 0.67014 ^{\{3\}} | 0.78730 ^{\{8\}} | 0.72979 ^{\{5\}} | 0.78285 ^{\{7\}} |
\hat{\varphi} | 0.29918 ^{\{4\}} | 0.36951 ^{\{7\}} | 0.27270 ^{\{1\}} | 0.36572 ^{\{6\}} | 0.28461 ^{\{2\}} | 0.43485 ^{\{8\}} | 0.29440 ^{\{3\}} | 0.31911 ^{\{5\}} | ||
\hat{\lambda} | 0.06946 ^{\{2\}} | 0.08089 ^{\{7\}} | 0.06755 ^{\{1\}} | 0.07955 ^{\{6\}} | 0.07162 ^{\{4\}} | 0.07099 ^{\{3\}} | 0.07301 ^{\{5\}} | 0.08347 ^{\{8\}} | ||
\hat{\theta} | 0.41705 ^{\{6\}} | 0.41605 ^{\{5\}} | 0.41277 ^{\{4\}} | 0.43216 ^{\{7\}} | 0.34179 ^{\{1\}} | 0.38656 ^{\{3\}} | 0.37952 ^{\{2\}} | 0.45183 ^{\{8\}} | ||
MSEs | \hat{\vartheta} | 0.53699 ^{\{1\}} | 0.65792 ^{\{5\}} | 0.71214 ^{\{7\}} | 0.63722 ^{\{3\}} | 0.62257 ^{\{2\}} | 0.71659 ^{\{8\}} | 0.64185 ^{\{4\}} | 0.70948 ^{\{6\}} | |
\hat{\varphi} | 0.12478 ^{\{3\}} | 0.19502 ^{\{7\}} | 0.11097 ^{\{1\}} | 0.18881 ^{\{6\}} | 0.12320 ^{\{2\}} | 0.28084 ^{\{8\}} | 0.13150 ^{\{4\}} | 0.15268 ^{\{5\}} | ||
\hat{\lambda} | 0.00672 ^{\{1\}} | 0.00884 ^{\{7\}} | 0.00693 ^{\{2\}} | 0.00853 ^{\{6\}} | 0.00712 ^{\{4\}} | 0.00711 ^{\{3\}} | 0.00740 ^{\{5\}} | 0.00932 ^{\{8\}} | ||
\hat{\theta} | 0.26049 ^{\{5\}} | 0.25434 ^{\{4\}} | 0.30456 ^{\{8\}} | 0.27845 ^{\{6\}} | 0.16695 ^{\{1\}} | 0.24032 ^{\{3\}} | 0.20942 ^{\{2\}} | 0.29980 ^{\{7\}} | ||
MREs | \hat{\vartheta} | 0.37554 ^{\{2\}} | 0.41863 ^{\{6\}} | 0.21508 ^{\{1\}} | 0.41017 ^{\{4\}} | 0.38294 ^{\{3\}} | 0.44989 ^{\{8\}} | 0.41702 ^{\{5\}} | 0.44734 ^{\{7\}} | |
\hat{\varphi} | 0.59835 ^{\{4\}} | 0.73902 ^{\{7\}} | 0.54540 ^{\{1\}} | 0.73144 ^{\{6\}} | 0.56922 ^{\{2\}} | 0.86970 ^{\{8\}} | 0.58881 ^{\{3\}} | 0.63822 ^{\{5\}} | ||
\hat{\lambda} | 0.27786 ^{\{2\}} | 0.32356 ^{\{7\}} | 0.27019 ^{\{1\}} | 0.31820 ^{\{6\}} | 0.28647 ^{\{4\}} | 0.28396 ^{\{3\}} | 0.29205 ^{\{5\}} | 0.33388 ^{\{8\}} | ||
\hat{\theta} | 0.33364 ^{\{6\}} | 0.33284 ^{\{5\}} | 0.33022 ^{\{4\}} | 0.34573 ^{\{7\}} | 0.27343 ^{\{1\}} | 0.30924 ^{\{3\}} | 0.30361 ^{\{2\}} | 0.36147 ^{\{8\}} | ||
\sum{Ranks} | 38 ^{\{3\}} | 73 ^{\{7\}} | 32 ^{\{2\}} | 67 ^{\{6\}} | 29 ^{\{1\}} | 66 ^{\{5\}} | 45 ^{\{4\}} | 82 ^{\{8\}} | ||
200 | |BIAS| | \hat{\vartheta} | 0.54244 ^{\{1\}} | 0.74060 ^{\{6\}} | 0.66029 ^{\{4\}} | 0.72065 ^{\{5\}} | 0.56860 ^{\{2\}} | 0.78528 ^{\{8\}} | 0.64417 ^{\{3\}} | 0.74318 ^{\{7\}} |
\hat{\varphi} | 0.20343 ^{\{3\}} | 0.27714 ^{\{7\}} | 0.18758 ^{\{1\}} | 0.27628 ^{\{6\}} | 0.19120 ^{\{2\}} | 0.33648 ^{\{8\}} | 0.21264 ^{\{4\}} | 0.21990 ^{\{5\}} | ||
\hat{\lambda} | 0.05329 ^{\{1\}} | 0.07033 ^{\{7\}} | 0.05985 ^{\{3\}} | 0.06898 ^{\{6\}} | 0.05669 ^{\{2\}} | 0.05992 ^{\{4\}} | 0.06059 ^{\{5\}} | 0.07617 ^{\{8\}} | ||
\hat{\theta} | 0.30910 ^{\{2\}} | 0.38666 ^{\{6\}} | 0.37834 ^{\{5\}} | 0.39240 ^{\{7\}} | 0.26754 ^{\{1\}} | 0.34697 ^{\{4\}} | 0.32167 ^{\{3\}} | 0.42492 ^{\{8\}} | ||
MSEs | \hat{\vartheta} | 0.39682 ^{\{1\}} | 0.65105 ^{\{6\}} | 0.72704 ^{\{8\}} | 0.62292 ^{\{4\}} | 0.51529 ^{\{2\}} | 0.70871 ^{\{7\}} | 0.53035 ^{\{3\}} | 0.65051 ^{\{5\}} | |
\hat{\varphi} | 0.06226 ^{\{3\}} | 0.11401 ^{\{7\}} | 0.05424 ^{\{1\}} | 0.11214 ^{\{6\}} | 0.05643 ^{\{2\}} | 0.18593 ^{\{8\}} | 0.06927 ^{\{4\}} | 0.07447 ^{\{5\}} | ||
\hat{\lambda} | 0.00405 ^{\{1\}} | 0.00665 ^{\{7\}} | 0.00571 ^{\{5\}} | 0.00644 ^{\{6\}} | 0.00452 ^{\{2\}} | 0.00513 ^{\{4\}} | 0.00507 ^{\{3\}} | 0.00753 ^{\{8\}} | ||
\hat{\theta} | 0.14395 ^{\{2\}} | 0.20851 ^{\{5\}} | 0.26568 ^{\{8\}} | 0.22075 ^{\{6\}} | 0.10322 ^{\{1\}} | 0.19203 ^{\{4\}} | 0.14560 ^{\{3\}} | 0.25309 ^{\{7\}} | ||
MREs | \hat{\vartheta} | 0.30997 ^{\{2\}} | 0.42320 ^{\{6\}} | 0.22010 ^{\{1\}} | 0.41180 ^{\{5\}} | 0.32491 ^{\{3\}} | 0.44873 ^{\{8\}} | 0.36810 ^{\{4\}} | 0.42468 ^{\{7\}} | |
\hat{\varphi} | 0.40685 ^{\{3\}} | 0.55429 ^{\{7\}} | 0.37516 ^{\{1\}} | 0.55256 ^{\{6\}} | 0.38240 ^{\{2\}} | 0.67295 ^{\{8\}} | 0.42528 ^{\{4\}} | 0.43980 ^{\{5\}} | ||
\hat{\lambda} | 0.21316 ^{\{1\}} | 0.28134 ^{\{7\}} | 0.23940 ^{\{3\}} | 0.27593 ^{\{6\}} | 0.22675 ^{\{2\}} | 0.23969 ^{\{4\}} | 0.24238 ^{\{5\}} | 0.30470 ^{\{8\}} | ||
\hat{\theta} | 0.24728 ^{\{2\}} | 0.30933 ^{\{6\}} | 0.30267 ^{\{5\}} | 0.31392 ^{\{7\}} | 0.21403 ^{\{1\}} | 0.27758 ^{\{4\}} | 0.25734 ^{\{3\}} | 0.33994 ^{\{8\}} | ||
\sum{Ranks} | 22 ^{\{1.5\}} | 77 ^{\{7\}} | 45 ^{\{4\}} | 70 ^{\{5\}} | 22 ^{\{1.5\}} | 71 ^{\{6\}} | 44 ^{\{3\}} | 81 ^{\{8\}} | ||
500 | |BIAS| | \hat{\vartheta} | 0.40816 ^{\{2\}} | 0.63822 ^{\{6\}} | 0.59712 ^{\{4\}} | 0.62303 ^{\{5\}} | 0.38723 ^{\{1\}} | 0.72351 ^{\{8\}} | 0.50869 ^{\{3\}} | 0.64537 ^{\{7\}} |
\hat{\varphi} | 0.13392 ^{\{3\}} | 0.19775 ^{\{6\}} | 0.12778 ^{\{1\}} | 0.19966 ^{\{7\}} | 0.13208 ^{\{2\}} | 0.26446 ^{\{8\}} | 0.14927 ^{\{4\}} | 0.15660 ^{\{5\}} | ||
\hat{\lambda} | 0.03902 ^{\{1\}} | 0.05985 ^{\{7\}} | 0.04987 ^{\{4\}} | 0.05913 ^{\{6\}} | 0.04014 ^{\{2\}} | 0.05408 ^{\{5\}} | 0.04806 ^{\{3\}} | 0.06618 ^{\{8\}} | ||
\hat{\theta} | 0.21255 ^{\{2\}} | 0.32416 ^{\{6\}} | 0.31285 ^{\{5\}} | 0.33146 ^{\{7\}} | 0.18308 ^{\{1\}} | 0.30762 ^{\{4\}} | 0.24975 ^{\{3\}} | 0.35803 ^{\{8\}} | ||
MSEs | \hat{\vartheta} | 0.24842 ^{\{1\}} | 0.52025 ^{\{5\}} | 0.58302 ^{\{7\}} | 0.50041 ^{\{4\}} | 0.33081 ^{\{2\}} | 0.63280 ^{\{8\}} | 0.37071 ^{\{3\}} | 0.52827 ^{\{6\}} | |
\hat{\varphi} | 0.02762 ^{\{3\}} | 0.05937 ^{\{6\}} | 0.02573 ^{\{1\}} | 0.06052 ^{\{7\}} | 0.02727 ^{\{2\}} | 0.12045 ^{\{8\}} | 0.03399 ^{\{4\}} | 0.03724 ^{\{5\}} | ||
\hat{\lambda} | 0.00224 ^{\{1\}} | 0.00478 ^{\{7\}} | 0.00422 ^{\{5\}} | 0.00470 ^{\{6\}} | 0.00257 ^{\{2\}} | 0.00402 ^{\{4\}} | 0.00325 ^{\{3\}} | 0.00569 ^{\{8\}} | ||
\hat{\theta} | 0.06777 ^{\{2\}} | 0.14391 ^{\{5\}} | 0.19157 ^{\{8\}} | 0.15413 ^{\{6\}} | 0.05743 ^{\{1\}} | 0.14128 ^{\{4\}} | 0.08776 ^{\{3\}} | 0.17743 ^{\{7\}} | ||
MREs | \hat{\vartheta} | 0.23323 ^{\{3\}} | 0.36470 ^{\{6\}} | 0.19904 ^{\{1\}} | 0.35602 ^{\{5\}} | 0.22127 ^{\{2\}} | 0.41343 ^{\{8\}} | 0.29068 ^{\{4\}} | 0.36879 ^{\{7\}} | |
\hat{\varphi} | 0.26784 ^{\{3\}} | 0.39550 ^{\{6\}} | 0.25556 ^{\{1\}} | 0.39932 ^{\{7\}} | 0.26417 ^{\{2\}} | 0.52891 ^{\{8\}} | 0.29853 ^{\{4\}} | 0.31320 ^{\{5\}} | ||
\hat{\lambda} | 0.15609 ^{\{1\}} | 0.23939 ^{\{7\}} | 0.19949 ^{\{4\}} | 0.23651 ^{\{6\}} | 0.16056 ^{\{2\}} | 0.21632 ^{\{5\}} | 0.19222 ^{\{3\}} | 0.26474 ^{\{8\}} | ||
\hat{\theta} | 0.17004 ^{\{2\}} | 0.25933 ^{\{6\}} | 0.25028 ^{\{5\}} | 0.26517 ^{\{7\}} | 0.14646 ^{\{1\}} | 0.24610 ^{\{4\}} | 0.19980 ^{\{3\}} | 0.28642 ^{\{8\}} | ||
\sum{Ranks} | 24 ^{\{2\}} | 73 ^{\{5.5\}} | 46 ^{\{4\}} | 73 ^{\{5.5\}} | 20 ^{\{1\}} | 74 ^{\{7\}} | 40 ^{\{3\}} | 82 ^{\{8\}} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
20 | |BIAS| | \hat{\vartheta} | 0.58249 ^{\left\{3 \right\}} | 0.53932 ^{\left\{1 \right\}} | 0.56241 ^{\left\{2 \right\}} | 0.61397 ^{\left\{5 \right\}} | 0.60739 ^{\left\{4 \right\}} | 0.82341 ^{\left\{8 \right\}} | 0.68123 ^{\left\{7 \right\}} | 0.66592 ^{\left\{6 \right\}} |
\hat{\varphi} | 0.70201 ^{\left\{2 \right\}} | 0.74992 ^{\left\{4 \right\}} | 0.71005 ^{\left\{3 \right\}} | 0.99334 ^{\left\{7 \right\}} | 0.41044 ^{\left\{1 \right\}} | 1.11769 ^{\left\{8 \right\}} | 0.88784 ^{\left\{5 \right\}} | 0.97457 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.26246 ^{\left\{1 \right\}} | 0.28717 ^{\left\{3 \right\}} | 0.28400 ^{\left\{2 \right\}} | 0.42881 ^{\left\{5 \right\}} | 0.40138 ^{\left\{4 \right\}} | 0.64545 ^{\left\{8 \right\}} | 0.43589 ^{\left\{7 \right\}} | 0.43050 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.83485 ^{\left\{6 \right\}} | 0.91523 ^{\left\{7 \right\}} | 0.92408 ^{\left\{8 \right\}} | 0.76222 ^{\left\{3 \right\}} | 0.77841 ^{\left\{4 \right\}} | 0.78092 ^{\left\{5 \right\}} | 0.74535 ^{\left\{1 \right\}} | 0.74828 ^{\left\{2 \right\}} | ||
MSEs | \hat{\vartheta} | 0.45340 ^{\left\{3 \right\}} | 0.42087 ^{\left\{1 \right\}} | 0.44427 ^{\left\{2 \right\}} | 0.51220 ^{\left\{4 \right\}} | 0.51720 ^{\left\{5 \right\}} | 0.77654 ^{\left\{8 \right\}} | 0.58720 ^{\left\{7 \right\}} | 0.56968 ^{\left\{6 \right\}} | |
\hat{\varphi} | 0.65182 ^{\left\{1 \right\}} | 0.75540 ^{\left\{3 \right\}} | 0.66110 ^{\left\{2 \right\}} | 1.25282 ^{\left\{7 \right\}} | 0.95641 ^{\left\{4 \right\}} | 1.49737 ^{\left\{8 \right\}} | 1.01553 ^{\left\{5 \right\}} | 1.19476 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.07059 ^{\left\{1 \right\}} | 0.08751 ^{\left\{3 \right\}} | 0.08543 ^{\left\{2 \right\}} | 0.29909 ^{\left\{7 \right\}} | 0.24742 ^{\left\{4 \right\}} | 0.52940 ^{\left\{8 \right\}} | 0.29252 ^{\left\{6 \right\}} | 0.29154 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.84612 ^{\left\{6 \right\}} | 1.00860 ^{\left\{8 \right\}} | 1.00532 ^{\left\{7 \right\}} | 0.71906 ^{\left\{3 \right\}} | 0.75325 ^{\left\{4 \right\}} | 0.82231 ^{\left\{5 \right\}} | 0.69565 ^{\left\{1 \right\}} | 0.70768 ^{\left\{2 \right\}} | ||
MREs | \hat{\vartheta} | 0.33285 ^{\left\{3 \right\}} | 0.30818 ^{\left\{1 \right\}} | 0.32138 ^{\left\{2 \right\}} | 0.35084 ^{\left\{5 \right\}} | 0.34708 ^{\left\{4 \right\}} | 0.47052 ^{\left\{8 \right\}} | 0.38927 ^{\left\{7 \right\}} | 0.38052 ^{\left\{6 \right\}} | |
\hat{\varphi} | 0.35100 ^{\left\{1 \right\}} | 0.37496 ^{\left\{3 \right\}} | 0.35503 ^{\left\{2 \right\}} | 0.49667 ^{\left\{7 \right\}} | 0.42863 ^{\left\{4 \right\}} | 0.55884 ^{\left\{8 \right\}} | 0.44392 ^{\left\{5 \right\}} | 0.48728 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.17497 ^{\left\{1 \right\}} | 0.19145 ^{\left\{3 \right\}} | 0.18933 ^{\left\{2 \right\}} | 0.28587 ^{\left\{5 \right\}} | 0.26758 ^{\left\{4 \right\}} | 0.43030 ^{\left\{8 \right\}} | 0.29059 ^{\left\{7 \right\}} | 0.28700 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.33394 ^{\left\{6 \right\}} | 0.36609 ^{\left\{7 \right\}} | 0.36963 ^{\left\{8 \right\}} | 0.30489 ^{\left\{3 \right\}} | 0.31136 ^{\left\{4 \right\}} | 0.31237 ^{\left\{5 \right\}} | 0.29814 ^{\left\{1 \right\}} | 0.29931 ^{\left\{2 \right\}} | ||
\sum{Ranks} | {\textbf{34}} ^{\left\{1 \right\}} | {\textbf{44}} ^{\left\{3 \right\}} | {\textbf{42}} ^{\left\{2 \right\}} | {\textbf{61}} ^{\left\{7 \right\}} | {\textbf{46}} ^{\left\{4 \right\}} | {\textbf{87}} ^{\left\{8 \right\}} | {\textbf{59}} ^{\left\{5.5 \right\}} | {\textbf{59}} ^{\left\{5.5 \right\}} | ||
80 | |BIAS| | \hat{\vartheta} | 0.49925 ^{\left\{2 \right\}} | 0.47135 ^{\left\{1 \right\}} | 0.52766 ^{\left\{3 \right\}} | 0.66329 ^{\left\{5 \right\}} | 0.55966 ^{\left\{4 \right\}} | 0.89224 ^{\left\{8 \right\}} | 0.67228 ^{\left\{6 \right\}} | 0.69447 ^{\left\{7 \right\}} |
\hat{\varphi} | 0.52063 ^{\left\{1 \right\}} | 0.55025 ^{\left\{3 \right\}} | 0.52909 ^{\left\{2 \right\}} | 0.70683 ^{\left\{7 \right\}} | 0.56354 ^{\left\{4 \right\}} | 0.93582 ^{\left\{8 \right\}} | 0.63998 ^{\left\{5 \right\}} | 0.69954 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.25198 ^{\left\{1 \right\}} | 0.25883 ^{\left\{3 \right\}} | 0.25641 ^{\left\{2 \right\}} | 0.43311 ^{\left\{7 \right\}} | 0.30034 ^{\left\{4 \right\}} | 0.66563 ^{\left\{8 \right\}} | 0.40607 ^{\left\{5 \right\}} | 0.43206 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.78480 ^{\left\{6 \right\}} | 0.82532 ^{\left\{7 \right\}} | 0.83697 ^{\left\{8 \right\}} | 0.69063 ^{\left\{3 \right\}} | 0.58559 ^{\left\{1 \right\}} | 0.72122 ^{\left\{5 \right\}} | 0.63842 ^{\left\{2 \right\}} | 0.69164 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 0.31719 ^{\left\{2 \right\}} | 0.30026 ^{\left\{1 \right\}} | 0.34946 ^{\left\{3 \right\}} | 0.55815 ^{\left\{5 \right\}} | 0.49857 ^{\left\{4 \right\}} | 0.86629 ^{\left\{8 \right\}} | 0.56483 ^{\left\{6 \right\}} | 0.59417 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.27881 ^{\left\{1 \right\}} | 0.32553 ^{\left\{3 \right\}} | 0.29109 ^{\left\{2 \right\}} | 0.66883 ^{\left\{7 \right\}} | 0.44978 ^{\left\{4 \right\}} | 1.03760 ^{\left\{8 \right\}} | 0.55511 ^{\left\{5 \right\}} | 0.64550 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.06369 ^{\left\{1 \right\}} | 0.06795 ^{\left\{3 \right\}} | 0.06642 ^{\left\{2 \right\}} | 0.29117 ^{\left\{7 \right\}} | 0.15725 ^{\left\{4 \right\}} | 0.54984 ^{\left\{8 \right\}} | 0.25250 ^{\left\{5 \right\}} | 0.28331 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.66344 ^{\left\{5 \right\}} | 0.73666 ^{\left\{7 \right\}} | 0.74889 ^{\left\{8 \right\}} | 0.58730 ^{\left\{3 \right\}} | 0.45144 ^{\left\{1 \right\}} | 0.66717 ^{\left\{6 \right\}} | 0.51377 ^{\left\{2 \right\}} | 0.59201 ^{\left\{4 \right\}} | ||
MREs | \hat{\vartheta} | 0.28529 ^{\left\{2 \right\}} | 0.26934 ^{\left\{1 \right\}} | 0.30152 ^{\left\{3 \right\}} | 0.37902 ^{\left\{5 \right\}} | 0.31981 ^{\left\{4 \right\}} | 0.50985 ^{\left\{8 \right\}} | 0.38416 ^{\left\{6 \right\}} | 0.39684 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.26032 ^{\left\{1 \right\}} | 0.27512 ^{\left\{3 \right\}} | 0.26454 ^{\left\{2 \right\}} | 0.35341 ^{\left\{7 \right\}} | 0.28177 ^{\left\{4 \right\}} | 0.46791 ^{\left\{8 \right\}} | 0.31999 ^{\left\{5 \right\}} | 0.34977 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.16798 ^{\left\{1 \right\}} | 0.17255 ^{\left\{3 \right\}} | 0.17094 ^{\left\{2 \right\}} | 0.28874 ^{\left\{7 \right\}} | 0.20023 ^{\left\{4 \right\}} | 0.44375 ^{\left\{8 \right\}} | 0.27071 ^{\left\{5 \right\}} | 0.28804 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.31392 ^{\left\{6 \right\}} | 0.33013 ^{\left\{7 \right\}} | 0.33479 ^{\left\{8 \right\}} | 0.27625 ^{\left\{3 \right\}} | 0.23423 ^{\left\{1 \right\}} | 0.28849 ^{\left\{5 \right\}} | 0.25537 ^{\left\{2 \right\}} | 0.27666 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{29}} ^{\left\{1 \right\}} | {\textbf{42}} ^{\left\{3 \right\}} | {\textbf{45}} ^{\left\{4 \right\}} | {\textbf{66}} ^{\left\{6 \right\}} | {\textbf{39}} ^{\left\{2 \right\}} | {\textbf{88}} ^{\left\{8 \right\}} | {\textbf{54}} ^{\left\{5 \right\}} | {\textbf{69}} ^{\left\{7 \right\}} | ||
200 | |BIAS| | \hat{\vartheta} | 0.47555 ^{\left\{3 \right\}} | 0.44985 ^{\left\{2 \right\}} | 0.51341 ^{\left\{4 \right\}} | 0.67707 ^{\left\{6 \right\}} | 0.42436 ^{\left\{1 \right\}} | 0.89805 ^{\left\{8 \right\}} | 0.66134 ^{\left\{5 \right\}} | 0.69895 ^{\left\{7 \right\}} |
\hat{\varphi} | 0.50115 ^{\left\{2 \right\}} | 0.50837 ^{\left\{4 \right\}} | 0.50279 ^{\left\{3 \right\}} | 0.56296 ^{\left\{7 \right\}} | 0.41044 ^{\left\{1 \right\}} | 0.81679 ^{\left\{8 \right\}} | 0.51451 ^{\left\{5 \right\}} | 0.55936 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.25019 ^{\left\{2 \right\}} | 0.25187 ^{\left\{4 \right\}} | 0.25076 ^{\left\{3 \right\}} | 0.41917 ^{\left\{7 \right\}} | 0.21499 ^{\left\{1 \right\}} | 0.65544 ^{\left\{8 \right\}} | 0.37297 ^{\left\{5 \right\}} | 0.41435 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.79159 ^{\left\{6 \right\}} | 0.80107 ^{\left\{7 \right\}} | 0.82123 ^{\left\{8 \right\}} | 0.64647 ^{\left\{3 \right\}} | 0.43028 ^{\left\{1 \right\}} | 0.75308 ^{\left\{5 \right\}} | 0.57181 ^{\left\{2 \right\}} | 0.66234 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 0.25888 ^{\left\{2 \right\}} | 0.23847 ^{\left\{1 \right\}} | 0.29413 ^{\left\{3 \right\}} | 0.56097 ^{\left\{6 \right\}} | 0.37531 ^{\left\{4 \right\}} | 0.86783 ^{\left\{8 \right\}} | 0.54545 ^{\left\{5 \right\}} | 0.59107 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.25134 ^{\left\{1 \right\}} | 0.26082 ^{\left\{4 \right\}} | 0.25349 ^{\left\{2 \right\}} | 0.43952 ^{\left\{7 \right\}} | 0.25968 ^{\left\{3 \right\}} | 0.80523 ^{\left\{8 \right\}} | 0.37160 ^{\left\{5 \right\}} | 0.43084 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.06261 ^{\left\{1 \right\}} | 0.06361 ^{\left\{3 \right\}} | 0.06295 ^{\left\{2 \right\}} | 0.25891 ^{\left\{7 \right\}} | 0.09970 ^{\left\{4 \right\}} | 0.52619 ^{\left\{8 \right\}} | 0.20829 ^{\left\{5 \right\}} | 0.25203 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.64670 ^{\left\{5 \right\}} | 0.66161 ^{\left\{6 \right\}} | 0.69240 ^{\left\{8 \right\}} | 0.51309 ^{\left\{3 \right\}} | 0.27527 ^{\left\{1 \right\}} | 0.68347 ^{\left\{7 \right\}} | 0.41304 ^{\left\{2 \right\}} | 0.53268 ^{\left\{4 \right\}} | ||
MREs | \hat{\vartheta} | 0.27175 ^{\left\{3 \right\}} | 0.25705 ^{\left\{2 \right\}} | 0.29338 ^{\left\{4 \right\}} | 0.38690 ^{\left\{6 \right\}} | 0.24249 ^{\left\{1 \right\}} | 0.51317 ^{\left\{8 \right\}} | 0.37791 ^{\left\{5 \right\}} | 0.39940 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.25057 ^{\left\{2 \right\}} | 0.25419 ^{\left\{4 \right\}} | 0.25139 ^{\left\{3 \right\}} | 0.28148 ^{\left\{7 \right\}} | 0.20522 ^{\left\{1 \right\}} | 0.40839 ^{\left\{8 \right\}} | 0.25725 ^{\left\{5 \right\}} | 0.27968 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.16679 ^{\left\{2 \right\}} | 0.16791 ^{\left\{4 \right\}} | 0.16717 ^{\left\{3 \right\}} | 0.27945 ^{\left\{7 \right\}} | 0.14333 ^{\left\{1 \right\}} | 0.43696 ^{\left\{8 \right\}} | 0.24865 ^{\left\{5 \right\}} | 0.27623 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.31664 ^{\left\{6 \right\}} | 0.32043 ^{\left\{7 \right\}} | 0.32849 ^{\left\{8 \right\}} | 0.25859 ^{\left\{3 \right\}} | 0.17211 ^{\left\{1 \right\}} | 0.30123 ^{\left\{5 \right\}} | 0.22872 ^{\left\{2 \right\}} | 0.26494 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{35}} ^{\left\{2 \right\}} | {\textbf{48}} ^{\left\{3 \right\}} | {\textbf{51}} ^{\left\{4.5 \right\}} | {\textbf{69}} ^{\left\{6.5 \right\}} | {\textbf{20}} ^{\left\{1 \right\}} | {\textbf{89}} ^{\left\{8 \right\}} | {\textbf{51}} ^{\left\{4.5 \right\}} | {\textbf{69}} ^{\left\{6.5 \right\}} | ||
500 | |BIAS| | \hat{\vartheta} | 0.47314 ^{\left\{3 \right\}} | 0.44590 ^{\left\{2 \right\}} | 0.51215 ^{\left\{4 \right\}} | 0.64549 ^{\left\{6 \right\}} | 0.23589 ^{\left\{1 \right\}} | 0.89642 ^{\left\{8 \right\}} | 0.57765 ^{\left\{5 \right\}} | 0.66728 ^{\left\{7 \right\}} |
\hat{\varphi} | 0.50000 ^{\left\{5 \right\}} | 0.50031 ^{\left\{7 \right\}} | 0.50001 ^{\left\{6 \right\}} | 0.44580 ^{\left\{4 \right\}} | 0.25497 ^{\left\{1 \right\}} | 0.66140 ^{\left\{8 \right\}} | 0.39329 ^{\left\{2 \right\}} | 0.42269 ^{\left\{3 \right\}} | ||
\hat{\lambda} | 0.25000 ^{\left\{2 \right\}} | 0.25003 ^{\left\{4 \right\}} | 0.25001 ^{\left\{3 \right\}} | 0.38068 ^{\left\{6 \right\}} | 0.11500 ^{\left\{1 \right\}} | 0.63857 ^{\left\{8 \right\}} | 0.31593 ^{\left\{5 \right\}} | 0.38454 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.79445 ^{\left\{5 \right\}} | 0.80134 ^{\left\{6 \right\}} | 0.82604 ^{\left\{8 \right\}} | 0.59243 ^{\left\{3 \right\}} | 0.25280 ^{\left\{1 \right\}} | 0.80505 ^{\left\{7 \right\}} | 0.49356 ^{\left\{2 \right\}} | 0.61821 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 0.23703 ^{\left\{3 \right\}} | 0.21187 ^{\left\{2 \right\}} | 0.27432 ^{\left\{4 \right\}} | 0.51809 ^{\left\{6 \right\}} | 0.19898 ^{\left\{1 \right\}} | 0.86166 ^{\left\{8 \right\}} | 0.44538 ^{\left\{5 \right\}} | 0.54549 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.25000 ^{\left\{3 \right\}} | 0.25034 ^{\left\{5 \right\}} | 0.25001 ^{\left\{4 \right\}} | 0.28548 ^{\left\{7 \right\}} | 0.11705 ^{\left\{1 \right\}} | 0.56366 ^{\left\{8 \right\}} | 0.22462 ^{\left\{2 \right\}} | 0.25796 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.06250 ^{\left\{2.5 \right\}} | 0.06252 ^{\left\{4 \right\}} | 0.06250 ^{\left\{2.5 \right\}} | 0.20888 ^{\left\{6 \right\}} | 0.03935 ^{\left\{1 \right\}} | 0.50179 ^{\left\{8 \right\}} | 0.14873 ^{\left\{5 \right\}} | 0.20922 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.63903 ^{\left\{5 \right\}} | 0.64949 ^{\left\{6 \right\}} | 0.68943 ^{\left\{7 \right\}} | 0.43597 ^{\left\{3 \right\}} | 0.12546 ^{\left\{1 \right\}} | 0.74499 ^{\left\{8 \right\}} | 0.31912 ^{\left\{2 \right\}} | 0.46804 ^{\left\{4 \right\}} | ||
MREs | \hat{\vartheta} | 0.27037 ^{\left\{3 \right\}} | 0.25480 ^{\left\{2 \right\}} | 0.29266 ^{\left\{4 \right\}} | 0.36885 ^{\left\{6 \right\}} | 0.13479 ^{\left\{1 \right\}} | 0.51224 ^{\left\{8 \right\}} | 0.33008 ^{\left\{5 \right\}} | 0.38130 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.25000 ^{\left\{5.5 \right\}} | 0.25015 ^{\left\{7 \right\}} | 0.25000 ^{\left\{5.5 \right\}} | 0.22290 ^{\left\{4 \right\}} | 0.12748 ^{\left\{1 \right\}} | 0.33070 ^{\left\{8 \right\}} | 0.19665 ^{\left\{2 \right\}} | 0.21134 ^{\left\{3 \right\}} | ||
\hat{\lambda} | 0.16667 ^{\left\{2.5 \right\}} | 0.16669 ^{\left\{4 \right\}} | 0.16667 ^{\left\{2.5 \right\}} | 0.25379 ^{\left\{6 \right\}} | 0.07667 ^{\left\{1 \right\}} | 0.42571 ^{\left\{8 \right\}} | 0.21062 ^{\left\{5 \right\}} | 0.25636 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.31778 ^{\left\{5 \right\}} | 0.32053 ^{\left\{6 \right\}} | 0.33042 ^{\left\{8 \right\}} | 0.23697 ^{\left\{3 \right\}} | 0.10112 ^{\left\{1 \right\}} | 0.32202 ^{\left\{7 \right\}} | 0.19742 ^{\left\{2 \right\}} | 0.24728 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{44.5}} ^{\left\{3 \right\}} | {\textbf{55}} ^{\left\{4 \right\}} | {\textbf{58.5}} ^{\left\{5 \right\}} | {\textbf{60}} ^{\left\{6 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{94}} ^{\left\{8 \right\}} | {\textbf{42}} ^{\left\{2 \right\}} | {\textbf{66}} ^{\left\{7 \right\}} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
20 | |BIAS| | \hat{\vartheta} | 1.05821 ^{\left\{8 \right\}} | 0.62985 ^{\left\{3 \right\}} | 0.96882 ^{\left\{6 \right\}} | 0.61879 ^{\left\{2 \right\}} | 0.39728 ^{\left\{1 \right\}} | 1.00062 ^{\left\{7 \right\}} | 0.93184 ^{\left\{5 \right\}} | 0.74851 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.58239 ^{\left\{4 \right\}} | 0.61540 ^{\left\{8 \right\}} | 0.57588 ^{\left\{3 \right\}} | 0.61442 ^{\left\{7 \right\}} | 0.16810 ^{\left\{1 \right\}} | 0.59648 ^{\left\{6 \right\}} | 0.54321 ^{\left\{2 \right\}} | 0.58344 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.09205 ^{\left\{8 \right\}} | 0.08984 ^{\left\{5 \right\}} | 0.08749 ^{\left\{3 \right\}} | 0.09161 ^{\left\{6 \right\}} | 0.07490 ^{\left\{1 \right\}} | 0.09181 ^{\left\{7 \right\}} | 0.08360 ^{\left\{2 \right\}} | 0.08890 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.65193 ^{\left\{8 \right\}} | 0.48317 ^{\left\{2 \right\}} | 0.52978 ^{\left\{5 \right\}} | 0.51841 ^{\left\{4 \right\}} | 0.37874 ^{\left\{1 \right\}} | 0.57738 ^{\left\{7 \right\}} | 0.51808 ^{\left\{3 \right\}} | 0.53685 ^{\left\{6 \right\}} | ||
MSEs | \hat{\vartheta} | 1.62863 ^{\left\{8 \right\}} | 0.80009 ^{\left\{2 \right\}} | 1.26747 ^{\left\{6 \right\}} | 0.83422 ^{\left\{3 \right\}} | 0.44242 ^{\left\{1 \right\}} | 1.52407 ^{\left\{7 \right\}} | 1.26323 ^{\left\{5 \right\}} | 1.02485 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.42299 ^{\left\{3 \right\}} | 0.47351 ^{\left\{8 \right\}} | 0.43072 ^{\left\{4 \right\}} | 0.47310 ^{\left\{7 \right\}} | 0.39842 ^{\left\{2 \right\}} | 0.45399 ^{\left\{6 \right\}} | 0.39008 ^{\left\{1 \right\}} | 0.43912 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.01191 ^{\left\{6 \right\}} | 0.01157 ^{\left\{5 \right\}} | 0.01104 ^{\left\{3 \right\}} | 0.01199 ^{\left\{7 \right\}} | 0.00839 ^{\left\{1 \right\}} | 0.01226 ^{\left\{8 \right\}} | 0.01037 ^{\left\{2 \right\}} | 0.01130 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.56633 ^{\left\{8 \right\}} | 0.35145 ^{\left\{2 \right\}} | 0.39993 ^{\left\{3 \right\}} | 0.40530 ^{\left\{5 \right\}} | 0.22597 ^{\left\{1 \right\}} | 0.46238 ^{\left\{7 \right\}} | 0.39998 ^{\left\{4 \right\}} | 0.42492 ^{\left\{6 \right\}} | ||
MREs | \hat{\vartheta} | 0.30235 ^{\left\{8 \right\}} | 0.17996 ^{\left\{3 \right\}} | 0.27681 ^{\left\{6 \right\}} | 0.17680 ^{\left\{2 \right\}} | 0.11351 ^{\left\{1 \right\}} | 0.28589 ^{\left\{7 \right\}} | 0.26624 ^{\left\{5 \right\}} | 0.21386 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.77652 ^{\left\{4 \right\}} | 0.82054 ^{\left\{8 \right\}} | 0.76784 ^{\left\{3 \right\}} | 0.81923 ^{\left\{7 \right\}} | 0.73001 ^{\left\{2 \right\}} | 0.79531 ^{\left\{6 \right\}} | 0.72428 ^{\left\{1 \right\}} | 0.77792 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.18410 ^{\left\{8 \right\}} | 0.17968 ^{\left\{5 \right\}} | 0.17498 ^{\left\{3 \right\}} | 0.18321 ^{\left\{6 \right\}} | 0.14981 ^{\left\{1 \right\}} | 0.18363 ^{\left\{7 \right\}} | 0.16720 ^{\left\{2 \right\}} | 0.17780 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.52155 ^{\left\{8 \right\}} | 0.38654 ^{\left\{2 \right\}} | 0.42382 ^{\left\{5 \right\}} | 0.41473 ^{\left\{4 \right\}} | 0.30299 ^{\left\{1 \right\}} | 0.46190 ^{\left\{7 \right\}} | 0.41446 ^{\left\{3 \right\}} | 0.42948 ^{\left\{6 \right\}} | ||
\sum{Ranks} | {\textbf{81}} ^{\left\{7 \right\}} | {\textbf{53}} ^{\left\{4 \right\}} | {\textbf{50}} ^{\left\{3 \right\}} | {\textbf{60}} ^{\left\{6 \right\}} | {\textbf{14}} ^{\left\{1 \right\}} | {\textbf{82}} ^{\left\{8 \right\}} | {\textbf{35}} ^{\left\{2 \right\}} | {\textbf{57}} ^{\left\{5 \right\}} | ||
80 | |BIAS| | \hat{\vartheta} | 1.30458 ^{\left\{8 \right\}} | 0.99944 ^{\left\{2 \right\}} | 1.19014 ^{\left\{7 \right\}} | 1.02885 ^{\left\{3 \right\}} | 0.28553 ^{\left\{1 \right\}} | 1.10670 ^{\left\{4 \right\}} | 1.14568 ^{\left\{6 \right\}} | 1.11457 ^{\left\{5 \right\}} |
\hat{\varphi} | 0.32983 ^{\left\{3 \right\}} | 0.40620 ^{\left\{6 \right\}} | 0.34267 ^{\left\{4 \right\}} | 0.40746 ^{\left\{7 \right\}} | 0.27616 ^{\left\{1 \right\}} | 0.42471 ^{\left\{8 \right\}} | 0.32604 ^{\left\{2 \right\}} | 0.35934 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.06496 ^{\left\{7 \right\}} | 0.06255 ^{\left\{5 \right\}} | 0.05976 ^{\left\{3 \right\}} | 0.06558 ^{\left\{8 \right\}} | 0.03810 ^{\left\{1 \right\}} | 0.06030 ^{\left\{4 \right\}} | 0.05724 ^{\left\{2 \right\}} | 0.06303 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.60157 ^{\left\{8 \right\}} | 0.45112 ^{\left\{2 \right\}} | 0.47825 ^{\left\{5 \right\}} | 0.49541 ^{\left\{6 \right\}} | 0.19099 ^{\left\{1 \right\}} | 0.45370 ^{\left\{3 \right\}} | 0.45453 ^{\left\{4 \right\}} | 0.50033 ^{\left\{7 \right\}} | ||
MSEs | \hat{\vartheta} | 1.98067 ^{\left\{8 \right\}} | 1.42246 ^{\left\{2 \right\}} | 1.62721 ^{\left\{7 \right\}} | 1.51028 ^{\left\{3 \right\}} | 0.28600 ^{\left\{1 \right\}} | 1.54773 ^{\left\{5 \right\}} | 1.54350 ^{\left\{4 \right\}} | 1.62460 ^{\left\{6 \right\}} | |
\hat{\varphi} | 0.16347 ^{\left\{2 \right\}} | 0.24145 ^{\left\{7 \right\}} | 0.17842 ^{\left\{4 \right\}} | 0.24070 ^{\left\{6 \right\}} | 0.12275 ^{\left\{1 \right\}} | 0.27309 ^{\left\{8 \right\}} | 0.16427 ^{\left\{3 \right\}} | 0.19753 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00614 ^{\left\{7 \right\}} | 0.00590 ^{\left\{5 \right\}} | 0.00549 ^{\left\{3 \right\}} | 0.00646 ^{\left\{8 \right\}} | 0.00224 ^{\left\{1 \right\}} | 0.00582 ^{\left\{4 \right\}} | 0.00513 ^{\left\{2 \right\}} | 0.00600 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.50150 ^{\left\{8 \right\}} | 0.33442 ^{\left\{3 \right\}} | 0.35764 ^{\left\{5 \right\}} | 0.39078 ^{\left\{6 \right\}} | 0.06108 ^{\left\{1 \right\}} | 0.33595 ^{\left\{4 \right\}} | 0.33240 ^{\left\{2 \right\}} | 0.39877 ^{\left\{7 \right\}} | ||
MREs | \hat{\vartheta} | 0.37274 ^{\left\{8 \right\}} | 0.28555 ^{\left\{2 \right\}} | 0.34004 ^{\left\{7 \right\}} | 0.29396 ^{\left\{3 \right\}} | 0.08158 ^{\left\{1 \right\}} | 0.31620 ^{\left\{4 \right\}} | 0.32734 ^{\left\{6 \right\}} | 0.31845 ^{\left\{5 \right\}} | |
\hat{\varphi} | 0.43977 ^{\left\{3 \right\}} | 0.54161 ^{\left\{6 \right\}} | 0.45690 ^{\left\{4 \right\}} | 0.54328 ^{\left\{7 \right\}} | 0.36821 ^{\left\{1 \right\}} | 0.56628 ^{\left\{8 \right\}} | 0.43472 ^{\left\{2 \right\}} | 0.47912 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.12992 ^{\left\{7 \right\}} | 0.12509 ^{\left\{5 \right\}} | 0.11952 ^{\left\{3 \right\}} | 0.13116 ^{\left\{8 \right\}} | 0.07620 ^{\left\{1 \right\}} | 0.12061 ^{\left\{4 \right\}} | 0.11448 ^{\left\{2 \right\}} | 0.12607 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.48126 ^{\left\{8 \right\}} | 0.36089 ^{\left\{2 \right\}} | 0.38260 ^{\left\{5 \right\}} | 0.39633 ^{\left\{6 \right\}} | 0.15279 ^{\left\{1 \right\}} | 0.36296 ^{\left\{3 \right\}} | 0.36362 ^{\left\{4 \right\}} | 0.40027 ^{\left\{7 \right\}} | ||
\sum{Ranks} | {\textbf{77}} ^{\left\{8 \right\}} | {\textbf{47}} ^{\left\{3 \right\}} | {\textbf{57}} ^{\left\{4 \right\}} | {\textbf{71}} ^{\left\{7 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{59}} ^{\left\{5 \right\}} | {\textbf{39}} ^{\left\{2 \right\}} | {\textbf{70}} ^{\left\{6 \right\}} | ||
200 | |BIAS| | \hat{\vartheta} | 1.18071 ^{\left\{8 \right\}} | 1.13329 ^{\left\{4 \right\}} | 1.15680 ^{\left\{6 \right\}} | 1.15101 ^{\left\{5 \right\}} | 0.12881 ^{\left\{1 \right\}} | 1.09310 ^{\left\{2 \right\}} | 1.11947 ^{\left\{3 \right\}} | 1.17399 ^{\left\{7 \right\}} |
\hat{\varphi} | 0.21288 ^{\left\{2 \right\}} | 0.27282 ^{\left\{6 \right\}} | 0.22827 ^{\left\{4 \right\}} | 0.28207 ^{\left\{7 \right\}} | 0.16810 ^{\left\{1 \right\}} | 0.31936 ^{\left\{8 \right\}} | 0.21687 ^{\left\{3 \right\}} | 0.23691 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.05455 ^{\left\{5 \right\}} | 0.05483 ^{\left\{6 \right\}} | 0.05139 ^{\left\{4 \right\}} | 0.05648 ^{\left\{8 \right\}} | 0.02373 ^{\left\{1 \right\}} | 0.04586 ^{\left\{2 \right\}} | 0.05000 ^{\left\{3 \right\}} | 0.05607 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.50995 ^{\left\{8 \right\}} | 0.46810 ^{\left\{5 \right\}} | 0.45161 ^{\left\{4 \right\}} | 0.48892 ^{\left\{7 \right\}} | 0.11088 ^{\left\{1 \right\}} | 0.36948 ^{\left\{2 \right\}} | 0.42847 ^{\left\{3 \right\}} | 0.48519 ^{\left\{6 \right\}} | ||
MSEs | \hat{\vartheta} | 1.65210 ^{\left\{6 \right\}} | 1.59933 ^{\left\{5 \right\}} | 1.54359 ^{\left\{4 \right\}} | 1.65457 ^{\left\{7 \right\}} | 0.11230 ^{\left\{1 \right\}} | 1.41356 ^{\left\{2 \right\}} | 1.45126 ^{\left\{3 \right\}} | 1.65710 ^{\left\{8 \right\}} | |
\hat{\varphi} | 0.06995 ^{\left\{2 \right\}} | 0.11564 ^{\left\{6 \right\}} | 0.08167 ^{\left\{4 \right\}} | 0.12209 ^{\left\{7 \right\}} | 0.04607 ^{\left\{1 \right\}} | 0.16683 ^{\left\{8 \right\}} | 0.07397 ^{\left\{3 \right\}} | 0.08772 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00441 ^{\left\{5 \right\}} | 0.00457 ^{\left\{6 \right\}} | 0.00403 ^{\left\{4 \right\}} | 0.00483 ^{\left\{8 \right\}} | 0.00088 ^{\left\{1 \right\}} | 0.00341 ^{\left\{2 \right\}} | 0.00386 ^{\left\{3 \right\}} | 0.00477 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.38578 ^{\left\{8 \right\}} | 0.35447 ^{\left\{5 \right\}} | 0.32071 ^{\left\{4 \right\}} | 0.38130 ^{\left\{7 \right\}} | 0.02076 ^{\left\{1 \right\}} | 0.24604 ^{\left\{2 \right\}} | 0.29346 ^{\left\{3 \right\}} | 0.38069 ^{\left\{6 \right\}} | ||
MREs | \hat{\vartheta} | 0.33734 ^{\left\{8 \right\}} | 0.32380 ^{\left\{4 \right\}} | 0.33052 ^{\left\{6 \right\}} | 0.32886 ^{\left\{5 \right\}} | 0.03680 ^{\left\{1 \right\}} | 0.31232 ^{\left\{2 \right\}} | 0.31985 ^{\left\{3 \right\}} | 0.33543 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.28384 ^{\left\{2 \right\}} | 0.36376 ^{\left\{6 \right\}} | 0.30437 ^{\left\{4 \right\}} | 0.37610 ^{\left\{7 \right\}} | 0.22413 ^{\left\{1 \right\}} | 0.42582 ^{\left\{8 \right\}} | 0.28917 ^{\left\{3 \right\}} | 0.31587 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.10910 ^{\left\{5 \right\}} | 0.10967 ^{\left\{6 \right\}} | 0.10278 ^{\left\{4 \right\}} | 0.11295 ^{\left\{8 \right\}} | 0.04745 ^{\left\{1 \right\}} | 0.09173 ^{\left\{2 \right\}} | 0.10000 ^{\left\{3 \right\}} | 0.11214 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.40796 ^{\left\{8 \right\}} | 0.37448 ^{\left\{5 \right\}} | 0.36129 ^{\left\{4 \right\}} | 0.39114 ^{\left\{7 \right\}} | 0.08871 ^{\left\{1 \right\}} | 0.29559 ^{\left\{2 \right\}} | 0.34277 ^{\left\{3 \right\}} | 0.38815 ^{\left\{6 \right\}} | ||
\sum{Ranks} | {\textbf{67}} ^{\left\{6 \right\}} | {\textbf{64}} ^{\left\{5 \right\}} | {\textbf{52}} ^{\left\{4 \right\}} | {\textbf{83}} ^{\left\{8 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{42}} ^{\left\{3 \right\}} | {\textbf{36}} ^{\left\{2 \right\}} | {\textbf{76}} ^{\left\{7 \right\}} | ||
500 | |BIAS| | \hat{\vartheta} | 0.99609 ^{\left\{2 \right\}} | 1.12481 ^{\left\{6 \right\}} | 1.05940 ^{\left\{5 \right\}} | 1.12860 ^{\left\{7 \right\}} | 0.04256 ^{\left\{1 \right\}} | 1.04542 ^{\left\{4 \right\}} | 1.03887 ^{\left\{3 \right\}} | 1.14079 ^{\left\{8 \right\}} |
\hat{\varphi} | 0.14496 ^{\left\{2 \right\}} | 0.18941 ^{\left\{6 \right\}} | 0.15844 ^{\left\{4 \right\}} | 0.19306 ^{\left\{7 \right\}} | 0.10411 ^{\left\{1 \right\}} | 0.23525 ^{\left\{8 \right\}} | 0.15349 ^{\left\{3 \right\}} | 0.16453 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.04309 ^{\left\{3 \right\}} | 0.05010 ^{\left\{7 \right\}} | 0.04425 ^{\left\{5 \right\}} | 0.04998 ^{\left\{6 \right\}} | 0.01474 ^{\left\{1 \right\}} | 0.03603 ^{\left\{2 \right\}} | 0.04334 ^{\left\{4 \right\}} | 0.05109 ^{\left\{8 \right\}} | ||
\hat{\theta} | 0.38900 ^{\left\{4 \right\}} | 0.44670 ^{\left\{6 \right\}} | 0.39875 ^{\left\{5 \right\}} | 0.45266 ^{\left\{7 \right\}} | 0.06374 ^{\left\{1 \right\}} | 0.31824 ^{\left\{2 \right\}} | 0.38560 ^{\left\{3 \right\}} | 0.45867 ^{\left\{8 \right\}} | ||
MSEs | \hat{\vartheta} | 1.21294 ^{\left\{2 \right\}} | 1.50352 ^{\left\{6 \right\}} | 1.31440 ^{\left\{5 \right\}} | 1.52047 ^{\left\{8 \right\}} | 0.02893 ^{\left\{1 \right\}} | 1.25338 ^{\left\{3 \right\}} | 1.26686 ^{\left\{4 \right\}} | 1.51668 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.03263 ^{\left\{2 \right\}} | 0.05612 ^{\left\{6 \right\}} | 0.03902 ^{\left\{4 \right\}} | 0.05818 ^{\left\{7 \right\}} | 0.01736 ^{\left\{1 \right\}} | 0.09221 ^{\left\{8 \right\}} | 0.03639 ^{\left\{3 \right\}} | 0.04120 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00278 ^{\left\{3 \right\}} | 0.00378 ^{\left\{6.5 \right\}} | 0.00295 ^{\left\{5 \right\}} | 0.00378 ^{\left\{6.5 \right\}} | 0.00034 ^{\left\{1 \right\}} | 0.00220 ^{\left\{2 \right\}} | 0.00283 ^{\left\{4 \right\}} | 0.00400 ^{\left\{8 \right\}} | ||
\hat{\theta} | 0.23678 ^{\left\{4 \right\}} | 0.31580 ^{\left\{6 \right\}} | 0.25000 ^{\left\{5 \right\}} | 0.32430 ^{\left\{7 \right\}} | 0.00703 ^{\left\{1 \right\}} | 0.18536 ^{\left\{2 \right\}} | 0.23280 ^{\left\{3 \right\}} | 0.33477 ^{\left\{8 \right\}} | ||
MREs | \hat{\vartheta} | 0.28460 ^{\left\{2 \right\}} | 0.32137 ^{\left\{6 \right\}} | 0.30269 ^{\left\{5 \right\}} | 0.32246 ^{\left\{7 \right\}} | 0.01216 ^{\left\{1 \right\}} | 0.29869 ^{\left\{4 \right\}} | 0.29682 ^{\left\{3 \right\}} | 0.32594 ^{\left\{8 \right\}} | |
\hat{\varphi} | 0.19328 ^{\left\{2 \right\}} | 0.25255 ^{\left\{6 \right\}} | 0.21126 ^{\left\{4 \right\}} | 0.25741 ^{\left\{7 \right\}} | 0.13881 ^{\left\{1 \right\}} | 0.31367 ^{\left\{8 \right\}} | 0.20466 ^{\left\{3 \right\}} | 0.21938 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.08617 ^{\left\{3 \right\}} | 0.10020 ^{\left\{7 \right\}} | 0.08850 ^{\left\{5 \right\}} | 0.09997 ^{\left\{6 \right\}} | 0.02948 ^{\left\{1 \right\}} | 0.07207 ^{\left\{2 \right\}} | 0.08669 ^{\left\{4 \right\}} | 0.10217 ^{\left\{8 \right\}} | ||
\hat{\theta} | 0.31120 ^{\left\{4 \right\}} | 0.35736 ^{\left\{6 \right\}} | 0.31900 ^{\left\{5 \right\}} | 0.36213 ^{\left\{7 \right\}} | 0.05100 ^{\left\{1 \right\}} | 0.25459 ^{\left\{2 \right\}} | 0.30848 ^{\left\{3 \right\}} | 0.36694 ^{\left\{8 \right\}} | ||
\sum{Ranks} | {\textbf{33}} ^{\left\{2 \right\}} | {\textbf{74.5}} ^{\left\{6 \right\}} | {\textbf{57}} ^{\left\{5 \right\}} | {\textbf{82.5}} ^{\left\{7 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{47}} ^{\left\{4 \right\}} | {\textbf{40}} ^{\left\{3 \right\}} | {\textbf{86}} ^{\left\{8 \right\}} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
20 | |BIAS| | \hat{\vartheta} | 0.98923 ^{\left\{7 \right\}} | 0.64331 ^{\left\{3 \right\}} | 0.95672 ^{\left\{6 \right\}} | 0.63413 ^{\left\{2 \right\}} | 0.44818 ^{\left\{1 \right\}} | 1.04755 ^{\left\{8 \right\}} | 0.90857 ^{\left\{5 \right\}} | 0.78916 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.95367 ^{\left\{6 \right\}} | 0.90318 ^{\left\{4 \right\}} | 0.88553 ^{\left\{3 \right\}} | 0.95450 ^{\left\{7 \right\}} | 0.31253 ^{\left\{1 \right\}} | 0.97463 ^{\left\{8 \right\}} | 0.85825 ^{\left\{2 \right\}} | 0.93652 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.50387 ^{\left\{8 \right\}} | 0.29370 ^{\left\{2 \right\}} | 0.38814 ^{\left\{5 \right\}} | 0.31558 ^{\left\{3 \right\}} | 0.23477 ^{\left\{1 \right\}} | 0.41787 ^{\left\{7 \right\}} | 0.38863 ^{\left\{6 \right\}} | 0.36144 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.83605 ^{\left\{8 \right\}} | 0.71444 ^{\left\{3 \right\}} | 0.81238 ^{\left\{7 \right\}} | 0.68991 ^{\left\{2 \right\}} | 0.62151 ^{\left\{1 \right\}} | 0.74404 ^{\left\{5 \right\}} | 0.75604 ^{\left\{6 \right\}} | 0.71561 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 1.35323 ^{\left\{7 \right\}} | 0.71389 ^{\left\{2 \right\}} | 1.18225 ^{\left\{6 \right\}} | 0.73718 ^{\left\{3 \right\}} | 0.37586 ^{\left\{1 \right\}} | 1.57224 ^{\left\{8 \right\}} | 1.13154 ^{\left\{5 \right\}} | 1.02701 ^{\left\{4 \right\}} | |
\hat{\varphi} | 1.18857 ^{\left\{8 \right\}} | 1.06788 ^{\left\{4 \right\}} | 1.02750 ^{\left\{3 \right\}} | 1.18599 ^{\left\{7 \right\}} | 0.87512 ^{\left\{1 \right\}} | 1.15778 ^{\left\{6 \right\}} | 0.96462 ^{\left\{2 \right\}} | 1.13400 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.36432 ^{\left\{8 \right\}} | 0.14714 ^{\left\{2 \right\}} | 0.22539 ^{\left\{5 \right\}} | 0.17712 ^{\left\{3 \right\}} | 0.09172 ^{\left\{1 \right\}} | 0.28638 ^{\left\{7 \right\}} | 0.23923 ^{\left\{6 \right\}} | 0.22267 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.77865 ^{\left\{8 \right\}} | 0.64926 ^{\left\{4 \right\}} | 0.77561 ^{\left\{7 \right\}} | 0.60519 ^{\left\{2 \right\}} | 0.52925 ^{\left\{1 \right\}} | 0.67762 ^{\left\{5 \right\}} | 0.68866 ^{\left\{6 \right\}} | 0.64046 ^{\left\{3 \right\}} | ||
MREs | \hat{\vartheta} | 0.28264 ^{\left\{7 \right\}} | 0.18380 ^{\left\{3 \right\}} | 0.27335 ^{\left\{6 \right\}} | 0.18118 ^{\left\{2 \right\}} | 0.12805 ^{\left\{1 \right\}} | 0.29930 ^{\left\{8 \right\}} | 0.25959 ^{\left\{5 \right\}} | 0.22547 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.47683 ^{\left\{6 \right\}} | 0.45159 ^{\left\{4 \right\}} | 0.44276 ^{\left\{3 \right\}} | 0.47725 ^{\left\{7 \right\}} | 0.40539 ^{\left\{1 \right\}} | 0.48731 ^{\left\{8 \right\}} | 0.42912 ^{\left\{2 \right\}} | 0.46826 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.33591 ^{\left\{8 \right\}} | 0.19580 ^{\left\{2 \right\}} | 0.25876 ^{\left\{5 \right\}} | 0.21038 ^{\left\{3 \right\}} | 0.15651 ^{\left\{1 \right\}} | 0.27858 ^{\left\{7 \right\}} | 0.25908 ^{\left\{6 \right\}} | 0.24096 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.33442 ^{\left\{8 \right\}} | 0.28578 ^{\left\{3 \right\}} | 0.32495 ^{\left\{7 \right\}} | 0.27596 ^{\left\{2 \right\}} | 0.24860 ^{\left\{1 \right\}} | 0.29762 ^{\left\{5 \right\}} | 0.30242 ^{\left\{6 \right\}} | 0.28624 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{89}} ^{\left\{8 \right\}} | {\textbf{36}} ^{\left\{2 \right\}} | {\textbf{63}} ^{\left\{6 \right\}} | {\textbf{43}} ^{\left\{3 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{82}} ^{\left\{7 \right\}} | {\textbf{57}} ^{\left\{5 \right\}} | {\textbf{50}} ^{\left\{4 \right\}} | ||
80 | |BIAS| | \hat{\vartheta} | 1.00512 ^{\left\{8 \right\}} | 0.76116 ^{\left\{3 \right\}} | 0.98814 ^{\left\{7 \right\}} | 0.76068 ^{\left\{2 \right\}} | 0.22490 ^{\left\{1 \right\}} | 0.94177 ^{\left\{5 \right\}} | 0.95845 ^{\left\{6 \right\}} | 0.83406 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.56247 ^{\left\{3 \right\}} | 0.64453 ^{\left\{6 \right\}} | 0.57353 ^{\left\{4 \right\}} | 0.64522 ^{\left\{7 \right\}} | 0.46925 ^{\left\{1 \right\}} | 0.76277 ^{\left\{8 \right\}} | 0.55915 ^{\left\{2 \right\}} | 0.63949 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.45485 ^{\left\{8 \right\}} | 0.31115 ^{\left\{2 \right\}} | 0.36895 ^{\left\{6 \right\}} | 0.33000 ^{\left\{3 \right\}} | 0.11306 ^{\left\{1 \right\}} | 0.39112 ^{\left\{7 \right\}} | 0.36093 ^{\left\{5 \right\}} | 0.34405 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.76702 ^{\left\{8 \right\}} | 0.62063 ^{\left\{3 \right\}} | 0.68635 ^{\left\{7 \right\}} | 0.62598 ^{\left\{4 \right\}} | 0.33066 ^{\left\{1 \right\}} | 0.60384 ^{\left\{2 \right\}} | 0.66063 ^{\left\{6 \right\}} | 0.63130 ^{\left\{5 \right\}} | ||
MSEs | \hat{\vartheta} | 1.24539 ^{\left\{7 \right\}} | 0.92842 ^{\left\{2 \right\}} | 1.16588 ^{\left\{6 \right\}} | 0.94580 ^{\left\{3 \right\}} | 0.13919 ^{\left\{1 \right\}} | 1.25646 ^{\left\{8 \right\}} | 1.12647 ^{\left\{5 \right\}} | 1.05555 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.45689 ^{\left\{3 \right\}} | 0.57098 ^{\left\{6 \right\}} | 0.46410 ^{\left\{4 \right\}} | 0.57244 ^{\left\{7 \right\}} | 0.32482 ^{\left\{1 \right\}} | 0.71835 ^{\left\{8 \right\}} | 0.44181 ^{\left\{2 \right\}} | 0.55971 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.28629 ^{\left\{8 \right\}} | 0.17260 ^{\left\{2 \right\}} | 0.20504 ^{\left\{5 \right\}} | 0.19582 ^{\left\{3 \right\}} | 0.02220 ^{\left\{1 \right\}} | 0.25122 ^{\left\{7 \right\}} | 0.20232 ^{\left\{4 \right\}} | 0.20735 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.68706 ^{\left\{8 \right\}} | 0.51170 ^{\left\{3 \right\}} | 0.58072 ^{\left\{7 \right\}} | 0.52071 ^{\left\{4 \right\}} | 0.16747 ^{\left\{1 \right\}} | 0.49400 ^{\left\{2 \right\}} | 0.55280 ^{\left\{6 \right\}} | 0.52733 ^{\left\{5 \right\}} | ||
MREs | \hat{\vartheta} | 0.28718 ^{\left\{8 \right\}} | 0.21747 ^{\left\{3 \right\}} | 0.28233 ^{\left\{7 \right\}} | 0.21734 ^{\left\{2 \right\}} | 0.06426 ^{\left\{1 \right\}} | 0.26908 ^{\left\{5 \right\}} | 0.27384 ^{\left\{6 \right\}} | 0.23830 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.28123 ^{\left\{3 \right\}} | 0.32226 ^{\left\{6 \right\}} | 0.28677 ^{\left\{4 \right\}} | 0.32261 ^{\left\{7 \right\}} | 0.23462 ^{\left\{1 \right\}} | 0.38138 ^{\left\{8 \right\}} | 0.27957 ^{\left\{2 \right\}} | 0.31974 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.30323 ^{\left\{8 \right\}} | 0.20744 ^{\left\{2 \right\}} | 0.24597 ^{\left\{6 \right\}} | 0.22000 ^{\left\{3 \right\}} | 0.07538 ^{\left\{1 \right\}} | 0.26075 ^{\left\{7 \right\}} | 0.24062 ^{\left\{5 \right\}} | 0.22937 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.30681 ^{\left\{8 \right\}} | 0.24825 ^{\left\{3 \right\}} | 0.27454 ^{\left\{7 \right\}} | 0.25039 ^{\left\{4 \right\}} | 0.13226 ^{\left\{1 \right\}} | 0.24153 ^{\left\{2 \right\}} | 0.26425 ^{\left\{6 \right\}} | 0.25252 ^{\left\{5 \right\}} | ||
\sum{Ranks} | {\textbf{80}} ^{\left\{8 \right\}} | {\textbf{41}} ^{\left\{2 \right\}} | {\textbf{70}} ^{\left\{7 \right\}} | {\textbf{49}} ^{\left\{3 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{69}} ^{\left\{6 \right\}} | {\textbf{55}} ^{\left\{4 \right\}} | {\textbf{56}} ^{\left\{5 \right\}} | ||
200 | |BIAS| | \hat{\vartheta} | 0.98460 ^{\left\{6 \right\}} | 0.86500 ^{\left\{3 \right\}} | 1.00674 ^{\left\{7 \right\}} | 0.86298 ^{\left\{2 \right\}} | 0.12154 ^{\left\{1 \right\}} | 1.05269 ^{\left\{8 \right\}} | 0.98185 ^{\left\{5 \right\}} | 0.89235 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.38859 ^{\left\{2 \right\}} | 0.45911 ^{\left\{5 \right\}} | 0.41129 ^{\left\{4 \right\}} | 0.46722 ^{\left\{6 \right\}} | 0.31253 ^{\left\{1 \right\}} | 0.67732 ^{\left\{8 \right\}} | 0.40329 ^{\left\{3 \right\}} | 0.46920 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.39873 ^{\left\{8 \right\}} | 0.31023 ^{\left\{2 \right\}} | 0.35370 ^{\left\{6 \right\}} | 0.32546 ^{\left\{3 \right\}} | 0.06881 ^{\left\{1 \right\}} | 0.37938 ^{\left\{7 \right\}} | 0.34126 ^{\left\{5 \right\}} | 0.32900 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.68985 ^{\left\{8 \right\}} | 0.57483 ^{\left\{3 \right\}} | 0.64129 ^{\left\{7 \right\}} | 0.59868 ^{\left\{5 \right\}} | 0.21029 ^{\left\{1 \right\}} | 0.55195 ^{\left\{2 \right\}} | 0.61763 ^{\left\{6 \right\}} | 0.59808 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 1.11626 ^{\left\{6 \right\}} | 1.01791 ^{\left\{2 \right\}} | 1.13048 ^{\left\{7 \right\}} | 1.02064 ^{\left\{3 \right\}} | 0.05498 ^{\left\{1 \right\}} | 1.30905 ^{\left\{8 \right\}} | 1.09868 ^{\left\{5 \right\}} | 1.05550 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.23053 ^{\left\{2 \right\}} | 0.31234 ^{\left\{5 \right\}} | 0.25573 ^{\left\{4 \right\}} | 0.32276 ^{\left\{6 \right\}} | 0.15678 ^{\left\{1 \right\}} | 0.58268 ^{\left\{8 \right\}} | 0.24649 ^{\left\{3 \right\}} | 0.32421 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.22103 ^{\left\{7 \right\}} | 0.16583 ^{\left\{2 \right\}} | 0.18036 ^{\left\{5 \right\}} | 0.17985 ^{\left\{4 \right\}} | 0.00837 ^{\left\{1 \right\}} | 0.22479 ^{\left\{8 \right\}} | 0.17270 ^{\left\{3 \right\}} | 0.18259 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.58585 ^{\left\{8 \right\}} | 0.45832 ^{\left\{3 \right\}} | 0.51809 ^{\left\{7 \right\}} | 0.48976 ^{\left\{5 \right\}} | 0.07171 ^{\left\{1 \right\}} | 0.44322 ^{\left\{2 \right\}} | 0.49209 ^{\left\{6 \right\}} | 0.48968 ^{\left\{4 \right\}} | ||
MREs | \hat{\vartheta} | 0.28132 ^{\left\{6 \right\}} | 0.24714 ^{\left\{3 \right\}} | 0.28764 ^{\left\{7 \right\}} | 0.24657 ^{\left\{2 \right\}} | 0.03472 ^{\left\{1 \right\}} | 0.30077 ^{\left\{8 \right\}} | 0.28053 ^{\left\{5 \right\}} | 0.25496 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.19429 ^{\left\{2 \right\}} | 0.22956 ^{\left\{5 \right\}} | 0.20564 ^{\left\{4 \right\}} | 0.23361 ^{\left\{6 \right\}} | 0.15627 ^{\left\{1 \right\}} | 0.33866 ^{\left\{8 \right\}} | 0.20165 ^{\left\{3 \right\}} | 0.23460 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.26582 ^{\left\{8 \right\}} | 0.20682 ^{\left\{2 \right\}} | 0.23580 ^{\left\{6 \right\}} | 0.21697 ^{\left\{3 \right\}} | 0.04587 ^{\left\{1 \right\}} | 0.25292 ^{\left\{7 \right\}} | 0.22751 ^{\left\{5 \right\}} | 0.21933 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.27594 ^{\left\{8 \right\}} | 0.22993 ^{\left\{3 \right\}} | 0.25652 ^{\left\{7 \right\}} | 0.23947 ^{\left\{5 \right\}} | 0.08412 ^{\left\{1 \right\}} | 0.22078 ^{\left\{2 \right\}} | 0.24705 ^{\left\{6 \right\}} | 0.23923 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{71}} ^{\left\{6.5 \right\}} | {\textbf{38}} ^{\left\{2 \right\}} | {\textbf{71}} ^{\left\{6.5 \right\}} | {\textbf{50}} ^{\left\{3 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{76}} ^{\left\{8 \right\}} | {\textbf{55}} ^{\left\{4 \right\}} | {\textbf{59}} ^{\left\{5 \right\}} | ||
500 | |BIAS| | \hat{\vartheta} | 0.93304 ^{\left\{5 \right\}} | 0.93263 ^{\left\{4 \right\}} | 0.97539 ^{\left\{7 \right\}} | 0.92961 ^{\left\{3 \right\}} | 0.05348 ^{\left\{1 \right\}} | 1.08240 ^{\left\{8 \right\}} | 0.95522 ^{\left\{6 \right\}} | 0.92527 ^{\left\{2 \right\}} |
\hat{\varphi} | 0.27572 ^{\left\{2 \right\}} | 0.32936 ^{\left\{5 \right\}} | 0.29210 ^{\left\{4 \right\}} | 0.33160 ^{\left\{6 \right\}} | 0.19113 ^{\left\{1 \right\}} | 0.58412 ^{\left\{8 \right\}} | 0.28766 ^{\left\{3 \right\}} | 0.33820 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.34882 ^{\left\{7 \right\}} | 0.31976 ^{\left\{2 \right\}} | 0.33838 ^{\left\{6 \right\}} | 0.33117 ^{\left\{5 \right\}} | 0.03908 ^{\left\{1 \right\}} | 0.35124 ^{\left\{8 \right\}} | 0.32736 ^{\left\{3 \right\}} | 0.32969 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.61892 ^{\left\{8 \right\}} | 0.57580 ^{\left\{3 \right\}} | 0.60923 ^{\left\{7 \right\}} | 0.59341 ^{\left\{6 \right\}} | 0.12272 ^{\left\{1 \right\}} | 0.51040 ^{\left\{2 \right\}} | 0.59246 ^{\left\{5 \right\}} | 0.58416 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 0.99386 ^{\left\{2 \right\}} | 1.04383 ^{\left\{6 \right\}} | 1.04849 ^{\left\{7 \right\}} | 1.04352 ^{\left\{5 \right\}} | 0.00732 ^{\left\{1 \right\}} | 1.28318 ^{\left\{8 \right\}} | 1.01861 ^{\left\{3 \right\}} | 1.03056 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.11591 ^{\left\{2 \right\}} | 0.16651 ^{\left\{5 \right\}} | 0.13079 ^{\left\{4 \right\}} | 0.16807 ^{\left\{6 \right\}} | 0.06394 ^{\left\{1 \right\}} | 0.45248 ^{\left\{8 \right\}} | 0.12739 ^{\left\{3 \right\}} | 0.17250 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.17000 ^{\left\{7 \right\}} | 0.15789 ^{\left\{3 \right\}} | 0.15993 ^{\left\{4 \right\}} | 0.16663 ^{\left\{5 \right\}} | 0.00250 ^{\left\{1 \right\}} | 0.18698 ^{\left\{8 \right\}} | 0.15186 ^{\left\{2 \right\}} | 0.16915 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.48714 ^{\left\{8 \right\}} | 0.45146 ^{\left\{4 \right\}} | 0.47250 ^{\left\{6 \right\}} | 0.47497 ^{\left\{7 \right\}} | 0.02504 ^{\left\{1 \right\}} | 0.39915 ^{\left\{2 \right\}} | 0.45105 ^{\left\{3 \right\}} | 0.47078 ^{\left\{5 \right\}} | ||
MREs | \hat{\vartheta} | 0.26658 ^{\left\{5 \right\}} | 0.26647 ^{\left\{4 \right\}} | 0.27868 ^{\left\{7 \right\}} | 0.26560 ^{\left\{3 \right\}} | 0.01528 ^{\left\{1 \right\}} | 0.30926 ^{\left\{8 \right\}} | 0.27292 ^{\left\{6 \right\}} | 0.26436 ^{\left\{2 \right\}} | |
\hat{\varphi} | 0.13786 ^{\left\{2 \right\}} | 0.16468 ^{\left\{5 \right\}} | 0.14605 ^{\left\{4 \right\}} | 0.16580 ^{\left\{6 \right\}} | 0.09557 ^{\left\{1 \right\}} | 0.29206 ^{\left\{8 \right\}} | 0.14383 ^{\left\{3 \right\}} | 0.16910 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.23255 ^{\left\{7 \right\}} | 0.21318 ^{\left\{2 \right\}} | 0.22559 ^{\left\{6 \right\}} | 0.22078 ^{\left\{5 \right\}} | 0.02606 ^{\left\{1 \right\}} | 0.23416 ^{\left\{8 \right\}} | 0.21824 ^{\left\{3 \right\}} | 0.21980 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.24757 ^{\left\{8 \right\}} | 0.23032 ^{\left\{3 \right\}} | 0.24369 ^{\left\{7 \right\}} | 0.23736 ^{\left\{6 \right\}} | 0.04909 ^{\left\{1 \right\}} | 0.20416 ^{\left\{2 \right\}} | 0.23698 ^{\left\{5 \right\}} | 0.23367 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{63}} ^{\left\{5.5 \right\}} | {\textbf{46}} ^{\left\{3 \right\}} | {\textbf{69}} ^{\left\{7 \right\}} | {\textbf{63}} ^{\left\{5.5 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{78}} ^{\left\{8 \right\}} | {\textbf{45}} ^{\left\{2 \right\}} | {\textbf{56}} ^{\left\{4 \right\}} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
20 | |BIAS| | \hat{\vartheta} | 1.25197 ^{\left\{8 \right\}} | 0.45438 ^{\left\{3 \right\}} | 1.06521 ^{\left\{7 \right\}} | 0.44888 ^{\left\{2 \right\}} | 0.20680 ^{\left\{1 \right\}} | 0.83805 ^{\left\{5 \right\}} | 1.02528 ^{\left\{6 \right\}} | 0.62513 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.58123 ^{\left\{5 \right\}} | 0.60203 ^{\left\{7 \right\}} | 0.57995 ^{\left\{4 \right\}} | 0.61278 ^{\left\{8 \right\}} | 0.16575 ^{\left\{1 \right\}} | 0.57749 ^{\left\{3 \right\}} | 0.53508 ^{\left\{2 \right\}} | 0.58165 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.08854 ^{\left\{8 \right\}} | 0.07652 ^{\left\{2 \right\}} | 0.08227 ^{\left\{7 \right\}} | 0.07831 ^{\left\{3 \right\}} | 0.06474 ^{\left\{1 \right\}} | 0.08065 ^{\left\{6 \right\}} | 0.07939 ^{\left\{4 \right\}} | 0.07980 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.66759 ^{\left\{8 \right\}} | 0.42262 ^{\left\{2 \right\}} | 0.53041 ^{\left\{7 \right\}} | 0.44839 ^{\left\{3 \right\}} | 0.32466 ^{\left\{1 \right\}} | 0.51024 ^{\left\{5 \right\}} | 0.52797 ^{\left\{6 \right\}} | 0.48959 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 2.41625 ^{\left\{8 \right\}} | 0.60512 ^{\left\{2 \right\}} | 1.67131 ^{\left\{6 \right\}} | 0.67908 ^{\left\{3 \right\}} | 0.18285 ^{\left\{1 \right\}} | 1.58289 ^{\left\{5 \right\}} | 1.74298 ^{\left\{7 \right\}} | 1.01407 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.42148 ^{\left\{3 \right\}} | 0.46192 ^{\left\{7 \right\}} | 0.43565 ^{\left\{5 \right\}} | 0.46874 ^{\left\{8 \right\}} | 0.38218 ^{\left\{1 \right\}} | 0.43432 ^{\left\{4 \right\}} | 0.38271 ^{\left\{2 \right\}} | 0.43679 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.01072 ^{\left\{8 \right\}} | 0.00870 ^{\left\{2 \right\}} | 0.00963 ^{\left\{7 \right\}} | 0.00906 ^{\left\{3 \right\}} | 0.00620 ^{\left\{1 \right\}} | 0.00950 ^{\left\{6 \right\}} | 0.00923 ^{\left\{5 \right\}} | 0.00919 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.58894 ^{\left\{8 \right\}} | 0.28693 ^{\left\{2 \right\}} | 0.40885 ^{\left\{6 \right\}} | 0.32249 ^{\left\{3 \right\}} | 0.16767 ^{\left\{1 \right\}} | 0.38646 ^{\left\{5 \right\}} | 0.41599 ^{\left\{7 \right\}} | 0.36863 ^{\left\{4 \right\}} | ||
MREs | \hat{\vartheta} | 0.27821 ^{\left\{8 \right\}} | 0.10097 ^{\left\{3 \right\}} | 0.23671 ^{\left\{7 \right\}} | 0.09975 ^{\left\{2 \right\}} | 0.04596 ^{\left\{1 \right\}} | 0.18623 ^{\left\{5 \right\}} | 0.22784 ^{\left\{6 \right\}} | 0.13892 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.77497 ^{\left\{5 \right\}} | 0.80271 ^{\left\{7 \right\}} | 0.77327 ^{\left\{4 \right\}} | 0.81704 ^{\left\{8 \right\}} | 0.70903 ^{\left\{1 \right\}} | 0.76998 ^{\left\{3 \right\}} | 0.71344 ^{\left\{2 \right\}} | 0.77554 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.17707 ^{\left\{8 \right\}} | 0.15303 ^{\left\{2 \right\}} | 0.16453 ^{\left\{7 \right\}} | 0.15662 ^{\left\{3 \right\}} | 0.12948 ^{\left\{1 \right\}} | 0.16130 ^{\left\{6 \right\}} | 0.15879 ^{\left\{4 \right\}} | 0.15960 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.53407 ^{\left\{8 \right\}} | 0.33809 ^{\left\{2 \right\}} | 0.42432 ^{\left\{7 \right\}} | 0.35871 ^{\left\{3 \right\}} | 0.25973 ^{\left\{1 \right\}} | 0.40819 ^{\left\{5 \right\}} | 0.42237 ^{\left\{6 \right\}} | 0.39167 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{85}} ^{\left\{8 \right\}} | {\textbf{41}} ^{\left\{2 \right\}} | {\textbf{74}} ^{\left\{7 \right\}} | {\textbf{49}} ^{\left\{3 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{58}} ^{\left\{6 \right\}} | {\textbf{57}} ^{\left\{5 \right\}} | {\textbf{56}} ^{\left\{4 \right\}} | ||
80 | |BIAS| | \hat{\vartheta} | 1.62748 ^{\left\{8 \right\}} | 0.91367 ^{\left\{2 \right\}} | 1.37823 ^{\left\{7 \right\}} | 0.98139 ^{\left\{3 \right\}} | 0.11224 ^{\left\{1 \right\}} | 1.13720 ^{\left\{5 \right\}} | 1.31803 ^{\left\{6 \right\}} | 1.11805 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.31837 ^{\left\{3 \right\}} | 0.39968 ^{\left\{7 \right\}} | 0.34474 ^{\left\{4 \right\}} | 0.40380 ^{\left\{8 \right\}} | 0.27352 ^{\left\{1 \right\}} | 0.37466 ^{\left\{6 \right\}} | 0.31821 ^{\left\{2 \right\}} | 0.35079 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.07169 ^{\left\{8 \right\}} | 0.05804 ^{\left\{3 \right\}} | 0.06253 ^{\left\{7 \right\}} | 0.06113 ^{\left\{6 \right\}} | 0.03286 ^{\left\{1 \right\}} | 0.05699 ^{\left\{2 \right\}} | 0.05980 ^{\left\{5 \right\}} | 0.05870 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.64853 ^{\left\{8 \right\}} | 0.39956 ^{\left\{2 \right\}} | 0.49396 ^{\left\{7 \right\}} | 0.44278 ^{\left\{4 \right\}} | 0.16292 ^{\left\{1 \right\}} | 0.43570 ^{\left\{3 \right\}} | 0.47512 ^{\left\{6 \right\}} | 0.45276 ^{\left\{5 \right\}} | ||
MSEs | \hat{\vartheta} | 3.14585 ^{\left\{8 \right\}} | 1.58782 ^{\left\{2 \right\}} | 2.33956 ^{\left\{7 \right\}} | 1.79431 ^{\left\{3 \right\}} | 0.08679 ^{\left\{1 \right\}} | 1.96177 ^{\left\{4 \right\}} | 2.22845 ^{\left\{6 \right\}} | 2.05141 ^{\left\{5 \right\}} | |
\hat{\varphi} | 0.15254 ^{\left\{2 \right\}} | 0.23761 ^{\left\{7 \right\}} | 0.18156 ^{\left\{4 \right\}} | 0.24031 ^{\left\{8 \right\}} | 0.12335 ^{\left\{1 \right\}} | 0.22013 ^{\left\{6 \right\}} | 0.15798 ^{\left\{3 \right\}} | 0.19064 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00707 ^{\left\{8 \right\}} | 0.00520 ^{\left\{4 \right\}} | 0.00579 ^{\left\{7 \right\}} | 0.00566 ^{\left\{6 \right\}} | 0.00171 ^{\left\{1 \right\}} | 0.00514 ^{\left\{2 \right\}} | 0.00541 ^{\left\{5 \right\}} | 0.00519 ^{\left\{3 \right\}} | ||
\hat{\theta} | 0.56658 ^{\left\{8 \right\}} | 0.28713 ^{\left\{2 \right\}} | 0.38674 ^{\left\{7 \right\}} | 0.34041 ^{\left\{4 \right\}} | 0.04197 ^{\left\{1 \right\}} | 0.32550 ^{\left\{3 \right\}} | 0.36722 ^{\left\{6 \right\}} | 0.35156 ^{\left\{5 \right\}} | ||
MREs | \hat{\vartheta} | 0.36166 ^{\left\{8 \right\}} | 0.20304 ^{\left\{2 \right\}} | 0.30627 ^{\left\{7 \right\}} | 0.21809 ^{\left\{3 \right\}} | 0.02494 ^{\left\{1 \right\}} | 0.25271 ^{\left\{5 \right\}} | 0.29289 ^{\left\{6 \right\}} | 0.24846 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.42449 ^{\left\{3 \right\}} | 0.53291 ^{\left\{7 \right\}} | 0.45966 ^{\left\{4 \right\}} | 0.53840 ^{\left\{8 \right\}} | 0.36469 ^{\left\{1 \right\}} | 0.49955 ^{\left\{6 \right\}} | 0.42429 ^{\left\{2 \right\}} | 0.46771 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.14337 ^{\left\{8 \right\}} | 0.11609 ^{\left\{3 \right\}} | 0.12506 ^{\left\{7 \right\}} | 0.12226 ^{\left\{6 \right\}} | 0.06572 ^{\left\{1 \right\}} | 0.11399 ^{\left\{2 \right\}} | 0.11961 ^{\left\{5 \right\}} | 0.11740 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.51882 ^{\left\{8 \right\}} | 0.31965 ^{\left\{2 \right\}} | 0.39517 ^{\left\{7 \right\}} | 0.35422 ^{\left\{4 \right\}} | 0.13034 ^{\left\{1 \right\}} | 0.34856 ^{\left\{3 \right\}} | 0.38010 ^{\left\{6 \right\}} | 0.36221 ^{\left\{5 \right\}} | ||
\sum{Ranks} | {\textbf{80}} ^{\left\{8 \right\}} | {\textbf{43}} ^{\left\{2 \right\}} | {\textbf{75}} ^{\left\{7 \right\}} | {\textbf{63}} ^{\left\{6 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{47}} ^{\left\{3 \right\}} | {\textbf{58}} ^{\left\{5 \right\}} | {\textbf{54}} ^{\left\{4 \right\}} | ||
200 | |BIAS| | \hat{\vartheta} | 1.48139 ^{\left\{8 \right\}} | 1.17284 ^{\left\{2 \right\}} | 1.40391 ^{\left\{7 \right\}} | 1.21294 ^{\left\{4 \right\}} | 0.04307 ^{\left\{1 \right\}} | 1.17950 ^{\left\{3 \right\}} | 1.33404 ^{\left\{6 \right\}} | 1.29174 ^{\left\{5 \right\}} |
\hat{\varphi} | 0.20186 ^{\left\{2 \right\}} | 0.26830 ^{\left\{7 \right\}} | 0.21385 ^{\left\{4 \right\}} | 0.26575 ^{\left\{6 \right\}} | 0.16575 ^{\left\{1 \right\}} | 0.27408 ^{\left\{8 \right\}} | 0.20558 ^{\left\{3 \right\}} | 0.23166 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.06056 ^{\left\{8 \right\}} | 0.05260 ^{\left\{3 \right\}} | 0.05573 ^{\left\{7 \right\}} | 0.05571 ^{\left\{6 \right\}} | 0.02038 ^{\left\{1 \right\}} | 0.04542 ^{\left\{2 \right\}} | 0.05309 ^{\left\{4 \right\}} | 0.05470 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.54563 ^{\left\{8 \right\}} | 0.42847 ^{\left\{3 \right\}} | 0.47838 ^{\left\{7 \right\}} | 0.45810 ^{\left\{5 \right\}} | 0.09746 ^{\left\{1 \right\}} | 0.36816 ^{\left\{2 \right\}} | 0.44966 ^{\left\{4 \right\}} | 0.46232 ^{\left\{6 \right\}} | ||
MSEs | \hat{\vartheta} | 2.63270 ^{\left\{8 \right\}} | 2.08923 ^{\left\{3 \right\}} | 2.37558 ^{\left\{7 \right\}} | 2.20468 ^{\left\{5 \right\}} | 0.02535 ^{\left\{1 \right\}} | 1.86391 ^{\left\{2 \right\}} | 2.18628 ^{\left\{4 \right\}} | 2.32684 ^{\left\{6 \right\}} | |
\hat{\varphi} | 0.06343 ^{\left\{2 \right\}} | 0.11259 ^{\left\{7 \right\}} | 0.07126 ^{\left\{4 \right\}} | 0.11064 ^{\left\{6 \right\}} | 0.04499 ^{\left\{1 \right\}} | 0.12626 ^{\left\{8 \right\}} | 0.06649 ^{\left\{3 \right\}} | 0.08397 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00531 ^{\left\{8 \right\}} | 0.00437 ^{\left\{3 \right\}} | 0.00472 ^{\left\{6 \right\}} | 0.00486 ^{\left\{7 \right\}} | 0.00066 ^{\left\{1 \right\}} | 0.00347 ^{\left\{2 \right\}} | 0.00441 ^{\left\{4 \right\}} | 0.00470 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.44122 ^{\left\{8 \right\}} | 0.33416 ^{\left\{3 \right\}} | 0.37078 ^{\left\{5 \right\}} | 0.37139 ^{\left\{6 \right\}} | 0.01519 ^{\left\{1 \right\}} | 0.25838 ^{\left\{2 \right\}} | 0.33754 ^{\left\{4 \right\}} | 0.37704 ^{\left\{7 \right\}} | ||
MREs | \hat{\vartheta} | 0.32920 ^{\left\{8 \right\}} | 0.26063 ^{\left\{2 \right\}} | 0.31198 ^{\left\{7 \right\}} | 0.26954 ^{\left\{4 \right\}} | 0.00957 ^{\left\{1 \right\}} | 0.26211 ^{\left\{3 \right\}} | 0.29645 ^{\left\{6 \right\}} | 0.28705 ^{\left\{5 \right\}} | |
\hat{\varphi} | 0.26915 ^{\left\{2 \right\}} | 0.35774 ^{\left\{7 \right\}} | 0.28513 ^{\left\{4 \right\}} | 0.35434 ^{\left\{6 \right\}} | 0.22100 ^{\left\{1 \right\}} | 0.36544 ^{\left\{8 \right\}} | 0.27411 ^{\left\{3 \right\}} | 0.30888 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.12113 ^{\left\{8 \right\}} | 0.10520 ^{\left\{3 \right\}} | 0.11146 ^{\left\{7 \right\}} | 0.11142 ^{\left\{6 \right\}} | 0.04075 ^{\left\{1 \right\}} | 0.09084 ^{\left\{2 \right\}} | 0.10618 ^{\left\{4 \right\}} | 0.10941 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.43650 ^{\left\{8 \right\}} | 0.34278 ^{\left\{3 \right\}} | 0.38270 ^{\left\{7 \right\}} | 0.36648 ^{\left\{5 \right\}} | 0.07797 ^{\left\{1 \right\}} | 0.29453 ^{\left\{2 \right\}} | 0.35973 ^{\left\{4 \right\}} | 0.36986 ^{\left\{6 \right\}} | ||
\sum{Ranks} | {\textbf{78}} ^{\left\{8 \right\}} | {\textbf{46}} ^{\left\{3 \right\}} | {\textbf{72}} ^{\left\{7 \right\}} | {\textbf{66}} ^{\left\{6 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{44}} ^{\left\{2 \right\}} | {\textbf{49}} ^{\left\{4 \right\}} | {\textbf{65}} ^{\left\{5 \right\}} | ||
500 | |BIAS| | \hat{\vartheta} | 1.29672 ^{\left\{5 \right\}} | 1.27235 ^{\left\{3 \right\}} | 1.31237 ^{\left\{6 \right\}} | 1.32513 ^{\left\{7 \right\}} | 0.01519 ^{\left\{1 \right\}} | 1.15120 ^{\left\{2 \right\}} | 1.28994 ^{\left\{4 \right\}} | 1.34189 ^{\left\{8 \right\}} |
\hat{\varphi} | 0.13744 ^{\left\{2 \right\}} | 0.17802 ^{\left\{6 \right\}} | 0.14815 ^{\left\{4 \right\}} | 0.18664 ^{\left\{7 \right\}} | 0.10227 ^{\left\{1 \right\}} | 0.19392 ^{\left\{8 \right\}} | 0.14640 ^{\left\{3 \right\}} | 0.15865 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.04970 ^{\left\{5 \right\}} | 0.05107 ^{\left\{6 \right\}} | 0.04913 ^{\left\{4 \right\}} | 0.05400 ^{\left\{8 \right\}} | 0.01264 ^{\left\{1 \right\}} | 0.03665 ^{\left\{2 \right\}} | 0.04825 ^{\left\{3 \right\}} | 0.05335 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.44102 ^{\left\{5 \right\}} | 0.44509 ^{\left\{6 \right\}} | 0.43050 ^{\left\{4 \right\}} | 0.47518 ^{\left\{8 \right\}} | 0.05962 ^{\left\{1 \right\}} | 0.31796 ^{\left\{2 \right\}} | 0.42160 ^{\left\{3 \right\}} | 0.46945 ^{\left\{7 \right\}} | ||
MSEs | \hat{\vartheta} | 2.07266 ^{\left\{4 \right\}} | 2.19148 ^{\left\{6 \right\}} | 2.07839 ^{\left\{5 \right\}} | 2.34226 ^{\left\{8 \right\}} | 0.00344 ^{\left\{1 \right\}} | 1.67247 ^{\left\{2 \right\}} | 2.02330 ^{\left\{3 \right\}} | 2.31957 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.02955 ^{\left\{2 \right\}} | 0.05030 ^{\left\{6 \right\}} | 0.03417 ^{\left\{4 \right\}} | 0.05288 ^{\left\{7 \right\}} | 0.01679 ^{\left\{1 \right\}} | 0.06276 ^{\left\{8 \right\}} | 0.03295 ^{\left\{3 \right\}} | 0.03874 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00377 ^{\left\{4 \right\}} | 0.00418 ^{\left\{6 \right\}} | 0.00378 ^{\left\{5 \right\}} | 0.00452 ^{\left\{7 \right\}} | 0.00025 ^{\left\{1 \right\}} | 0.00242 ^{\left\{2 \right\}} | 0.00363 ^{\left\{3 \right\}} | 0.00454 ^{\left\{8 \right\}} | ||
\hat{\theta} | 0.30987 ^{\left\{5 \right\}} | 0.34423 ^{\left\{6 \right\}} | 0.30505 ^{\left\{4 \right\}} | 0.37795 ^{\left\{8 \right\}} | 0.00564 ^{\left\{1 \right\}} | 0.19875 ^{\left\{2 \right\}} | 0.29242 ^{\left\{3 \right\}} | 0.37470 ^{\left\{7 \right\}} | ||
MREs | \hat{\vartheta} | 0.28816 ^{\left\{5 \right\}} | 0.28275 ^{\left\{3 \right\}} | 0.29164 ^{\left\{6 \right\}} | 0.29447 ^{\left\{7 \right\}} | 0.00337 ^{\left\{1 \right\}} | 0.25582 ^{\left\{2 \right\}} | 0.28665 ^{\left\{4 \right\}} | 0.29820 ^{\left\{8 \right\}} | |
\hat{\varphi} | 0.18326 ^{\left\{2 \right\}} | 0.23736 ^{\left\{6 \right\}} | 0.19754 ^{\left\{4 \right\}} | 0.24885 ^{\left\{7 \right\}} | 0.13636 ^{\left\{1 \right\}} | 0.25856 ^{\left\{8 \right\}} | 0.19520 ^{\left\{3 \right\}} | 0.21153 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.09940 ^{\left\{5 \right\}} | 0.10214 ^{\left\{6 \right\}} | 0.09825 ^{\left\{4 \right\}} | 0.10801 ^{\left\{8 \right\}} | 0.02528 ^{\left\{1 \right\}} | 0.07330 ^{\left\{2 \right\}} | 0.09651 ^{\left\{3 \right\}} | 0.10671 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.35281 ^{\left\{5 \right\}} | 0.35607 ^{\left\{6 \right\}} | 0.34440 ^{\left\{4 \right\}} | 0.38014 ^{\left\{8 \right\}} | 0.04770 ^{\left\{1 \right\}} | 0.25437 ^{\left\{2 \right\}} | 0.33728 ^{\left\{3 \right\}} | 0.37556 ^{\left\{7 \right\}} | ||
\sum{Ranks} | {\textbf{49}} ^{\left\{4 \right\}} | {\textbf{66}} ^{\left\{6 \right\}} | {\textbf{54}} ^{\left\{5 \right\}} | {\textbf{90}} ^{\left\{8 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{42}} ^{\left\{3 \right\}} | {\textbf{38}} ^{\left\{2 \right\}} | {\textbf{81}} ^{\left\{7 \right\}} |
All computations are obtained using R software (version 4.0.2) [22].
For each sample and each parametric combination, the EWFr parameters \vartheta , \varphi , \lambda and \theta are estimated using the eight estimators called MLEs, LSEs, WLSEs, MPSEs, CRVMEs, ADEs, PCEs, and RADEs. Simulated results are listed in Tables 2–6 which also indicate the ranks of each of the proposed estimators in each row, where the superscripts show the indicators, and the \sum Ranks illustrates the partial sum of ranks in each column for a particular sample size.
Table 7 lists the partial and overall ranks for all parametric combinations. From Tables 2–6, one can conclude that all methods of estimation illustrate the consistency property, that is, the MREs and MSEs decrease as the sample size increases, for all parametric combinations. Table 7 shows that the MPS approach has an overall score of 54, hence it outperforms other estimation methods. Therefore, we conclude and confirm the superiority of MPSEs for estimating the EWFr parameters. However, the ADEs and MLEs are approximately have a similar performance, where their overall scores are, respectively, 130.5 and 133.5.
\mathit{\boldsymbol{\eta}}^{\intercal} | n | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
(\hat{\vartheta}=1.75, \hat{\varphi}=0.5, \hat{\lambda}=0.25, \hat{\theta}=1.25) | 20 | 2 | 7 | 1 | 5 | 4 | 8 | 3 | 6 |
80 | 3 | 7 | 2 | 6 | 1 | 5 | 4 | 8 | |
200 | 1.5 | 7 | 4 | 5 | 1.5 | 6 | 3 | 8 | |
500 | 2 | 5.5 | 4 | 5.5 | 1 | 7 | 3 | 8 | |
(\hat{\vartheta}=1.75, \hat{\varphi}=2, \hat{\lambda}=1.5, \hat{\theta}=2.5) | 20 | 1 | 3 | 2 | 7 | 4 | 8 | 5.5 | 5.5 |
80 | 1 | 3 | 4 | 6 | 2 | 8 | 5 | 7 | |
200 | 2 | 3 | 4.5 | 6.5 | 1 | 8 | 4.5 | 6.5 | |
500 | 3 | 4 | 5 | 6 | 1 | 8 | 2 | 7 | |
(\hat{\vartheta}=3.5, \hat{\varphi}=0.75, \hat{\lambda}=0.5, \hat{\theta}=1.25) | 20 | 7 | 4 | 3 | 6 | 1 | 8 | 2 | 5 |
80 | 8 | 3 | 4 | 7 | 1 | 5 | 2 | 6 | |
200 | 6 | 5 | 4 | 8 | 1 | 3 | 2 | 7 | |
500 | 2 | 6 | 5 | 7 | 1 | 4 | 3 | 8 | |
(\hat{\vartheta}=3.5, \hat{\varphi}=2, \hat{\lambda}=1.5, \hat{\theta}=2.5) | 20 | 8 | 2 | 6 | 3 | 1 | 7 | 5 | 4 |
80 | 8 | 2 | 7 | 3 | 1 | 6 | 4 | 5 | |
200 | 6.5 | 2 | 6.5 | 3 | 1 | 8 | 4 | 5 | |
500 | 5.5 | 3 | 7 | 5.5 | 1 | 8 | 2 | 4 | |
(\hat{\vartheta}=4.5, \hat{\varphi}=0.75, \hat{\lambda}=0.5, \hat{\theta}=1.25) | 20 | 8 | 2 | 7 | 3 | 1 | 6 | 5 | 4 |
80 | 8 | 2 | 7 | 6 | 1 | 3 | 5 | 4 | |
200 | 8 | 3 | 7 | 6 | 1 | 2 | 4 | 5 | |
500 | 4 | 6 | 5 | 8 | 1 | 3 | 2 | 7 | |
(\hat{\vartheta}=4.5, \hat{\varphi}=0.75, \hat{\lambda}=0.5, \hat{\theta}=1.25) | 20 | 8 | 2 | 5 | 3 | 1 | 7 | 6 | 4 |
80 | 6 | 2 | 4 | 3 | 1 | 8 | 7 | 5 | |
200 | 6 | 2 | 4 | 3 | 1 | 7 | 8 | 5 | |
500 | 6 | 2 | 5 | 3 | 1 | 8 | 7 | 4 | |
(\hat{\vartheta}=0.25, \hat{\varphi}=3.5, \hat{\lambda}=3, \hat{\theta}=0.25) | 20 | 1 | 6 | 8 | 2 | 7 | 5 | 4 | 3 |
80 | 1.5 | 5 | 8 | 1.5 | 6 | 4 | 3 | 7 | |
200 | 1 | 7 | 4 | 6 | 2 | 3 | 5 | 8 | |
500 | 2 | 8 | 6 | 7 | 1 | 3 | 4.5 | 4.5 | |
(\hat{\vartheta}=0.75, \hat{\varphi}=2.5, \hat{\lambda}=4.25, \hat{\theta}=0.25) | 20 | 2 | 8 | 6 | 5 | 3 | 1 | 4 | 7 |
80 | 1.5 | 7 | 5 | 6 | 1.5 | 3 | 4 | 8 | |
200 | 2 | 7 | 5 | 6 | 1 | 3 | 4 | 8 | |
500 | 2 | 8 | 5 | 6 | 1 | 3 | 4 | 7 | |
\sum Ranks | \textbf{133.5} | \textbf{143.5} | \textbf{160} | \textbf{164} | \textbf{54} | \textbf{176} | \textbf{130.5} | \textbf{190.5} | |
{\textbf{Overall Rank}} | \textbf{3} | \textbf{4} | \textbf{5} | \textbf{6} | \textbf{1} | \textbf{7} | \textbf{2} | \textbf{8} |
In this section, the flexibility and importance of the EWFr distribution in modeling real-life data are illustrated using two datasets from the medicine and engineering fields. The first dataset contains 128 observations and it refers to remission times (in months) for bladder cancer patients [23]. The second dataset contains 63 observations and it represents strengths for single carbon fibers of 10 mm of gauge lengths [24]. The fits of the EWFr distribution is checked and compared with some important extensions of the Fr distribution called the exponentiated-Fr (EFr) [6], beta-Fr (BFr) [7], odd Lomax-Fr (OLxFr) [25], Kumaraswamy Marshall–Olkin Fr (KMOFr) [26], gamma extended-Fr (GExFr) [27] and transmuted exponentiated-Fr (TEFr) [28] and Fr distributions.
We checked the competing distributions using some goodness-of-fit analytical measures such as AIC (Akaike information criterion), CAIC (consistent Akaike information criterion), HQIC (Hannan–Quinn information criterion), BIC (Bayesian information criterion), W^{\ast} (Cramér–Von Mises), A^{\ast} (Anderson–Darling), and KS (Kolmogorov–Smirnov) statistics with its PV (p-value).
The maximum likelihood (ML) estimates of the parameters of the fitted distributions, their standard errors (SEs), and the analytical measures are reported in Tables 8 and 9 for the cancer and gauge lengths data, respectively. The numbers in Tables 8 and 9 indicate that the EWFr distribution gives a superior fit over other competing models, since it has the lowest values for all measures and the largest PV.
Model | Par.. | Estimates | (SEs) | AIC | CAIC | BIC | HQIC | W^{*} | A^{*} | KS | (PV) |
EWFr | \hat{\vartheta} | 56.93662 | (38.42845) | 827.52150 | 827.84670 | 838.92960 | 832.15660 | 0.01991 | 0.13402 | 0.03757 | 0.99713 |
\hat{\varphi} | 0.46697 | (0.22382) | |||||||||
\hat{\lambda} | 0.71825 | (0.01713) | |||||||||
\hat{\theta} | 0.01794 | (0.01207) | |||||||||
OLxFr | \hat{\vartheta} | 2.18260 | (1.04763) | 827.70270 | 828.02790 | 839.11080 | 832.33780 | 0.02380 | 0.16520 | 0.04060 | 0.98433 |
\hat{\varphi} | 625.38000 | (622.71234) | |||||||||
\hat{a} | 0.12210 | (0.08023) | |||||||||
\hat{b} | 1.38560 | (0.17273) | |||||||||
KMOFr | \hat{\vartheta} | 43.87750 | (128.52731) | 831.05330 | 831.54510 | 845.31340 | 836.84730 | 0.26278 | 0.34950 | 0.04457 | 0.96120 |
\hat{\varphi} | 0.52028 | (0.41388) | |||||||||
\hat{\delta} | 0.01314 | (0.00808) | |||||||||
\hat{a} | 3.27359 | (2.90929) | |||||||||
\hat{b} | 19.93782 | (47.58906) | |||||||||
EFr | \hat{a} | 1426.40000 | (1440.19245) | 830.85880 | 831.05240 | 839.41490 | 834.33520 | 0.06720 | 0.46640 | 0.04910 | 0.91754 |
\hat{b} | 0.26240 | (0.02850) | |||||||||
\hat{\theta} | 46.24800 | (22.87321) | |||||||||
BFr | \hat{\vartheta} | 0.60970 | (0.32261) | 833.09830 | 833.42350 | 844.50640 | 837.73350 | 0.06900 | 0.47650 | 0.05540 | 0.82683 |
\hat{\varphi} | 36.60200 | (19.48341) | |||||||||
\hat{a} | 739.38700 | (629.24021) | |||||||||
\hat{b} | 0.32240 | (0.06044) | |||||||||
GExFr | \hat{\vartheta} | 226.67000 | (267.96324) | 840.21630 | 840.54150 | 851.62450 | 844.85150 | 0.14320 | 0.95970 | 0.06640 | 0.62593 |
\hat{\varphi} | 91.93900 | (133.94324) | |||||||||
\hat{a} | 22.27100 | (119.19139) | |||||||||
\hat{b} | 0.07090 | (0.04132) | |||||||||
TEFr | \hat{\vartheta} | 3.25820 | (0.40714) | 892.00150 | 892.09750 | 897.70560 | 894.31910 | 0.74430 | 4.54640 | 0.14080 | 0.01254 |
\hat{\varphi} | 0.75210 | (0.04224) | |||||||||
\hat{a} | 39.38721 | (40.24321) | |||||||||
\hat{b} | 0.25243 | (0.76041) | |||||||||
Fr | \hat{\theta} | 0.75208 | (0.04242) | 892.00150 | 892.09750 | 897.70560 | 894.31910 | 0.74432 | 4.54642 | 0.14079 | 0.01250 |
\hat{\lambda} | 2.43109 | (0.21928) |
Model | Par.. | Estimates | (SEs) | AIC | CAIC | BIC | HQIC | W^{*} | A^{*} | KS | (PV) |
EWFr | \hat{\vartheta} | 0.76563 | (0.3765631) | 119.68850 | 120.37820 | 128.26110 | 123.06020 | 0.04181 | 0.23988 | 0.06847 | 0.92920 |
\hat{\varphi} | 0.04349 | (0.3074545) | |||||||||
\hat{\lambda} | 145.67068 | (208.851634) | |||||||||
\hat{\theta} | 4.60846 | (1.2033681) | |||||||||
OLxFr | \hat{\vartheta} | 5.14301 | (9.9790719) | 119.94170 | 120.63140 | 128.51430 | 123.31340 | 0.04741 | 0.26530 | 0.07631 | 0.85664 |
\hat{\varphi} | 5.82568 | (7.6204045) | |||||||||
\hat{a} | 4.17374 | (2.671917) | |||||||||
\hat{b} | 2.82338 | (0.9308868) | |||||||||
KMOFr | \hat{\vartheta} | 31946.70000 | (837.7074) | 121.90480 | 122.95750 | 132.62050 | 126.11940 | 0.04616 | 0.26108 | 0.07450 | 0.87551 |
\hat{\varphi} | 3.40405 | (1.493079) | |||||||||
\hat{\delta} | 3.35291 | (0.9682264) | |||||||||
\hat{a} | 0.85381 | (0.1934628) | |||||||||
\hat{b} | 13724.50000 | (32837.29) | |||||||||
EFr | \hat{a} | 2.58672 | (2.2847576) | 122.19730 | 122.88700 | 130.76990 | 125.56900 | 0.07082 | 0.40707 | 0.08894 | 0.70136 |
\hat{b} | 0.50304 | (0.4780356) | |||||||||
\hat{\theta} | 6.25000 | (10.0300775) | |||||||||
BFr | \hat{\vartheta} | 2.38748 | (5.65075) | 120.58420 | 121.27380 | 129.15670 | 123.95580 | 0.06008 | 0.32203 | 0.07953 | 0.82045 |
\hat{\varphi} | 1.00168 | (5.322252) | |||||||||
\hat{a} | 22.38231 | (162.860747) | |||||||||
\hat{b} | 27.37096 | (295.790324) | |||||||||
GExFr | \hat{\vartheta} | 2.41716 | (8.509608) | 120.57980 | 121.26950 | 129.15240 | 123.95150 | 0.06064 | 0.32329 | 0.07962 | 0.81934 |
\hat{\varphi} | 1.20859 | (2.106142) | |||||||||
\hat{a} | 24.77784 | (82.649275) | |||||||||
\hat{b} | 15.60163 | (85.339807) | |||||||||
TEFr | \hat{\vartheta} | 4.04638 | (1.0119058) | 121.04420 | 121.73390 | 129.61670 | 124.41580 | 0.06547 | 0.34378 | 0.07500 | 0.87047 |
\hat{\varphi} | 2.50000 | (0.5973595) | |||||||||
\hat{a} | 5.25000 | (2.6300897) | |||||||||
\hat{b} | 0.09255 | (1.2750272) | |||||||||
Fr | \hat{\theta} | 5.43392 | (0.50788) | 121.80430 | 122.00430 | 126.09060 | 123.49010 | 0.11497 | 0.64202 | 0.10013 | 0.55274 |
\hat{\lambda} | 230.48644 | (110.91778) |
Some plots including the PDF, CDF, and SF along with the PP plots of the EWFr model are displayed in Figure 3 for both datasets. The PP plots of all studied distributions are displayed in Figure 4 for the two datasets, respectively.
The estimates of the EWFr parameters under several estimation approaches and the goodness-of-fit measures for both datasets are listed in Tables 10 and 11, respectively. Based on the values of PV in Tables 10 and 11, the Anderson-Darling approach is recommended to estimate the EWFr parameters for cancer data, while the least-squares approach is recommended for gauge lengths data.
Methods | \hat{\vartheta} | \hat{\varphi} | \hat{\lambda} | \hat{\theta} | W^{*} | A^{*} | KS | PV |
MLEs | 56.93661 | 0.46697 | 0.71825 | 0.01794 | 0.01991 | 0.13402 | 0.03757 | 0.99713 |
LSEs | 56.93660 | 0.55502 | 0.71932 | 0.01871 | 0.01850 | 0.12986 | 0.03334 | 0.99918 |
MPSEs | 56.93660 | 0.46698 | 0.71750 | 0.01717 | 0.01916 | 0.13069 | 0.03617 | 0.99708 |
WLSEs | 56.94615 | 0.51962 | 0.71884 | 0.01825 | 0.01815 | 0.12600 | 0.03251 | 0.99947 |
CRVMEs | 56.93659 | 0.55064 | 0.71962 | 0.01891 | 0.01795 | 0.12584 | 0.03352 | 0.99910 |
ADEs | 56.93668 | 0.47772 | 0.71887 | 0.01815 | 0.01763 | 0.12016 | 0.03167 | 0.99968 |
PCEs | 57.47389 | 0.81500 | 0.72219 | 0.02155 | 0.03320 | 0.23254 | 0.03830 | 0.99367 |
RADEs | 56.93805 | 0.56319 | 0.71967 | 0.01899 | 0.01830 | 0.12878 | 0.03385 | 0.99895 |
\textbf{Methods} | \hat{\vartheta} | \hat{\varphi} | \hat{\lambda} | \hat{\theta} | W^{*} | A^{*} | \textbf{KS} | \textbf{PV} |
\textbf{MLEs} | 0.76563 | 0.04349 | 145.67068 | 4.60846 | 0.04181 | 0.23988 | 0.06847 | 0.92920 |
\textbf{LSEs} | 0.69421 | 0.08110 | 145.67010 | 4.56661 | 0.04850 | 0.26973 | 0.06486 | 0.94154 |
\textbf{MPSEs} | 0.75534 | 0.13947 | 145.66920 | 4.65631 | 0.05531 | 0.29551 | 0.07780 | 0.81897 |
\textbf{WLSEs} | 0.71596 | 0.01530 | 145.66740 | 4.57637 | 0.04747 | 0.26675 | 0.06895 | 0.90999 |
\textbf{CRVMEs} | 0.71398 | 0.00100 | 145.67030 | 4.57259 | 0.04761 | 0.26713 | 0.06733 | 0.92336 |
\textbf{ADEs} | 0.72963 | 0.00010 | 145.67980 | 4.57988 | 0.04696 | 0.26562 | 0.07047 | 0.89642 |
\textbf{PCEs} | 0.75075 | 0.02596 | 145.67020 | 4.59649 | 0.04775 | 0.26737 | 0.07311 | 0.87060 |
\textbf{RADEs} | 0.74062 | 0.00010 | 145.66970 | 4.57722 | 0.04668 | 0.26516 | 0.07058 | 0.89538 |
In this paper, we introduced a more flexible four-parameter model called the extended Weibull–Fréchet (EWFr) distribution. Its basic mathematical properties are explored. The EWFr parameters are estimated using eight classical estimation methods. The simulation results showed that the maximum product of spacings approach outperforms other considered methods based on overall ranks. The importance and flexibility of the EWFr distribution over some competing extensions of the Fréchet distribution are addressed by analyzing two real-life datasets from the medicine and engineering fields. The analytical measures showed that our EWFr model returned an adequate fit in comparison with other distributions.
This study was funded by Taif University Researchers Supporting Project number (TURSP-2020/279), Taif University, Taif, Saudi Arabia. The authors would like to thank the editorial board and the three referees for their constructive comments that improved the final version of the paper.
The authors declare no conflict of interest.
[1] | C. E. Chace, The divisor problem for arithmetic progressions with small modulus, Acta Arith., 61 (1992), 35–50. |
[2] |
C. E. Chace, Writing integers as sums of products, Trans. Am. Math. Soc., 345 (1994), 367–379. https://doi.org/10.1090/S0002-9947-1994-1257641-3 doi: 10.1090/S0002-9947-1994-1257641-3
![]() |
[3] | R. T. Guo, W. G. Zhai, Some problems about the ternary quadratic form m_1^2 +m_2^2 +m_3^2, Acta Arith., bf 156 (2012), 101–121. |
[4] |
L. Q. Hu, An asymptotic formula related to the divisors of the quaternary quadratic form, Acta Arith., 166 (2014), 129–140. https://doi.org/10.4064/aa166-2-2 doi: 10.4064/aa166-2-2
![]() |
[5] |
L. Q. Hu and L. Yang, Sums of the triple divisor function over values of a quaternary quadratic form, Acta Arith., 183 (2018), 63–85. https://doi.org/10.4064/aa170120-20-10 doi: 10.4064/aa170120-20-10
![]() |
[6] | L. K. Hua, Introduction to Number Theory, Science Press, Beijing, 1957 (in Chinese). |
[7] | X. D. Lü, Q. W. Mu, The Sum of Divisors of Mixed Powers, Advances in Mathematics (in China), 45 (2016), 357–364. |
[8] | Q. F. Sun, D. Y. Zhang, Sums of the triple divisor function over values of a ternary quadratic form, J. Number Theory, 168 (2016), 215–246. |
[9] | R. C. Vaughan, The Hardy-Littlewood Method, 2nd ed., Cambridge Tracts in Math., vol. 125, Cambridge University, Cambridge, 1997. |
[10] |
L. L. Zhao, The sum of divisors of a quadratic form, Acta Arith., 163 (2014), 161–177. https://doi.org/10.4064/aa163-2-6 doi: 10.4064/aa163-2-6
![]() |
1. | Selasi Kwaku Ocloo, Lewis Brew, Suleman Nasiru, Benjamin Odoi, Jewgeni Dshalalow, Harmonic Mixture Fréchet Distribution: Properties and Applications to Lifetime Data, 2022, 2022, 1687-0425, 1, 10.1155/2022/6460362 | |
2. | Xueyu Wu, Zubair Ahmad, Eslam Hussam, Marwan H. Alhelali, Ramy Aldallal, Muqrin A. Almuqrin, Fathy H. Riad, A new Cosine-Weibull model: Distributional properties with applications to basketball and medical sectors, 2023, 66, 11100168, 751, 10.1016/j.aej.2022.10.068 | |
3. | Abdul Ghaniyyu Abubakari, Chin-Chia Wu, Actuarial Measures, Regression, and Applications of Exponentiated Fréchet Loss Distribution, 2022, 2022, 1687-0425, 1, 10.1155/2022/3155188 | |
4. | Adam Braima S. Mastor, Oscar Ngesa, Joseph Mung’atu, Nada M. Alfaer, Ahmed Z. Afify, M. De Aguiar, The Extended Exponential Weibull Distribution: Properties, Inference, and Applications to Real-Life Data, 2022, 2022, 1099-0526, 1, 10.1155/2022/4068842 | |
5. | Otieno Kevin Okumu, Omondi Joseph Ouno, Anthony Nyutu Karanjah, Samuel Nganga Muthiga, Three-parameters Gumbel Distribution: Formulation and Parameter Estimation, 2024, 10, 2472-3509, 25, 10.11648/j.ijsd.20241002.12 | |
6. | Fatimah E. Almuhayfith, Talha Arslan, Hassan S. Bakouch, Aminh M. Alnaghmosh, A versatile model for lifetime of a component under stress, 2023, 13, 2045-2322, 10.1038/s41598-023-47313-3 | |
7. | Hassan M. Aljohani, The single and double inverse Pareto–Burr XII distribution: Properties, estimation methods, and real-life data applications, 2024, 14, 2158-3226, 10.1063/5.0203919 | |
8. | M. G. M. Ghazal, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr, Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields, 2024, 9, 2473-6988, 17634, 10.3934/math.2024857 | |
9. | Ahmed Z. Afify, Ekramy A. Hussein, Hazem Al-Mofleh, Rehab Alsultan, Hassan M. Aljohani, Nian-Sheng Tang, The Flexible Fréchet Distribution: Properties, Inference, and Medical Applications, 2024, 2024, 2314-4629, 10.1155/jom/2600560 | |
10. | Hatem Semary, Ahmad Abubakar Suleiman, Aliyu Ismail Ishaq, Jamilu Yunusa Falgore, Umar Kabir Abdullahi, Hanita Daud, Mohamed A. Abd Elgawad, Mohammad Elgarhy, A new modified Sine-Weibull distribution for modeling medical data with dynamic structures, 2025, 18, 16878507, 101427, 10.1016/j.jrras.2025.101427 | |
11. | Dawlah Alsulami, A new extension of the Rayleigh distribution: Properties, different methods of estimation, and an application to medical data, 2025, 10, 2473-6988, 7636, 10.3934/math.2025350 |
\mathit{\boldsymbol{\eta}}^{\intercal} | \mu | \sigma^{2} | \xi_{1}(X) | \xi_{2}(X) |
(\vartheta=1.50, \; \varphi=0.50, \; \theta=1.50) | 1.3511 | 0.4752 | 3.1421 | 56.2021 |
(\vartheta=2.50, \; \varphi=0.75, \; \theta=1.75) | 1.2701 | 0.1329 | 1.9395 | 16.1410 |
(\vartheta=2.25, \; \varphi=1.00, \; \theta=2.75) | 1.1904 | 0.0780 | 2.2648 | 19.2907 |
(\vartheta=2.25, \; \varphi=0.25, \; \theta=0.75) | 1.6154 | 0.7600 | 1.6132 | 9.0569 |
(\vartheta=2.25, \; \varphi=1.25, \; \theta=3.25) | 1.1831 | 0.0747 | 2.8068 | 27.8064 |
(\vartheta=5.50, \; \varphi=1.50, \; \theta=2.50) | 1.1927 | 0.0223 | 1.7507 | 11.7806 |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
20 | |BIAS| | \hat{\vartheta} | 0.58150 ^{\{3\}} | 0.59477 ^{\{4\}} | 0.53422 ^{\{1\}} | 0.54541 ^{\{2\}} | 0.60555 ^{\{5\}} | 0.71685 ^{\{8\}} | 0.67445 ^{\{7\}} | 0.61466 ^{\{6\}} |
\hat{\varphi} | 0.47550 ^{\{4\}} | 0.54812 ^{\{7\}} | 0.46820 ^{\{2\}} | 0.53093 ^{\{6\}} | 0.19120 ^{\{1\}} | 0.55104 ^{\{8\}} | 0.46906 ^{\{3\}} | 0.51894 ^{\{5\}} | ||
\hat{\lambda} | 0.08930 ^{\{2\}} | 0.10351 ^{\{7\}} | 0.08402 ^{\{1\}} | 0.10057 ^{\{5\}} | 0.10077 ^{\{6\}} | 0.11204 ^{\{8\}} | 0.09758 ^{\{3\}} | 0.09866 ^{\{4\}} | ||
\hat{\theta} | 0.49749 ^{\{7\}} | 0.47497 ^{\{4\}} | 0.46884 ^{\{3\}} | 0.48364 ^{\{5\}} | 0.45238 ^{\{1\}} | 0.53285 ^{\{8\}} | 0.46505 ^{\{2\}} | 0.48608 ^{\{6\}} | ||
MSEs | \hat{\vartheta} | 0.47425 ^{\{2\}} | 0.52401 ^{\{4\}} | 0.52337 ^{\{3\}} | 0.46463 ^{\{1\}} | 0.54588 ^{\{6\}} | 0.64689 ^{\{8\}} | 0.59726 ^{\{7\}} | 0.53428 ^{\{5\}} | |
\hat{\varphi} | 0.27624 ^{\{1\}} | 0.38734 ^{\{7\}} | 0.29294 ^{\{2\}} | 0.36212 ^{\{6\}} | 0.31849 ^{\{4\}} | 0.39577 ^{\{8\}} | 0.30160 ^{\{3\}} | 0.35513 ^{\{5\}} | ||
\hat{\lambda} | 0.01107 ^{\{2\}} | 0.01423 ^{\{7\}} | 0.00983 ^{\{1\}} | 0.01356 ^{\{5\}} | 0.01357 ^{\{6\}} | 0.01651 ^{\{8\}} | 0.01289 ^{\{3\}} | 0.01296 ^{\{4\}} | ||
\hat{\theta} | 0.37764 ^{\{7\}} | 0.33320 ^{\{3\}} | 0.35778 ^{\{4\}} | 0.36101 ^{\{5\}} | 0.29381 ^{\{1\}} | 0.38887 ^{\{8\}} | 0.32193 ^{\{2\}} | 0.36311 ^{\{6\}} | ||
MREs | \hat{\vartheta} | 0.33229 ^{\{3\}} | 0.33987 ^{\{4\}} | 0.17807 ^{\{1\}} | 0.31166 ^{\{2\}} | 0.34603 ^{\{5\}} | 0.40963 ^{\{8\}} | 0.38540 ^{\{7\}} | 0.35123 ^{\{6\}} | |
\hat{\varphi} | 0.95101 ^{\{3\}} | 1.09624 ^{\{7\}} | 0.93641 ^{\{1\}} | 1.06186 ^{\{6\}} | 0.97231 ^{\{4\}} | 1.10208 ^{\{8\}} | 0.93811 ^{\{2\}} | 1.03788 ^{\{5\}} | ||
\hat{\lambda} | 0.35719 ^{\{2\}} | 0.41405 ^{\{7\}} | 0.33607 ^{\{1\}} | 0.40230 ^{\{5\}} | 0.40307 ^{\{6\}} | 0.44817 ^{\{8\}} | 0.39034 ^{\{3\}} | 0.39464 ^{\{4\}} | ||
\hat{\theta} | 0.39799 ^{\{7\}} | 0.37998 ^{\{4\}} | 0.37507 ^{\{3\}} | 0.38691 ^{\{5\}} | 0.36190 ^{\{1\}} | 0.42628 ^{\{8\}} | 0.37204 ^{\{2\}} | 0.38886 ^{\{6\}} | ||
\sum{Ranks} | 43 ^{\{2\}} | 65 ^{\{7\}} | 23 ^{\{1\}} | 53 ^{\{5\}} | 46 ^{\{4\}} | 96 ^{\{8\}} | 44 ^{\{3\}} | 62 ^{\{6\}} | ||
80 | |BIAS| | \hat{\vartheta} | 0.65720 ^{\{2\}} | 0.73260 ^{\{6\}} | 0.64523 ^{\{1\}} | 0.71780 ^{\{4\}} | 0.67014 ^{\{3\}} | 0.78730 ^{\{8\}} | 0.72979 ^{\{5\}} | 0.78285 ^{\{7\}} |
\hat{\varphi} | 0.29918 ^{\{4\}} | 0.36951 ^{\{7\}} | 0.27270 ^{\{1\}} | 0.36572 ^{\{6\}} | 0.28461 ^{\{2\}} | 0.43485 ^{\{8\}} | 0.29440 ^{\{3\}} | 0.31911 ^{\{5\}} | ||
\hat{\lambda} | 0.06946 ^{\{2\}} | 0.08089 ^{\{7\}} | 0.06755 ^{\{1\}} | 0.07955 ^{\{6\}} | 0.07162 ^{\{4\}} | 0.07099 ^{\{3\}} | 0.07301 ^{\{5\}} | 0.08347 ^{\{8\}} | ||
\hat{\theta} | 0.41705 ^{\{6\}} | 0.41605 ^{\{5\}} | 0.41277 ^{\{4\}} | 0.43216 ^{\{7\}} | 0.34179 ^{\{1\}} | 0.38656 ^{\{3\}} | 0.37952 ^{\{2\}} | 0.45183 ^{\{8\}} | ||
MSEs | \hat{\vartheta} | 0.53699 ^{\{1\}} | 0.65792 ^{\{5\}} | 0.71214 ^{\{7\}} | 0.63722 ^{\{3\}} | 0.62257 ^{\{2\}} | 0.71659 ^{\{8\}} | 0.64185 ^{\{4\}} | 0.70948 ^{\{6\}} | |
\hat{\varphi} | 0.12478 ^{\{3\}} | 0.19502 ^{\{7\}} | 0.11097 ^{\{1\}} | 0.18881 ^{\{6\}} | 0.12320 ^{\{2\}} | 0.28084 ^{\{8\}} | 0.13150 ^{\{4\}} | 0.15268 ^{\{5\}} | ||
\hat{\lambda} | 0.00672 ^{\{1\}} | 0.00884 ^{\{7\}} | 0.00693 ^{\{2\}} | 0.00853 ^{\{6\}} | 0.00712 ^{\{4\}} | 0.00711 ^{\{3\}} | 0.00740 ^{\{5\}} | 0.00932 ^{\{8\}} | ||
\hat{\theta} | 0.26049 ^{\{5\}} | 0.25434 ^{\{4\}} | 0.30456 ^{\{8\}} | 0.27845 ^{\{6\}} | 0.16695 ^{\{1\}} | 0.24032 ^{\{3\}} | 0.20942 ^{\{2\}} | 0.29980 ^{\{7\}} | ||
MREs | \hat{\vartheta} | 0.37554 ^{\{2\}} | 0.41863 ^{\{6\}} | 0.21508 ^{\{1\}} | 0.41017 ^{\{4\}} | 0.38294 ^{\{3\}} | 0.44989 ^{\{8\}} | 0.41702 ^{\{5\}} | 0.44734 ^{\{7\}} | |
\hat{\varphi} | 0.59835 ^{\{4\}} | 0.73902 ^{\{7\}} | 0.54540 ^{\{1\}} | 0.73144 ^{\{6\}} | 0.56922 ^{\{2\}} | 0.86970 ^{\{8\}} | 0.58881 ^{\{3\}} | 0.63822 ^{\{5\}} | ||
\hat{\lambda} | 0.27786 ^{\{2\}} | 0.32356 ^{\{7\}} | 0.27019 ^{\{1\}} | 0.31820 ^{\{6\}} | 0.28647 ^{\{4\}} | 0.28396 ^{\{3\}} | 0.29205 ^{\{5\}} | 0.33388 ^{\{8\}} | ||
\hat{\theta} | 0.33364 ^{\{6\}} | 0.33284 ^{\{5\}} | 0.33022 ^{\{4\}} | 0.34573 ^{\{7\}} | 0.27343 ^{\{1\}} | 0.30924 ^{\{3\}} | 0.30361 ^{\{2\}} | 0.36147 ^{\{8\}} | ||
\sum{Ranks} | 38 ^{\{3\}} | 73 ^{\{7\}} | 32 ^{\{2\}} | 67 ^{\{6\}} | 29 ^{\{1\}} | 66 ^{\{5\}} | 45 ^{\{4\}} | 82 ^{\{8\}} | ||
200 | |BIAS| | \hat{\vartheta} | 0.54244 ^{\{1\}} | 0.74060 ^{\{6\}} | 0.66029 ^{\{4\}} | 0.72065 ^{\{5\}} | 0.56860 ^{\{2\}} | 0.78528 ^{\{8\}} | 0.64417 ^{\{3\}} | 0.74318 ^{\{7\}} |
\hat{\varphi} | 0.20343 ^{\{3\}} | 0.27714 ^{\{7\}} | 0.18758 ^{\{1\}} | 0.27628 ^{\{6\}} | 0.19120 ^{\{2\}} | 0.33648 ^{\{8\}} | 0.21264 ^{\{4\}} | 0.21990 ^{\{5\}} | ||
\hat{\lambda} | 0.05329 ^{\{1\}} | 0.07033 ^{\{7\}} | 0.05985 ^{\{3\}} | 0.06898 ^{\{6\}} | 0.05669 ^{\{2\}} | 0.05992 ^{\{4\}} | 0.06059 ^{\{5\}} | 0.07617 ^{\{8\}} | ||
\hat{\theta} | 0.30910 ^{\{2\}} | 0.38666 ^{\{6\}} | 0.37834 ^{\{5\}} | 0.39240 ^{\{7\}} | 0.26754 ^{\{1\}} | 0.34697 ^{\{4\}} | 0.32167 ^{\{3\}} | 0.42492 ^{\{8\}} | ||
MSEs | \hat{\vartheta} | 0.39682 ^{\{1\}} | 0.65105 ^{\{6\}} | 0.72704 ^{\{8\}} | 0.62292 ^{\{4\}} | 0.51529 ^{\{2\}} | 0.70871 ^{\{7\}} | 0.53035 ^{\{3\}} | 0.65051 ^{\{5\}} | |
\hat{\varphi} | 0.06226 ^{\{3\}} | 0.11401 ^{\{7\}} | 0.05424 ^{\{1\}} | 0.11214 ^{\{6\}} | 0.05643 ^{\{2\}} | 0.18593 ^{\{8\}} | 0.06927 ^{\{4\}} | 0.07447 ^{\{5\}} | ||
\hat{\lambda} | 0.00405 ^{\{1\}} | 0.00665 ^{\{7\}} | 0.00571 ^{\{5\}} | 0.00644 ^{\{6\}} | 0.00452 ^{\{2\}} | 0.00513 ^{\{4\}} | 0.00507 ^{\{3\}} | 0.00753 ^{\{8\}} | ||
\hat{\theta} | 0.14395 ^{\{2\}} | 0.20851 ^{\{5\}} | 0.26568 ^{\{8\}} | 0.22075 ^{\{6\}} | 0.10322 ^{\{1\}} | 0.19203 ^{\{4\}} | 0.14560 ^{\{3\}} | 0.25309 ^{\{7\}} | ||
MREs | \hat{\vartheta} | 0.30997 ^{\{2\}} | 0.42320 ^{\{6\}} | 0.22010 ^{\{1\}} | 0.41180 ^{\{5\}} | 0.32491 ^{\{3\}} | 0.44873 ^{\{8\}} | 0.36810 ^{\{4\}} | 0.42468 ^{\{7\}} | |
\hat{\varphi} | 0.40685 ^{\{3\}} | 0.55429 ^{\{7\}} | 0.37516 ^{\{1\}} | 0.55256 ^{\{6\}} | 0.38240 ^{\{2\}} | 0.67295 ^{\{8\}} | 0.42528 ^{\{4\}} | 0.43980 ^{\{5\}} | ||
\hat{\lambda} | 0.21316 ^{\{1\}} | 0.28134 ^{\{7\}} | 0.23940 ^{\{3\}} | 0.27593 ^{\{6\}} | 0.22675 ^{\{2\}} | 0.23969 ^{\{4\}} | 0.24238 ^{\{5\}} | 0.30470 ^{\{8\}} | ||
\hat{\theta} | 0.24728 ^{\{2\}} | 0.30933 ^{\{6\}} | 0.30267 ^{\{5\}} | 0.31392 ^{\{7\}} | 0.21403 ^{\{1\}} | 0.27758 ^{\{4\}} | 0.25734 ^{\{3\}} | 0.33994 ^{\{8\}} | ||
\sum{Ranks} | 22 ^{\{1.5\}} | 77 ^{\{7\}} | 45 ^{\{4\}} | 70 ^{\{5\}} | 22 ^{\{1.5\}} | 71 ^{\{6\}} | 44 ^{\{3\}} | 81 ^{\{8\}} | ||
500 | |BIAS| | \hat{\vartheta} | 0.40816 ^{\{2\}} | 0.63822 ^{\{6\}} | 0.59712 ^{\{4\}} | 0.62303 ^{\{5\}} | 0.38723 ^{\{1\}} | 0.72351 ^{\{8\}} | 0.50869 ^{\{3\}} | 0.64537 ^{\{7\}} |
\hat{\varphi} | 0.13392 ^{\{3\}} | 0.19775 ^{\{6\}} | 0.12778 ^{\{1\}} | 0.19966 ^{\{7\}} | 0.13208 ^{\{2\}} | 0.26446 ^{\{8\}} | 0.14927 ^{\{4\}} | 0.15660 ^{\{5\}} | ||
\hat{\lambda} | 0.03902 ^{\{1\}} | 0.05985 ^{\{7\}} | 0.04987 ^{\{4\}} | 0.05913 ^{\{6\}} | 0.04014 ^{\{2\}} | 0.05408 ^{\{5\}} | 0.04806 ^{\{3\}} | 0.06618 ^{\{8\}} | ||
\hat{\theta} | 0.21255 ^{\{2\}} | 0.32416 ^{\{6\}} | 0.31285 ^{\{5\}} | 0.33146 ^{\{7\}} | 0.18308 ^{\{1\}} | 0.30762 ^{\{4\}} | 0.24975 ^{\{3\}} | 0.35803 ^{\{8\}} | ||
MSEs | \hat{\vartheta} | 0.24842 ^{\{1\}} | 0.52025 ^{\{5\}} | 0.58302 ^{\{7\}} | 0.50041 ^{\{4\}} | 0.33081 ^{\{2\}} | 0.63280 ^{\{8\}} | 0.37071 ^{\{3\}} | 0.52827 ^{\{6\}} | |
\hat{\varphi} | 0.02762 ^{\{3\}} | 0.05937 ^{\{6\}} | 0.02573 ^{\{1\}} | 0.06052 ^{\{7\}} | 0.02727 ^{\{2\}} | 0.12045 ^{\{8\}} | 0.03399 ^{\{4\}} | 0.03724 ^{\{5\}} | ||
\hat{\lambda} | 0.00224 ^{\{1\}} | 0.00478 ^{\{7\}} | 0.00422 ^{\{5\}} | 0.00470 ^{\{6\}} | 0.00257 ^{\{2\}} | 0.00402 ^{\{4\}} | 0.00325 ^{\{3\}} | 0.00569 ^{\{8\}} | ||
\hat{\theta} | 0.06777 ^{\{2\}} | 0.14391 ^{\{5\}} | 0.19157 ^{\{8\}} | 0.15413 ^{\{6\}} | 0.05743 ^{\{1\}} | 0.14128 ^{\{4\}} | 0.08776 ^{\{3\}} | 0.17743 ^{\{7\}} | ||
MREs | \hat{\vartheta} | 0.23323 ^{\{3\}} | 0.36470 ^{\{6\}} | 0.19904 ^{\{1\}} | 0.35602 ^{\{5\}} | 0.22127 ^{\{2\}} | 0.41343 ^{\{8\}} | 0.29068 ^{\{4\}} | 0.36879 ^{\{7\}} | |
\hat{\varphi} | 0.26784 ^{\{3\}} | 0.39550 ^{\{6\}} | 0.25556 ^{\{1\}} | 0.39932 ^{\{7\}} | 0.26417 ^{\{2\}} | 0.52891 ^{\{8\}} | 0.29853 ^{\{4\}} | 0.31320 ^{\{5\}} | ||
\hat{\lambda} | 0.15609 ^{\{1\}} | 0.23939 ^{\{7\}} | 0.19949 ^{\{4\}} | 0.23651 ^{\{6\}} | 0.16056 ^{\{2\}} | 0.21632 ^{\{5\}} | 0.19222 ^{\{3\}} | 0.26474 ^{\{8\}} | ||
\hat{\theta} | 0.17004 ^{\{2\}} | 0.25933 ^{\{6\}} | 0.25028 ^{\{5\}} | 0.26517 ^{\{7\}} | 0.14646 ^{\{1\}} | 0.24610 ^{\{4\}} | 0.19980 ^{\{3\}} | 0.28642 ^{\{8\}} | ||
\sum{Ranks} | 24 ^{\{2\}} | 73 ^{\{5.5\}} | 46 ^{\{4\}} | 73 ^{\{5.5\}} | 20 ^{\{1\}} | 74 ^{\{7\}} | 40 ^{\{3\}} | 82 ^{\{8\}} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
20 | |BIAS| | \hat{\vartheta} | 0.58249 ^{\left\{3 \right\}} | 0.53932 ^{\left\{1 \right\}} | 0.56241 ^{\left\{2 \right\}} | 0.61397 ^{\left\{5 \right\}} | 0.60739 ^{\left\{4 \right\}} | 0.82341 ^{\left\{8 \right\}} | 0.68123 ^{\left\{7 \right\}} | 0.66592 ^{\left\{6 \right\}} |
\hat{\varphi} | 0.70201 ^{\left\{2 \right\}} | 0.74992 ^{\left\{4 \right\}} | 0.71005 ^{\left\{3 \right\}} | 0.99334 ^{\left\{7 \right\}} | 0.41044 ^{\left\{1 \right\}} | 1.11769 ^{\left\{8 \right\}} | 0.88784 ^{\left\{5 \right\}} | 0.97457 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.26246 ^{\left\{1 \right\}} | 0.28717 ^{\left\{3 \right\}} | 0.28400 ^{\left\{2 \right\}} | 0.42881 ^{\left\{5 \right\}} | 0.40138 ^{\left\{4 \right\}} | 0.64545 ^{\left\{8 \right\}} | 0.43589 ^{\left\{7 \right\}} | 0.43050 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.83485 ^{\left\{6 \right\}} | 0.91523 ^{\left\{7 \right\}} | 0.92408 ^{\left\{8 \right\}} | 0.76222 ^{\left\{3 \right\}} | 0.77841 ^{\left\{4 \right\}} | 0.78092 ^{\left\{5 \right\}} | 0.74535 ^{\left\{1 \right\}} | 0.74828 ^{\left\{2 \right\}} | ||
MSEs | \hat{\vartheta} | 0.45340 ^{\left\{3 \right\}} | 0.42087 ^{\left\{1 \right\}} | 0.44427 ^{\left\{2 \right\}} | 0.51220 ^{\left\{4 \right\}} | 0.51720 ^{\left\{5 \right\}} | 0.77654 ^{\left\{8 \right\}} | 0.58720 ^{\left\{7 \right\}} | 0.56968 ^{\left\{6 \right\}} | |
\hat{\varphi} | 0.65182 ^{\left\{1 \right\}} | 0.75540 ^{\left\{3 \right\}} | 0.66110 ^{\left\{2 \right\}} | 1.25282 ^{\left\{7 \right\}} | 0.95641 ^{\left\{4 \right\}} | 1.49737 ^{\left\{8 \right\}} | 1.01553 ^{\left\{5 \right\}} | 1.19476 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.07059 ^{\left\{1 \right\}} | 0.08751 ^{\left\{3 \right\}} | 0.08543 ^{\left\{2 \right\}} | 0.29909 ^{\left\{7 \right\}} | 0.24742 ^{\left\{4 \right\}} | 0.52940 ^{\left\{8 \right\}} | 0.29252 ^{\left\{6 \right\}} | 0.29154 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.84612 ^{\left\{6 \right\}} | 1.00860 ^{\left\{8 \right\}} | 1.00532 ^{\left\{7 \right\}} | 0.71906 ^{\left\{3 \right\}} | 0.75325 ^{\left\{4 \right\}} | 0.82231 ^{\left\{5 \right\}} | 0.69565 ^{\left\{1 \right\}} | 0.70768 ^{\left\{2 \right\}} | ||
MREs | \hat{\vartheta} | 0.33285 ^{\left\{3 \right\}} | 0.30818 ^{\left\{1 \right\}} | 0.32138 ^{\left\{2 \right\}} | 0.35084 ^{\left\{5 \right\}} | 0.34708 ^{\left\{4 \right\}} | 0.47052 ^{\left\{8 \right\}} | 0.38927 ^{\left\{7 \right\}} | 0.38052 ^{\left\{6 \right\}} | |
\hat{\varphi} | 0.35100 ^{\left\{1 \right\}} | 0.37496 ^{\left\{3 \right\}} | 0.35503 ^{\left\{2 \right\}} | 0.49667 ^{\left\{7 \right\}} | 0.42863 ^{\left\{4 \right\}} | 0.55884 ^{\left\{8 \right\}} | 0.44392 ^{\left\{5 \right\}} | 0.48728 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.17497 ^{\left\{1 \right\}} | 0.19145 ^{\left\{3 \right\}} | 0.18933 ^{\left\{2 \right\}} | 0.28587 ^{\left\{5 \right\}} | 0.26758 ^{\left\{4 \right\}} | 0.43030 ^{\left\{8 \right\}} | 0.29059 ^{\left\{7 \right\}} | 0.28700 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.33394 ^{\left\{6 \right\}} | 0.36609 ^{\left\{7 \right\}} | 0.36963 ^{\left\{8 \right\}} | 0.30489 ^{\left\{3 \right\}} | 0.31136 ^{\left\{4 \right\}} | 0.31237 ^{\left\{5 \right\}} | 0.29814 ^{\left\{1 \right\}} | 0.29931 ^{\left\{2 \right\}} | ||
\sum{Ranks} | {\textbf{34}} ^{\left\{1 \right\}} | {\textbf{44}} ^{\left\{3 \right\}} | {\textbf{42}} ^{\left\{2 \right\}} | {\textbf{61}} ^{\left\{7 \right\}} | {\textbf{46}} ^{\left\{4 \right\}} | {\textbf{87}} ^{\left\{8 \right\}} | {\textbf{59}} ^{\left\{5.5 \right\}} | {\textbf{59}} ^{\left\{5.5 \right\}} | ||
80 | |BIAS| | \hat{\vartheta} | 0.49925 ^{\left\{2 \right\}} | 0.47135 ^{\left\{1 \right\}} | 0.52766 ^{\left\{3 \right\}} | 0.66329 ^{\left\{5 \right\}} | 0.55966 ^{\left\{4 \right\}} | 0.89224 ^{\left\{8 \right\}} | 0.67228 ^{\left\{6 \right\}} | 0.69447 ^{\left\{7 \right\}} |
\hat{\varphi} | 0.52063 ^{\left\{1 \right\}} | 0.55025 ^{\left\{3 \right\}} | 0.52909 ^{\left\{2 \right\}} | 0.70683 ^{\left\{7 \right\}} | 0.56354 ^{\left\{4 \right\}} | 0.93582 ^{\left\{8 \right\}} | 0.63998 ^{\left\{5 \right\}} | 0.69954 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.25198 ^{\left\{1 \right\}} | 0.25883 ^{\left\{3 \right\}} | 0.25641 ^{\left\{2 \right\}} | 0.43311 ^{\left\{7 \right\}} | 0.30034 ^{\left\{4 \right\}} | 0.66563 ^{\left\{8 \right\}} | 0.40607 ^{\left\{5 \right\}} | 0.43206 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.78480 ^{\left\{6 \right\}} | 0.82532 ^{\left\{7 \right\}} | 0.83697 ^{\left\{8 \right\}} | 0.69063 ^{\left\{3 \right\}} | 0.58559 ^{\left\{1 \right\}} | 0.72122 ^{\left\{5 \right\}} | 0.63842 ^{\left\{2 \right\}} | 0.69164 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 0.31719 ^{\left\{2 \right\}} | 0.30026 ^{\left\{1 \right\}} | 0.34946 ^{\left\{3 \right\}} | 0.55815 ^{\left\{5 \right\}} | 0.49857 ^{\left\{4 \right\}} | 0.86629 ^{\left\{8 \right\}} | 0.56483 ^{\left\{6 \right\}} | 0.59417 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.27881 ^{\left\{1 \right\}} | 0.32553 ^{\left\{3 \right\}} | 0.29109 ^{\left\{2 \right\}} | 0.66883 ^{\left\{7 \right\}} | 0.44978 ^{\left\{4 \right\}} | 1.03760 ^{\left\{8 \right\}} | 0.55511 ^{\left\{5 \right\}} | 0.64550 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.06369 ^{\left\{1 \right\}} | 0.06795 ^{\left\{3 \right\}} | 0.06642 ^{\left\{2 \right\}} | 0.29117 ^{\left\{7 \right\}} | 0.15725 ^{\left\{4 \right\}} | 0.54984 ^{\left\{8 \right\}} | 0.25250 ^{\left\{5 \right\}} | 0.28331 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.66344 ^{\left\{5 \right\}} | 0.73666 ^{\left\{7 \right\}} | 0.74889 ^{\left\{8 \right\}} | 0.58730 ^{\left\{3 \right\}} | 0.45144 ^{\left\{1 \right\}} | 0.66717 ^{\left\{6 \right\}} | 0.51377 ^{\left\{2 \right\}} | 0.59201 ^{\left\{4 \right\}} | ||
MREs | \hat{\vartheta} | 0.28529 ^{\left\{2 \right\}} | 0.26934 ^{\left\{1 \right\}} | 0.30152 ^{\left\{3 \right\}} | 0.37902 ^{\left\{5 \right\}} | 0.31981 ^{\left\{4 \right\}} | 0.50985 ^{\left\{8 \right\}} | 0.38416 ^{\left\{6 \right\}} | 0.39684 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.26032 ^{\left\{1 \right\}} | 0.27512 ^{\left\{3 \right\}} | 0.26454 ^{\left\{2 \right\}} | 0.35341 ^{\left\{7 \right\}} | 0.28177 ^{\left\{4 \right\}} | 0.46791 ^{\left\{8 \right\}} | 0.31999 ^{\left\{5 \right\}} | 0.34977 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.16798 ^{\left\{1 \right\}} | 0.17255 ^{\left\{3 \right\}} | 0.17094 ^{\left\{2 \right\}} | 0.28874 ^{\left\{7 \right\}} | 0.20023 ^{\left\{4 \right\}} | 0.44375 ^{\left\{8 \right\}} | 0.27071 ^{\left\{5 \right\}} | 0.28804 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.31392 ^{\left\{6 \right\}} | 0.33013 ^{\left\{7 \right\}} | 0.33479 ^{\left\{8 \right\}} | 0.27625 ^{\left\{3 \right\}} | 0.23423 ^{\left\{1 \right\}} | 0.28849 ^{\left\{5 \right\}} | 0.25537 ^{\left\{2 \right\}} | 0.27666 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{29}} ^{\left\{1 \right\}} | {\textbf{42}} ^{\left\{3 \right\}} | {\textbf{45}} ^{\left\{4 \right\}} | {\textbf{66}} ^{\left\{6 \right\}} | {\textbf{39}} ^{\left\{2 \right\}} | {\textbf{88}} ^{\left\{8 \right\}} | {\textbf{54}} ^{\left\{5 \right\}} | {\textbf{69}} ^{\left\{7 \right\}} | ||
200 | |BIAS| | \hat{\vartheta} | 0.47555 ^{\left\{3 \right\}} | 0.44985 ^{\left\{2 \right\}} | 0.51341 ^{\left\{4 \right\}} | 0.67707 ^{\left\{6 \right\}} | 0.42436 ^{\left\{1 \right\}} | 0.89805 ^{\left\{8 \right\}} | 0.66134 ^{\left\{5 \right\}} | 0.69895 ^{\left\{7 \right\}} |
\hat{\varphi} | 0.50115 ^{\left\{2 \right\}} | 0.50837 ^{\left\{4 \right\}} | 0.50279 ^{\left\{3 \right\}} | 0.56296 ^{\left\{7 \right\}} | 0.41044 ^{\left\{1 \right\}} | 0.81679 ^{\left\{8 \right\}} | 0.51451 ^{\left\{5 \right\}} | 0.55936 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.25019 ^{\left\{2 \right\}} | 0.25187 ^{\left\{4 \right\}} | 0.25076 ^{\left\{3 \right\}} | 0.41917 ^{\left\{7 \right\}} | 0.21499 ^{\left\{1 \right\}} | 0.65544 ^{\left\{8 \right\}} | 0.37297 ^{\left\{5 \right\}} | 0.41435 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.79159 ^{\left\{6 \right\}} | 0.80107 ^{\left\{7 \right\}} | 0.82123 ^{\left\{8 \right\}} | 0.64647 ^{\left\{3 \right\}} | 0.43028 ^{\left\{1 \right\}} | 0.75308 ^{\left\{5 \right\}} | 0.57181 ^{\left\{2 \right\}} | 0.66234 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 0.25888 ^{\left\{2 \right\}} | 0.23847 ^{\left\{1 \right\}} | 0.29413 ^{\left\{3 \right\}} | 0.56097 ^{\left\{6 \right\}} | 0.37531 ^{\left\{4 \right\}} | 0.86783 ^{\left\{8 \right\}} | 0.54545 ^{\left\{5 \right\}} | 0.59107 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.25134 ^{\left\{1 \right\}} | 0.26082 ^{\left\{4 \right\}} | 0.25349 ^{\left\{2 \right\}} | 0.43952 ^{\left\{7 \right\}} | 0.25968 ^{\left\{3 \right\}} | 0.80523 ^{\left\{8 \right\}} | 0.37160 ^{\left\{5 \right\}} | 0.43084 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.06261 ^{\left\{1 \right\}} | 0.06361 ^{\left\{3 \right\}} | 0.06295 ^{\left\{2 \right\}} | 0.25891 ^{\left\{7 \right\}} | 0.09970 ^{\left\{4 \right\}} | 0.52619 ^{\left\{8 \right\}} | 0.20829 ^{\left\{5 \right\}} | 0.25203 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.64670 ^{\left\{5 \right\}} | 0.66161 ^{\left\{6 \right\}} | 0.69240 ^{\left\{8 \right\}} | 0.51309 ^{\left\{3 \right\}} | 0.27527 ^{\left\{1 \right\}} | 0.68347 ^{\left\{7 \right\}} | 0.41304 ^{\left\{2 \right\}} | 0.53268 ^{\left\{4 \right\}} | ||
MREs | \hat{\vartheta} | 0.27175 ^{\left\{3 \right\}} | 0.25705 ^{\left\{2 \right\}} | 0.29338 ^{\left\{4 \right\}} | 0.38690 ^{\left\{6 \right\}} | 0.24249 ^{\left\{1 \right\}} | 0.51317 ^{\left\{8 \right\}} | 0.37791 ^{\left\{5 \right\}} | 0.39940 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.25057 ^{\left\{2 \right\}} | 0.25419 ^{\left\{4 \right\}} | 0.25139 ^{\left\{3 \right\}} | 0.28148 ^{\left\{7 \right\}} | 0.20522 ^{\left\{1 \right\}} | 0.40839 ^{\left\{8 \right\}} | 0.25725 ^{\left\{5 \right\}} | 0.27968 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.16679 ^{\left\{2 \right\}} | 0.16791 ^{\left\{4 \right\}} | 0.16717 ^{\left\{3 \right\}} | 0.27945 ^{\left\{7 \right\}} | 0.14333 ^{\left\{1 \right\}} | 0.43696 ^{\left\{8 \right\}} | 0.24865 ^{\left\{5 \right\}} | 0.27623 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.31664 ^{\left\{6 \right\}} | 0.32043 ^{\left\{7 \right\}} | 0.32849 ^{\left\{8 \right\}} | 0.25859 ^{\left\{3 \right\}} | 0.17211 ^{\left\{1 \right\}} | 0.30123 ^{\left\{5 \right\}} | 0.22872 ^{\left\{2 \right\}} | 0.26494 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{35}} ^{\left\{2 \right\}} | {\textbf{48}} ^{\left\{3 \right\}} | {\textbf{51}} ^{\left\{4.5 \right\}} | {\textbf{69}} ^{\left\{6.5 \right\}} | {\textbf{20}} ^{\left\{1 \right\}} | {\textbf{89}} ^{\left\{8 \right\}} | {\textbf{51}} ^{\left\{4.5 \right\}} | {\textbf{69}} ^{\left\{6.5 \right\}} | ||
500 | |BIAS| | \hat{\vartheta} | 0.47314 ^{\left\{3 \right\}} | 0.44590 ^{\left\{2 \right\}} | 0.51215 ^{\left\{4 \right\}} | 0.64549 ^{\left\{6 \right\}} | 0.23589 ^{\left\{1 \right\}} | 0.89642 ^{\left\{8 \right\}} | 0.57765 ^{\left\{5 \right\}} | 0.66728 ^{\left\{7 \right\}} |
\hat{\varphi} | 0.50000 ^{\left\{5 \right\}} | 0.50031 ^{\left\{7 \right\}} | 0.50001 ^{\left\{6 \right\}} | 0.44580 ^{\left\{4 \right\}} | 0.25497 ^{\left\{1 \right\}} | 0.66140 ^{\left\{8 \right\}} | 0.39329 ^{\left\{2 \right\}} | 0.42269 ^{\left\{3 \right\}} | ||
\hat{\lambda} | 0.25000 ^{\left\{2 \right\}} | 0.25003 ^{\left\{4 \right\}} | 0.25001 ^{\left\{3 \right\}} | 0.38068 ^{\left\{6 \right\}} | 0.11500 ^{\left\{1 \right\}} | 0.63857 ^{\left\{8 \right\}} | 0.31593 ^{\left\{5 \right\}} | 0.38454 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.79445 ^{\left\{5 \right\}} | 0.80134 ^{\left\{6 \right\}} | 0.82604 ^{\left\{8 \right\}} | 0.59243 ^{\left\{3 \right\}} | 0.25280 ^{\left\{1 \right\}} | 0.80505 ^{\left\{7 \right\}} | 0.49356 ^{\left\{2 \right\}} | 0.61821 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 0.23703 ^{\left\{3 \right\}} | 0.21187 ^{\left\{2 \right\}} | 0.27432 ^{\left\{4 \right\}} | 0.51809 ^{\left\{6 \right\}} | 0.19898 ^{\left\{1 \right\}} | 0.86166 ^{\left\{8 \right\}} | 0.44538 ^{\left\{5 \right\}} | 0.54549 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.25000 ^{\left\{3 \right\}} | 0.25034 ^{\left\{5 \right\}} | 0.25001 ^{\left\{4 \right\}} | 0.28548 ^{\left\{7 \right\}} | 0.11705 ^{\left\{1 \right\}} | 0.56366 ^{\left\{8 \right\}} | 0.22462 ^{\left\{2 \right\}} | 0.25796 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.06250 ^{\left\{2.5 \right\}} | 0.06252 ^{\left\{4 \right\}} | 0.06250 ^{\left\{2.5 \right\}} | 0.20888 ^{\left\{6 \right\}} | 0.03935 ^{\left\{1 \right\}} | 0.50179 ^{\left\{8 \right\}} | 0.14873 ^{\left\{5 \right\}} | 0.20922 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.63903 ^{\left\{5 \right\}} | 0.64949 ^{\left\{6 \right\}} | 0.68943 ^{\left\{7 \right\}} | 0.43597 ^{\left\{3 \right\}} | 0.12546 ^{\left\{1 \right\}} | 0.74499 ^{\left\{8 \right\}} | 0.31912 ^{\left\{2 \right\}} | 0.46804 ^{\left\{4 \right\}} | ||
MREs | \hat{\vartheta} | 0.27037 ^{\left\{3 \right\}} | 0.25480 ^{\left\{2 \right\}} | 0.29266 ^{\left\{4 \right\}} | 0.36885 ^{\left\{6 \right\}} | 0.13479 ^{\left\{1 \right\}} | 0.51224 ^{\left\{8 \right\}} | 0.33008 ^{\left\{5 \right\}} | 0.38130 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.25000 ^{\left\{5.5 \right\}} | 0.25015 ^{\left\{7 \right\}} | 0.25000 ^{\left\{5.5 \right\}} | 0.22290 ^{\left\{4 \right\}} | 0.12748 ^{\left\{1 \right\}} | 0.33070 ^{\left\{8 \right\}} | 0.19665 ^{\left\{2 \right\}} | 0.21134 ^{\left\{3 \right\}} | ||
\hat{\lambda} | 0.16667 ^{\left\{2.5 \right\}} | 0.16669 ^{\left\{4 \right\}} | 0.16667 ^{\left\{2.5 \right\}} | 0.25379 ^{\left\{6 \right\}} | 0.07667 ^{\left\{1 \right\}} | 0.42571 ^{\left\{8 \right\}} | 0.21062 ^{\left\{5 \right\}} | 0.25636 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.31778 ^{\left\{5 \right\}} | 0.32053 ^{\left\{6 \right\}} | 0.33042 ^{\left\{8 \right\}} | 0.23697 ^{\left\{3 \right\}} | 0.10112 ^{\left\{1 \right\}} | 0.32202 ^{\left\{7 \right\}} | 0.19742 ^{\left\{2 \right\}} | 0.24728 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{44.5}} ^{\left\{3 \right\}} | {\textbf{55}} ^{\left\{4 \right\}} | {\textbf{58.5}} ^{\left\{5 \right\}} | {\textbf{60}} ^{\left\{6 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{94}} ^{\left\{8 \right\}} | {\textbf{42}} ^{\left\{2 \right\}} | {\textbf{66}} ^{\left\{7 \right\}} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
20 | |BIAS| | \hat{\vartheta} | 1.05821 ^{\left\{8 \right\}} | 0.62985 ^{\left\{3 \right\}} | 0.96882 ^{\left\{6 \right\}} | 0.61879 ^{\left\{2 \right\}} | 0.39728 ^{\left\{1 \right\}} | 1.00062 ^{\left\{7 \right\}} | 0.93184 ^{\left\{5 \right\}} | 0.74851 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.58239 ^{\left\{4 \right\}} | 0.61540 ^{\left\{8 \right\}} | 0.57588 ^{\left\{3 \right\}} | 0.61442 ^{\left\{7 \right\}} | 0.16810 ^{\left\{1 \right\}} | 0.59648 ^{\left\{6 \right\}} | 0.54321 ^{\left\{2 \right\}} | 0.58344 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.09205 ^{\left\{8 \right\}} | 0.08984 ^{\left\{5 \right\}} | 0.08749 ^{\left\{3 \right\}} | 0.09161 ^{\left\{6 \right\}} | 0.07490 ^{\left\{1 \right\}} | 0.09181 ^{\left\{7 \right\}} | 0.08360 ^{\left\{2 \right\}} | 0.08890 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.65193 ^{\left\{8 \right\}} | 0.48317 ^{\left\{2 \right\}} | 0.52978 ^{\left\{5 \right\}} | 0.51841 ^{\left\{4 \right\}} | 0.37874 ^{\left\{1 \right\}} | 0.57738 ^{\left\{7 \right\}} | 0.51808 ^{\left\{3 \right\}} | 0.53685 ^{\left\{6 \right\}} | ||
MSEs | \hat{\vartheta} | 1.62863 ^{\left\{8 \right\}} | 0.80009 ^{\left\{2 \right\}} | 1.26747 ^{\left\{6 \right\}} | 0.83422 ^{\left\{3 \right\}} | 0.44242 ^{\left\{1 \right\}} | 1.52407 ^{\left\{7 \right\}} | 1.26323 ^{\left\{5 \right\}} | 1.02485 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.42299 ^{\left\{3 \right\}} | 0.47351 ^{\left\{8 \right\}} | 0.43072 ^{\left\{4 \right\}} | 0.47310 ^{\left\{7 \right\}} | 0.39842 ^{\left\{2 \right\}} | 0.45399 ^{\left\{6 \right\}} | 0.39008 ^{\left\{1 \right\}} | 0.43912 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.01191 ^{\left\{6 \right\}} | 0.01157 ^{\left\{5 \right\}} | 0.01104 ^{\left\{3 \right\}} | 0.01199 ^{\left\{7 \right\}} | 0.00839 ^{\left\{1 \right\}} | 0.01226 ^{\left\{8 \right\}} | 0.01037 ^{\left\{2 \right\}} | 0.01130 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.56633 ^{\left\{8 \right\}} | 0.35145 ^{\left\{2 \right\}} | 0.39993 ^{\left\{3 \right\}} | 0.40530 ^{\left\{5 \right\}} | 0.22597 ^{\left\{1 \right\}} | 0.46238 ^{\left\{7 \right\}} | 0.39998 ^{\left\{4 \right\}} | 0.42492 ^{\left\{6 \right\}} | ||
MREs | \hat{\vartheta} | 0.30235 ^{\left\{8 \right\}} | 0.17996 ^{\left\{3 \right\}} | 0.27681 ^{\left\{6 \right\}} | 0.17680 ^{\left\{2 \right\}} | 0.11351 ^{\left\{1 \right\}} | 0.28589 ^{\left\{7 \right\}} | 0.26624 ^{\left\{5 \right\}} | 0.21386 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.77652 ^{\left\{4 \right\}} | 0.82054 ^{\left\{8 \right\}} | 0.76784 ^{\left\{3 \right\}} | 0.81923 ^{\left\{7 \right\}} | 0.73001 ^{\left\{2 \right\}} | 0.79531 ^{\left\{6 \right\}} | 0.72428 ^{\left\{1 \right\}} | 0.77792 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.18410 ^{\left\{8 \right\}} | 0.17968 ^{\left\{5 \right\}} | 0.17498 ^{\left\{3 \right\}} | 0.18321 ^{\left\{6 \right\}} | 0.14981 ^{\left\{1 \right\}} | 0.18363 ^{\left\{7 \right\}} | 0.16720 ^{\left\{2 \right\}} | 0.17780 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.52155 ^{\left\{8 \right\}} | 0.38654 ^{\left\{2 \right\}} | 0.42382 ^{\left\{5 \right\}} | 0.41473 ^{\left\{4 \right\}} | 0.30299 ^{\left\{1 \right\}} | 0.46190 ^{\left\{7 \right\}} | 0.41446 ^{\left\{3 \right\}} | 0.42948 ^{\left\{6 \right\}} | ||
\sum{Ranks} | {\textbf{81}} ^{\left\{7 \right\}} | {\textbf{53}} ^{\left\{4 \right\}} | {\textbf{50}} ^{\left\{3 \right\}} | {\textbf{60}} ^{\left\{6 \right\}} | {\textbf{14}} ^{\left\{1 \right\}} | {\textbf{82}} ^{\left\{8 \right\}} | {\textbf{35}} ^{\left\{2 \right\}} | {\textbf{57}} ^{\left\{5 \right\}} | ||
80 | |BIAS| | \hat{\vartheta} | 1.30458 ^{\left\{8 \right\}} | 0.99944 ^{\left\{2 \right\}} | 1.19014 ^{\left\{7 \right\}} | 1.02885 ^{\left\{3 \right\}} | 0.28553 ^{\left\{1 \right\}} | 1.10670 ^{\left\{4 \right\}} | 1.14568 ^{\left\{6 \right\}} | 1.11457 ^{\left\{5 \right\}} |
\hat{\varphi} | 0.32983 ^{\left\{3 \right\}} | 0.40620 ^{\left\{6 \right\}} | 0.34267 ^{\left\{4 \right\}} | 0.40746 ^{\left\{7 \right\}} | 0.27616 ^{\left\{1 \right\}} | 0.42471 ^{\left\{8 \right\}} | 0.32604 ^{\left\{2 \right\}} | 0.35934 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.06496 ^{\left\{7 \right\}} | 0.06255 ^{\left\{5 \right\}} | 0.05976 ^{\left\{3 \right\}} | 0.06558 ^{\left\{8 \right\}} | 0.03810 ^{\left\{1 \right\}} | 0.06030 ^{\left\{4 \right\}} | 0.05724 ^{\left\{2 \right\}} | 0.06303 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.60157 ^{\left\{8 \right\}} | 0.45112 ^{\left\{2 \right\}} | 0.47825 ^{\left\{5 \right\}} | 0.49541 ^{\left\{6 \right\}} | 0.19099 ^{\left\{1 \right\}} | 0.45370 ^{\left\{3 \right\}} | 0.45453 ^{\left\{4 \right\}} | 0.50033 ^{\left\{7 \right\}} | ||
MSEs | \hat{\vartheta} | 1.98067 ^{\left\{8 \right\}} | 1.42246 ^{\left\{2 \right\}} | 1.62721 ^{\left\{7 \right\}} | 1.51028 ^{\left\{3 \right\}} | 0.28600 ^{\left\{1 \right\}} | 1.54773 ^{\left\{5 \right\}} | 1.54350 ^{\left\{4 \right\}} | 1.62460 ^{\left\{6 \right\}} | |
\hat{\varphi} | 0.16347 ^{\left\{2 \right\}} | 0.24145 ^{\left\{7 \right\}} | 0.17842 ^{\left\{4 \right\}} | 0.24070 ^{\left\{6 \right\}} | 0.12275 ^{\left\{1 \right\}} | 0.27309 ^{\left\{8 \right\}} | 0.16427 ^{\left\{3 \right\}} | 0.19753 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00614 ^{\left\{7 \right\}} | 0.00590 ^{\left\{5 \right\}} | 0.00549 ^{\left\{3 \right\}} | 0.00646 ^{\left\{8 \right\}} | 0.00224 ^{\left\{1 \right\}} | 0.00582 ^{\left\{4 \right\}} | 0.00513 ^{\left\{2 \right\}} | 0.00600 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.50150 ^{\left\{8 \right\}} | 0.33442 ^{\left\{3 \right\}} | 0.35764 ^{\left\{5 \right\}} | 0.39078 ^{\left\{6 \right\}} | 0.06108 ^{\left\{1 \right\}} | 0.33595 ^{\left\{4 \right\}} | 0.33240 ^{\left\{2 \right\}} | 0.39877 ^{\left\{7 \right\}} | ||
MREs | \hat{\vartheta} | 0.37274 ^{\left\{8 \right\}} | 0.28555 ^{\left\{2 \right\}} | 0.34004 ^{\left\{7 \right\}} | 0.29396 ^{\left\{3 \right\}} | 0.08158 ^{\left\{1 \right\}} | 0.31620 ^{\left\{4 \right\}} | 0.32734 ^{\left\{6 \right\}} | 0.31845 ^{\left\{5 \right\}} | |
\hat{\varphi} | 0.43977 ^{\left\{3 \right\}} | 0.54161 ^{\left\{6 \right\}} | 0.45690 ^{\left\{4 \right\}} | 0.54328 ^{\left\{7 \right\}} | 0.36821 ^{\left\{1 \right\}} | 0.56628 ^{\left\{8 \right\}} | 0.43472 ^{\left\{2 \right\}} | 0.47912 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.12992 ^{\left\{7 \right\}} | 0.12509 ^{\left\{5 \right\}} | 0.11952 ^{\left\{3 \right\}} | 0.13116 ^{\left\{8 \right\}} | 0.07620 ^{\left\{1 \right\}} | 0.12061 ^{\left\{4 \right\}} | 0.11448 ^{\left\{2 \right\}} | 0.12607 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.48126 ^{\left\{8 \right\}} | 0.36089 ^{\left\{2 \right\}} | 0.38260 ^{\left\{5 \right\}} | 0.39633 ^{\left\{6 \right\}} | 0.15279 ^{\left\{1 \right\}} | 0.36296 ^{\left\{3 \right\}} | 0.36362 ^{\left\{4 \right\}} | 0.40027 ^{\left\{7 \right\}} | ||
\sum{Ranks} | {\textbf{77}} ^{\left\{8 \right\}} | {\textbf{47}} ^{\left\{3 \right\}} | {\textbf{57}} ^{\left\{4 \right\}} | {\textbf{71}} ^{\left\{7 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{59}} ^{\left\{5 \right\}} | {\textbf{39}} ^{\left\{2 \right\}} | {\textbf{70}} ^{\left\{6 \right\}} | ||
200 | |BIAS| | \hat{\vartheta} | 1.18071 ^{\left\{8 \right\}} | 1.13329 ^{\left\{4 \right\}} | 1.15680 ^{\left\{6 \right\}} | 1.15101 ^{\left\{5 \right\}} | 0.12881 ^{\left\{1 \right\}} | 1.09310 ^{\left\{2 \right\}} | 1.11947 ^{\left\{3 \right\}} | 1.17399 ^{\left\{7 \right\}} |
\hat{\varphi} | 0.21288 ^{\left\{2 \right\}} | 0.27282 ^{\left\{6 \right\}} | 0.22827 ^{\left\{4 \right\}} | 0.28207 ^{\left\{7 \right\}} | 0.16810 ^{\left\{1 \right\}} | 0.31936 ^{\left\{8 \right\}} | 0.21687 ^{\left\{3 \right\}} | 0.23691 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.05455 ^{\left\{5 \right\}} | 0.05483 ^{\left\{6 \right\}} | 0.05139 ^{\left\{4 \right\}} | 0.05648 ^{\left\{8 \right\}} | 0.02373 ^{\left\{1 \right\}} | 0.04586 ^{\left\{2 \right\}} | 0.05000 ^{\left\{3 \right\}} | 0.05607 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.50995 ^{\left\{8 \right\}} | 0.46810 ^{\left\{5 \right\}} | 0.45161 ^{\left\{4 \right\}} | 0.48892 ^{\left\{7 \right\}} | 0.11088 ^{\left\{1 \right\}} | 0.36948 ^{\left\{2 \right\}} | 0.42847 ^{\left\{3 \right\}} | 0.48519 ^{\left\{6 \right\}} | ||
MSEs | \hat{\vartheta} | 1.65210 ^{\left\{6 \right\}} | 1.59933 ^{\left\{5 \right\}} | 1.54359 ^{\left\{4 \right\}} | 1.65457 ^{\left\{7 \right\}} | 0.11230 ^{\left\{1 \right\}} | 1.41356 ^{\left\{2 \right\}} | 1.45126 ^{\left\{3 \right\}} | 1.65710 ^{\left\{8 \right\}} | |
\hat{\varphi} | 0.06995 ^{\left\{2 \right\}} | 0.11564 ^{\left\{6 \right\}} | 0.08167 ^{\left\{4 \right\}} | 0.12209 ^{\left\{7 \right\}} | 0.04607 ^{\left\{1 \right\}} | 0.16683 ^{\left\{8 \right\}} | 0.07397 ^{\left\{3 \right\}} | 0.08772 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00441 ^{\left\{5 \right\}} | 0.00457 ^{\left\{6 \right\}} | 0.00403 ^{\left\{4 \right\}} | 0.00483 ^{\left\{8 \right\}} | 0.00088 ^{\left\{1 \right\}} | 0.00341 ^{\left\{2 \right\}} | 0.00386 ^{\left\{3 \right\}} | 0.00477 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.38578 ^{\left\{8 \right\}} | 0.35447 ^{\left\{5 \right\}} | 0.32071 ^{\left\{4 \right\}} | 0.38130 ^{\left\{7 \right\}} | 0.02076 ^{\left\{1 \right\}} | 0.24604 ^{\left\{2 \right\}} | 0.29346 ^{\left\{3 \right\}} | 0.38069 ^{\left\{6 \right\}} | ||
MREs | \hat{\vartheta} | 0.33734 ^{\left\{8 \right\}} | 0.32380 ^{\left\{4 \right\}} | 0.33052 ^{\left\{6 \right\}} | 0.32886 ^{\left\{5 \right\}} | 0.03680 ^{\left\{1 \right\}} | 0.31232 ^{\left\{2 \right\}} | 0.31985 ^{\left\{3 \right\}} | 0.33543 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.28384 ^{\left\{2 \right\}} | 0.36376 ^{\left\{6 \right\}} | 0.30437 ^{\left\{4 \right\}} | 0.37610 ^{\left\{7 \right\}} | 0.22413 ^{\left\{1 \right\}} | 0.42582 ^{\left\{8 \right\}} | 0.28917 ^{\left\{3 \right\}} | 0.31587 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.10910 ^{\left\{5 \right\}} | 0.10967 ^{\left\{6 \right\}} | 0.10278 ^{\left\{4 \right\}} | 0.11295 ^{\left\{8 \right\}} | 0.04745 ^{\left\{1 \right\}} | 0.09173 ^{\left\{2 \right\}} | 0.10000 ^{\left\{3 \right\}} | 0.11214 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.40796 ^{\left\{8 \right\}} | 0.37448 ^{\left\{5 \right\}} | 0.36129 ^{\left\{4 \right\}} | 0.39114 ^{\left\{7 \right\}} | 0.08871 ^{\left\{1 \right\}} | 0.29559 ^{\left\{2 \right\}} | 0.34277 ^{\left\{3 \right\}} | 0.38815 ^{\left\{6 \right\}} | ||
\sum{Ranks} | {\textbf{67}} ^{\left\{6 \right\}} | {\textbf{64}} ^{\left\{5 \right\}} | {\textbf{52}} ^{\left\{4 \right\}} | {\textbf{83}} ^{\left\{8 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{42}} ^{\left\{3 \right\}} | {\textbf{36}} ^{\left\{2 \right\}} | {\textbf{76}} ^{\left\{7 \right\}} | ||
500 | |BIAS| | \hat{\vartheta} | 0.99609 ^{\left\{2 \right\}} | 1.12481 ^{\left\{6 \right\}} | 1.05940 ^{\left\{5 \right\}} | 1.12860 ^{\left\{7 \right\}} | 0.04256 ^{\left\{1 \right\}} | 1.04542 ^{\left\{4 \right\}} | 1.03887 ^{\left\{3 \right\}} | 1.14079 ^{\left\{8 \right\}} |
\hat{\varphi} | 0.14496 ^{\left\{2 \right\}} | 0.18941 ^{\left\{6 \right\}} | 0.15844 ^{\left\{4 \right\}} | 0.19306 ^{\left\{7 \right\}} | 0.10411 ^{\left\{1 \right\}} | 0.23525 ^{\left\{8 \right\}} | 0.15349 ^{\left\{3 \right\}} | 0.16453 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.04309 ^{\left\{3 \right\}} | 0.05010 ^{\left\{7 \right\}} | 0.04425 ^{\left\{5 \right\}} | 0.04998 ^{\left\{6 \right\}} | 0.01474 ^{\left\{1 \right\}} | 0.03603 ^{\left\{2 \right\}} | 0.04334 ^{\left\{4 \right\}} | 0.05109 ^{\left\{8 \right\}} | ||
\hat{\theta} | 0.38900 ^{\left\{4 \right\}} | 0.44670 ^{\left\{6 \right\}} | 0.39875 ^{\left\{5 \right\}} | 0.45266 ^{\left\{7 \right\}} | 0.06374 ^{\left\{1 \right\}} | 0.31824 ^{\left\{2 \right\}} | 0.38560 ^{\left\{3 \right\}} | 0.45867 ^{\left\{8 \right\}} | ||
MSEs | \hat{\vartheta} | 1.21294 ^{\left\{2 \right\}} | 1.50352 ^{\left\{6 \right\}} | 1.31440 ^{\left\{5 \right\}} | 1.52047 ^{\left\{8 \right\}} | 0.02893 ^{\left\{1 \right\}} | 1.25338 ^{\left\{3 \right\}} | 1.26686 ^{\left\{4 \right\}} | 1.51668 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.03263 ^{\left\{2 \right\}} | 0.05612 ^{\left\{6 \right\}} | 0.03902 ^{\left\{4 \right\}} | 0.05818 ^{\left\{7 \right\}} | 0.01736 ^{\left\{1 \right\}} | 0.09221 ^{\left\{8 \right\}} | 0.03639 ^{\left\{3 \right\}} | 0.04120 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00278 ^{\left\{3 \right\}} | 0.00378 ^{\left\{6.5 \right\}} | 0.00295 ^{\left\{5 \right\}} | 0.00378 ^{\left\{6.5 \right\}} | 0.00034 ^{\left\{1 \right\}} | 0.00220 ^{\left\{2 \right\}} | 0.00283 ^{\left\{4 \right\}} | 0.00400 ^{\left\{8 \right\}} | ||
\hat{\theta} | 0.23678 ^{\left\{4 \right\}} | 0.31580 ^{\left\{6 \right\}} | 0.25000 ^{\left\{5 \right\}} | 0.32430 ^{\left\{7 \right\}} | 0.00703 ^{\left\{1 \right\}} | 0.18536 ^{\left\{2 \right\}} | 0.23280 ^{\left\{3 \right\}} | 0.33477 ^{\left\{8 \right\}} | ||
MREs | \hat{\vartheta} | 0.28460 ^{\left\{2 \right\}} | 0.32137 ^{\left\{6 \right\}} | 0.30269 ^{\left\{5 \right\}} | 0.32246 ^{\left\{7 \right\}} | 0.01216 ^{\left\{1 \right\}} | 0.29869 ^{\left\{4 \right\}} | 0.29682 ^{\left\{3 \right\}} | 0.32594 ^{\left\{8 \right\}} | |
\hat{\varphi} | 0.19328 ^{\left\{2 \right\}} | 0.25255 ^{\left\{6 \right\}} | 0.21126 ^{\left\{4 \right\}} | 0.25741 ^{\left\{7 \right\}} | 0.13881 ^{\left\{1 \right\}} | 0.31367 ^{\left\{8 \right\}} | 0.20466 ^{\left\{3 \right\}} | 0.21938 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.08617 ^{\left\{3 \right\}} | 0.10020 ^{\left\{7 \right\}} | 0.08850 ^{\left\{5 \right\}} | 0.09997 ^{\left\{6 \right\}} | 0.02948 ^{\left\{1 \right\}} | 0.07207 ^{\left\{2 \right\}} | 0.08669 ^{\left\{4 \right\}} | 0.10217 ^{\left\{8 \right\}} | ||
\hat{\theta} | 0.31120 ^{\left\{4 \right\}} | 0.35736 ^{\left\{6 \right\}} | 0.31900 ^{\left\{5 \right\}} | 0.36213 ^{\left\{7 \right\}} | 0.05100 ^{\left\{1 \right\}} | 0.25459 ^{\left\{2 \right\}} | 0.30848 ^{\left\{3 \right\}} | 0.36694 ^{\left\{8 \right\}} | ||
\sum{Ranks} | {\textbf{33}} ^{\left\{2 \right\}} | {\textbf{74.5}} ^{\left\{6 \right\}} | {\textbf{57}} ^{\left\{5 \right\}} | {\textbf{82.5}} ^{\left\{7 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{47}} ^{\left\{4 \right\}} | {\textbf{40}} ^{\left\{3 \right\}} | {\textbf{86}} ^{\left\{8 \right\}} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
20 | |BIAS| | \hat{\vartheta} | 0.98923 ^{\left\{7 \right\}} | 0.64331 ^{\left\{3 \right\}} | 0.95672 ^{\left\{6 \right\}} | 0.63413 ^{\left\{2 \right\}} | 0.44818 ^{\left\{1 \right\}} | 1.04755 ^{\left\{8 \right\}} | 0.90857 ^{\left\{5 \right\}} | 0.78916 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.95367 ^{\left\{6 \right\}} | 0.90318 ^{\left\{4 \right\}} | 0.88553 ^{\left\{3 \right\}} | 0.95450 ^{\left\{7 \right\}} | 0.31253 ^{\left\{1 \right\}} | 0.97463 ^{\left\{8 \right\}} | 0.85825 ^{\left\{2 \right\}} | 0.93652 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.50387 ^{\left\{8 \right\}} | 0.29370 ^{\left\{2 \right\}} | 0.38814 ^{\left\{5 \right\}} | 0.31558 ^{\left\{3 \right\}} | 0.23477 ^{\left\{1 \right\}} | 0.41787 ^{\left\{7 \right\}} | 0.38863 ^{\left\{6 \right\}} | 0.36144 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.83605 ^{\left\{8 \right\}} | 0.71444 ^{\left\{3 \right\}} | 0.81238 ^{\left\{7 \right\}} | 0.68991 ^{\left\{2 \right\}} | 0.62151 ^{\left\{1 \right\}} | 0.74404 ^{\left\{5 \right\}} | 0.75604 ^{\left\{6 \right\}} | 0.71561 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 1.35323 ^{\left\{7 \right\}} | 0.71389 ^{\left\{2 \right\}} | 1.18225 ^{\left\{6 \right\}} | 0.73718 ^{\left\{3 \right\}} | 0.37586 ^{\left\{1 \right\}} | 1.57224 ^{\left\{8 \right\}} | 1.13154 ^{\left\{5 \right\}} | 1.02701 ^{\left\{4 \right\}} | |
\hat{\varphi} | 1.18857 ^{\left\{8 \right\}} | 1.06788 ^{\left\{4 \right\}} | 1.02750 ^{\left\{3 \right\}} | 1.18599 ^{\left\{7 \right\}} | 0.87512 ^{\left\{1 \right\}} | 1.15778 ^{\left\{6 \right\}} | 0.96462 ^{\left\{2 \right\}} | 1.13400 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.36432 ^{\left\{8 \right\}} | 0.14714 ^{\left\{2 \right\}} | 0.22539 ^{\left\{5 \right\}} | 0.17712 ^{\left\{3 \right\}} | 0.09172 ^{\left\{1 \right\}} | 0.28638 ^{\left\{7 \right\}} | 0.23923 ^{\left\{6 \right\}} | 0.22267 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.77865 ^{\left\{8 \right\}} | 0.64926 ^{\left\{4 \right\}} | 0.77561 ^{\left\{7 \right\}} | 0.60519 ^{\left\{2 \right\}} | 0.52925 ^{\left\{1 \right\}} | 0.67762 ^{\left\{5 \right\}} | 0.68866 ^{\left\{6 \right\}} | 0.64046 ^{\left\{3 \right\}} | ||
MREs | \hat{\vartheta} | 0.28264 ^{\left\{7 \right\}} | 0.18380 ^{\left\{3 \right\}} | 0.27335 ^{\left\{6 \right\}} | 0.18118 ^{\left\{2 \right\}} | 0.12805 ^{\left\{1 \right\}} | 0.29930 ^{\left\{8 \right\}} | 0.25959 ^{\left\{5 \right\}} | 0.22547 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.47683 ^{\left\{6 \right\}} | 0.45159 ^{\left\{4 \right\}} | 0.44276 ^{\left\{3 \right\}} | 0.47725 ^{\left\{7 \right\}} | 0.40539 ^{\left\{1 \right\}} | 0.48731 ^{\left\{8 \right\}} | 0.42912 ^{\left\{2 \right\}} | 0.46826 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.33591 ^{\left\{8 \right\}} | 0.19580 ^{\left\{2 \right\}} | 0.25876 ^{\left\{5 \right\}} | 0.21038 ^{\left\{3 \right\}} | 0.15651 ^{\left\{1 \right\}} | 0.27858 ^{\left\{7 \right\}} | 0.25908 ^{\left\{6 \right\}} | 0.24096 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.33442 ^{\left\{8 \right\}} | 0.28578 ^{\left\{3 \right\}} | 0.32495 ^{\left\{7 \right\}} | 0.27596 ^{\left\{2 \right\}} | 0.24860 ^{\left\{1 \right\}} | 0.29762 ^{\left\{5 \right\}} | 0.30242 ^{\left\{6 \right\}} | 0.28624 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{89}} ^{\left\{8 \right\}} | {\textbf{36}} ^{\left\{2 \right\}} | {\textbf{63}} ^{\left\{6 \right\}} | {\textbf{43}} ^{\left\{3 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{82}} ^{\left\{7 \right\}} | {\textbf{57}} ^{\left\{5 \right\}} | {\textbf{50}} ^{\left\{4 \right\}} | ||
80 | |BIAS| | \hat{\vartheta} | 1.00512 ^{\left\{8 \right\}} | 0.76116 ^{\left\{3 \right\}} | 0.98814 ^{\left\{7 \right\}} | 0.76068 ^{\left\{2 \right\}} | 0.22490 ^{\left\{1 \right\}} | 0.94177 ^{\left\{5 \right\}} | 0.95845 ^{\left\{6 \right\}} | 0.83406 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.56247 ^{\left\{3 \right\}} | 0.64453 ^{\left\{6 \right\}} | 0.57353 ^{\left\{4 \right\}} | 0.64522 ^{\left\{7 \right\}} | 0.46925 ^{\left\{1 \right\}} | 0.76277 ^{\left\{8 \right\}} | 0.55915 ^{\left\{2 \right\}} | 0.63949 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.45485 ^{\left\{8 \right\}} | 0.31115 ^{\left\{2 \right\}} | 0.36895 ^{\left\{6 \right\}} | 0.33000 ^{\left\{3 \right\}} | 0.11306 ^{\left\{1 \right\}} | 0.39112 ^{\left\{7 \right\}} | 0.36093 ^{\left\{5 \right\}} | 0.34405 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.76702 ^{\left\{8 \right\}} | 0.62063 ^{\left\{3 \right\}} | 0.68635 ^{\left\{7 \right\}} | 0.62598 ^{\left\{4 \right\}} | 0.33066 ^{\left\{1 \right\}} | 0.60384 ^{\left\{2 \right\}} | 0.66063 ^{\left\{6 \right\}} | 0.63130 ^{\left\{5 \right\}} | ||
MSEs | \hat{\vartheta} | 1.24539 ^{\left\{7 \right\}} | 0.92842 ^{\left\{2 \right\}} | 1.16588 ^{\left\{6 \right\}} | 0.94580 ^{\left\{3 \right\}} | 0.13919 ^{\left\{1 \right\}} | 1.25646 ^{\left\{8 \right\}} | 1.12647 ^{\left\{5 \right\}} | 1.05555 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.45689 ^{\left\{3 \right\}} | 0.57098 ^{\left\{6 \right\}} | 0.46410 ^{\left\{4 \right\}} | 0.57244 ^{\left\{7 \right\}} | 0.32482 ^{\left\{1 \right\}} | 0.71835 ^{\left\{8 \right\}} | 0.44181 ^{\left\{2 \right\}} | 0.55971 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.28629 ^{\left\{8 \right\}} | 0.17260 ^{\left\{2 \right\}} | 0.20504 ^{\left\{5 \right\}} | 0.19582 ^{\left\{3 \right\}} | 0.02220 ^{\left\{1 \right\}} | 0.25122 ^{\left\{7 \right\}} | 0.20232 ^{\left\{4 \right\}} | 0.20735 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.68706 ^{\left\{8 \right\}} | 0.51170 ^{\left\{3 \right\}} | 0.58072 ^{\left\{7 \right\}} | 0.52071 ^{\left\{4 \right\}} | 0.16747 ^{\left\{1 \right\}} | 0.49400 ^{\left\{2 \right\}} | 0.55280 ^{\left\{6 \right\}} | 0.52733 ^{\left\{5 \right\}} | ||
MREs | \hat{\vartheta} | 0.28718 ^{\left\{8 \right\}} | 0.21747 ^{\left\{3 \right\}} | 0.28233 ^{\left\{7 \right\}} | 0.21734 ^{\left\{2 \right\}} | 0.06426 ^{\left\{1 \right\}} | 0.26908 ^{\left\{5 \right\}} | 0.27384 ^{\left\{6 \right\}} | 0.23830 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.28123 ^{\left\{3 \right\}} | 0.32226 ^{\left\{6 \right\}} | 0.28677 ^{\left\{4 \right\}} | 0.32261 ^{\left\{7 \right\}} | 0.23462 ^{\left\{1 \right\}} | 0.38138 ^{\left\{8 \right\}} | 0.27957 ^{\left\{2 \right\}} | 0.31974 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.30323 ^{\left\{8 \right\}} | 0.20744 ^{\left\{2 \right\}} | 0.24597 ^{\left\{6 \right\}} | 0.22000 ^{\left\{3 \right\}} | 0.07538 ^{\left\{1 \right\}} | 0.26075 ^{\left\{7 \right\}} | 0.24062 ^{\left\{5 \right\}} | 0.22937 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.30681 ^{\left\{8 \right\}} | 0.24825 ^{\left\{3 \right\}} | 0.27454 ^{\left\{7 \right\}} | 0.25039 ^{\left\{4 \right\}} | 0.13226 ^{\left\{1 \right\}} | 0.24153 ^{\left\{2 \right\}} | 0.26425 ^{\left\{6 \right\}} | 0.25252 ^{\left\{5 \right\}} | ||
\sum{Ranks} | {\textbf{80}} ^{\left\{8 \right\}} | {\textbf{41}} ^{\left\{2 \right\}} | {\textbf{70}} ^{\left\{7 \right\}} | {\textbf{49}} ^{\left\{3 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{69}} ^{\left\{6 \right\}} | {\textbf{55}} ^{\left\{4 \right\}} | {\textbf{56}} ^{\left\{5 \right\}} | ||
200 | |BIAS| | \hat{\vartheta} | 0.98460 ^{\left\{6 \right\}} | 0.86500 ^{\left\{3 \right\}} | 1.00674 ^{\left\{7 \right\}} | 0.86298 ^{\left\{2 \right\}} | 0.12154 ^{\left\{1 \right\}} | 1.05269 ^{\left\{8 \right\}} | 0.98185 ^{\left\{5 \right\}} | 0.89235 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.38859 ^{\left\{2 \right\}} | 0.45911 ^{\left\{5 \right\}} | 0.41129 ^{\left\{4 \right\}} | 0.46722 ^{\left\{6 \right\}} | 0.31253 ^{\left\{1 \right\}} | 0.67732 ^{\left\{8 \right\}} | 0.40329 ^{\left\{3 \right\}} | 0.46920 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.39873 ^{\left\{8 \right\}} | 0.31023 ^{\left\{2 \right\}} | 0.35370 ^{\left\{6 \right\}} | 0.32546 ^{\left\{3 \right\}} | 0.06881 ^{\left\{1 \right\}} | 0.37938 ^{\left\{7 \right\}} | 0.34126 ^{\left\{5 \right\}} | 0.32900 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.68985 ^{\left\{8 \right\}} | 0.57483 ^{\left\{3 \right\}} | 0.64129 ^{\left\{7 \right\}} | 0.59868 ^{\left\{5 \right\}} | 0.21029 ^{\left\{1 \right\}} | 0.55195 ^{\left\{2 \right\}} | 0.61763 ^{\left\{6 \right\}} | 0.59808 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 1.11626 ^{\left\{6 \right\}} | 1.01791 ^{\left\{2 \right\}} | 1.13048 ^{\left\{7 \right\}} | 1.02064 ^{\left\{3 \right\}} | 0.05498 ^{\left\{1 \right\}} | 1.30905 ^{\left\{8 \right\}} | 1.09868 ^{\left\{5 \right\}} | 1.05550 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.23053 ^{\left\{2 \right\}} | 0.31234 ^{\left\{5 \right\}} | 0.25573 ^{\left\{4 \right\}} | 0.32276 ^{\left\{6 \right\}} | 0.15678 ^{\left\{1 \right\}} | 0.58268 ^{\left\{8 \right\}} | 0.24649 ^{\left\{3 \right\}} | 0.32421 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.22103 ^{\left\{7 \right\}} | 0.16583 ^{\left\{2 \right\}} | 0.18036 ^{\left\{5 \right\}} | 0.17985 ^{\left\{4 \right\}} | 0.00837 ^{\left\{1 \right\}} | 0.22479 ^{\left\{8 \right\}} | 0.17270 ^{\left\{3 \right\}} | 0.18259 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.58585 ^{\left\{8 \right\}} | 0.45832 ^{\left\{3 \right\}} | 0.51809 ^{\left\{7 \right\}} | 0.48976 ^{\left\{5 \right\}} | 0.07171 ^{\left\{1 \right\}} | 0.44322 ^{\left\{2 \right\}} | 0.49209 ^{\left\{6 \right\}} | 0.48968 ^{\left\{4 \right\}} | ||
MREs | \hat{\vartheta} | 0.28132 ^{\left\{6 \right\}} | 0.24714 ^{\left\{3 \right\}} | 0.28764 ^{\left\{7 \right\}} | 0.24657 ^{\left\{2 \right\}} | 0.03472 ^{\left\{1 \right\}} | 0.30077 ^{\left\{8 \right\}} | 0.28053 ^{\left\{5 \right\}} | 0.25496 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.19429 ^{\left\{2 \right\}} | 0.22956 ^{\left\{5 \right\}} | 0.20564 ^{\left\{4 \right\}} | 0.23361 ^{\left\{6 \right\}} | 0.15627 ^{\left\{1 \right\}} | 0.33866 ^{\left\{8 \right\}} | 0.20165 ^{\left\{3 \right\}} | 0.23460 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.26582 ^{\left\{8 \right\}} | 0.20682 ^{\left\{2 \right\}} | 0.23580 ^{\left\{6 \right\}} | 0.21697 ^{\left\{3 \right\}} | 0.04587 ^{\left\{1 \right\}} | 0.25292 ^{\left\{7 \right\}} | 0.22751 ^{\left\{5 \right\}} | 0.21933 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.27594 ^{\left\{8 \right\}} | 0.22993 ^{\left\{3 \right\}} | 0.25652 ^{\left\{7 \right\}} | 0.23947 ^{\left\{5 \right\}} | 0.08412 ^{\left\{1 \right\}} | 0.22078 ^{\left\{2 \right\}} | 0.24705 ^{\left\{6 \right\}} | 0.23923 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{71}} ^{\left\{6.5 \right\}} | {\textbf{38}} ^{\left\{2 \right\}} | {\textbf{71}} ^{\left\{6.5 \right\}} | {\textbf{50}} ^{\left\{3 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{76}} ^{\left\{8 \right\}} | {\textbf{55}} ^{\left\{4 \right\}} | {\textbf{59}} ^{\left\{5 \right\}} | ||
500 | |BIAS| | \hat{\vartheta} | 0.93304 ^{\left\{5 \right\}} | 0.93263 ^{\left\{4 \right\}} | 0.97539 ^{\left\{7 \right\}} | 0.92961 ^{\left\{3 \right\}} | 0.05348 ^{\left\{1 \right\}} | 1.08240 ^{\left\{8 \right\}} | 0.95522 ^{\left\{6 \right\}} | 0.92527 ^{\left\{2 \right\}} |
\hat{\varphi} | 0.27572 ^{\left\{2 \right\}} | 0.32936 ^{\left\{5 \right\}} | 0.29210 ^{\left\{4 \right\}} | 0.33160 ^{\left\{6 \right\}} | 0.19113 ^{\left\{1 \right\}} | 0.58412 ^{\left\{8 \right\}} | 0.28766 ^{\left\{3 \right\}} | 0.33820 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.34882 ^{\left\{7 \right\}} | 0.31976 ^{\left\{2 \right\}} | 0.33838 ^{\left\{6 \right\}} | 0.33117 ^{\left\{5 \right\}} | 0.03908 ^{\left\{1 \right\}} | 0.35124 ^{\left\{8 \right\}} | 0.32736 ^{\left\{3 \right\}} | 0.32969 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.61892 ^{\left\{8 \right\}} | 0.57580 ^{\left\{3 \right\}} | 0.60923 ^{\left\{7 \right\}} | 0.59341 ^{\left\{6 \right\}} | 0.12272 ^{\left\{1 \right\}} | 0.51040 ^{\left\{2 \right\}} | 0.59246 ^{\left\{5 \right\}} | 0.58416 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 0.99386 ^{\left\{2 \right\}} | 1.04383 ^{\left\{6 \right\}} | 1.04849 ^{\left\{7 \right\}} | 1.04352 ^{\left\{5 \right\}} | 0.00732 ^{\left\{1 \right\}} | 1.28318 ^{\left\{8 \right\}} | 1.01861 ^{\left\{3 \right\}} | 1.03056 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.11591 ^{\left\{2 \right\}} | 0.16651 ^{\left\{5 \right\}} | 0.13079 ^{\left\{4 \right\}} | 0.16807 ^{\left\{6 \right\}} | 0.06394 ^{\left\{1 \right\}} | 0.45248 ^{\left\{8 \right\}} | 0.12739 ^{\left\{3 \right\}} | 0.17250 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.17000 ^{\left\{7 \right\}} | 0.15789 ^{\left\{3 \right\}} | 0.15993 ^{\left\{4 \right\}} | 0.16663 ^{\left\{5 \right\}} | 0.00250 ^{\left\{1 \right\}} | 0.18698 ^{\left\{8 \right\}} | 0.15186 ^{\left\{2 \right\}} | 0.16915 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.48714 ^{\left\{8 \right\}} | 0.45146 ^{\left\{4 \right\}} | 0.47250 ^{\left\{6 \right\}} | 0.47497 ^{\left\{7 \right\}} | 0.02504 ^{\left\{1 \right\}} | 0.39915 ^{\left\{2 \right\}} | 0.45105 ^{\left\{3 \right\}} | 0.47078 ^{\left\{5 \right\}} | ||
MREs | \hat{\vartheta} | 0.26658 ^{\left\{5 \right\}} | 0.26647 ^{\left\{4 \right\}} | 0.27868 ^{\left\{7 \right\}} | 0.26560 ^{\left\{3 \right\}} | 0.01528 ^{\left\{1 \right\}} | 0.30926 ^{\left\{8 \right\}} | 0.27292 ^{\left\{6 \right\}} | 0.26436 ^{\left\{2 \right\}} | |
\hat{\varphi} | 0.13786 ^{\left\{2 \right\}} | 0.16468 ^{\left\{5 \right\}} | 0.14605 ^{\left\{4 \right\}} | 0.16580 ^{\left\{6 \right\}} | 0.09557 ^{\left\{1 \right\}} | 0.29206 ^{\left\{8 \right\}} | 0.14383 ^{\left\{3 \right\}} | 0.16910 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.23255 ^{\left\{7 \right\}} | 0.21318 ^{\left\{2 \right\}} | 0.22559 ^{\left\{6 \right\}} | 0.22078 ^{\left\{5 \right\}} | 0.02606 ^{\left\{1 \right\}} | 0.23416 ^{\left\{8 \right\}} | 0.21824 ^{\left\{3 \right\}} | 0.21980 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.24757 ^{\left\{8 \right\}} | 0.23032 ^{\left\{3 \right\}} | 0.24369 ^{\left\{7 \right\}} | 0.23736 ^{\left\{6 \right\}} | 0.04909 ^{\left\{1 \right\}} | 0.20416 ^{\left\{2 \right\}} | 0.23698 ^{\left\{5 \right\}} | 0.23367 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{63}} ^{\left\{5.5 \right\}} | {\textbf{46}} ^{\left\{3 \right\}} | {\textbf{69}} ^{\left\{7 \right\}} | {\textbf{63}} ^{\left\{5.5 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{78}} ^{\left\{8 \right\}} | {\textbf{45}} ^{\left\{2 \right\}} | {\textbf{56}} ^{\left\{4 \right\}} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
20 | |BIAS| | \hat{\vartheta} | 1.25197 ^{\left\{8 \right\}} | 0.45438 ^{\left\{3 \right\}} | 1.06521 ^{\left\{7 \right\}} | 0.44888 ^{\left\{2 \right\}} | 0.20680 ^{\left\{1 \right\}} | 0.83805 ^{\left\{5 \right\}} | 1.02528 ^{\left\{6 \right\}} | 0.62513 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.58123 ^{\left\{5 \right\}} | 0.60203 ^{\left\{7 \right\}} | 0.57995 ^{\left\{4 \right\}} | 0.61278 ^{\left\{8 \right\}} | 0.16575 ^{\left\{1 \right\}} | 0.57749 ^{\left\{3 \right\}} | 0.53508 ^{\left\{2 \right\}} | 0.58165 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.08854 ^{\left\{8 \right\}} | 0.07652 ^{\left\{2 \right\}} | 0.08227 ^{\left\{7 \right\}} | 0.07831 ^{\left\{3 \right\}} | 0.06474 ^{\left\{1 \right\}} | 0.08065 ^{\left\{6 \right\}} | 0.07939 ^{\left\{4 \right\}} | 0.07980 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.66759 ^{\left\{8 \right\}} | 0.42262 ^{\left\{2 \right\}} | 0.53041 ^{\left\{7 \right\}} | 0.44839 ^{\left\{3 \right\}} | 0.32466 ^{\left\{1 \right\}} | 0.51024 ^{\left\{5 \right\}} | 0.52797 ^{\left\{6 \right\}} | 0.48959 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 2.41625 ^{\left\{8 \right\}} | 0.60512 ^{\left\{2 \right\}} | 1.67131 ^{\left\{6 \right\}} | 0.67908 ^{\left\{3 \right\}} | 0.18285 ^{\left\{1 \right\}} | 1.58289 ^{\left\{5 \right\}} | 1.74298 ^{\left\{7 \right\}} | 1.01407 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.42148 ^{\left\{3 \right\}} | 0.46192 ^{\left\{7 \right\}} | 0.43565 ^{\left\{5 \right\}} | 0.46874 ^{\left\{8 \right\}} | 0.38218 ^{\left\{1 \right\}} | 0.43432 ^{\left\{4 \right\}} | 0.38271 ^{\left\{2 \right\}} | 0.43679 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.01072 ^{\left\{8 \right\}} | 0.00870 ^{\left\{2 \right\}} | 0.00963 ^{\left\{7 \right\}} | 0.00906 ^{\left\{3 \right\}} | 0.00620 ^{\left\{1 \right\}} | 0.00950 ^{\left\{6 \right\}} | 0.00923 ^{\left\{5 \right\}} | 0.00919 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.58894 ^{\left\{8 \right\}} | 0.28693 ^{\left\{2 \right\}} | 0.40885 ^{\left\{6 \right\}} | 0.32249 ^{\left\{3 \right\}} | 0.16767 ^{\left\{1 \right\}} | 0.38646 ^{\left\{5 \right\}} | 0.41599 ^{\left\{7 \right\}} | 0.36863 ^{\left\{4 \right\}} | ||
MREs | \hat{\vartheta} | 0.27821 ^{\left\{8 \right\}} | 0.10097 ^{\left\{3 \right\}} | 0.23671 ^{\left\{7 \right\}} | 0.09975 ^{\left\{2 \right\}} | 0.04596 ^{\left\{1 \right\}} | 0.18623 ^{\left\{5 \right\}} | 0.22784 ^{\left\{6 \right\}} | 0.13892 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.77497 ^{\left\{5 \right\}} | 0.80271 ^{\left\{7 \right\}} | 0.77327 ^{\left\{4 \right\}} | 0.81704 ^{\left\{8 \right\}} | 0.70903 ^{\left\{1 \right\}} | 0.76998 ^{\left\{3 \right\}} | 0.71344 ^{\left\{2 \right\}} | 0.77554 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.17707 ^{\left\{8 \right\}} | 0.15303 ^{\left\{2 \right\}} | 0.16453 ^{\left\{7 \right\}} | 0.15662 ^{\left\{3 \right\}} | 0.12948 ^{\left\{1 \right\}} | 0.16130 ^{\left\{6 \right\}} | 0.15879 ^{\left\{4 \right\}} | 0.15960 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.53407 ^{\left\{8 \right\}} | 0.33809 ^{\left\{2 \right\}} | 0.42432 ^{\left\{7 \right\}} | 0.35871 ^{\left\{3 \right\}} | 0.25973 ^{\left\{1 \right\}} | 0.40819 ^{\left\{5 \right\}} | 0.42237 ^{\left\{6 \right\}} | 0.39167 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{85}} ^{\left\{8 \right\}} | {\textbf{41}} ^{\left\{2 \right\}} | {\textbf{74}} ^{\left\{7 \right\}} | {\textbf{49}} ^{\left\{3 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{58}} ^{\left\{6 \right\}} | {\textbf{57}} ^{\left\{5 \right\}} | {\textbf{56}} ^{\left\{4 \right\}} | ||
80 | |BIAS| | \hat{\vartheta} | 1.62748 ^{\left\{8 \right\}} | 0.91367 ^{\left\{2 \right\}} | 1.37823 ^{\left\{7 \right\}} | 0.98139 ^{\left\{3 \right\}} | 0.11224 ^{\left\{1 \right\}} | 1.13720 ^{\left\{5 \right\}} | 1.31803 ^{\left\{6 \right\}} | 1.11805 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.31837 ^{\left\{3 \right\}} | 0.39968 ^{\left\{7 \right\}} | 0.34474 ^{\left\{4 \right\}} | 0.40380 ^{\left\{8 \right\}} | 0.27352 ^{\left\{1 \right\}} | 0.37466 ^{\left\{6 \right\}} | 0.31821 ^{\left\{2 \right\}} | 0.35079 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.07169 ^{\left\{8 \right\}} | 0.05804 ^{\left\{3 \right\}} | 0.06253 ^{\left\{7 \right\}} | 0.06113 ^{\left\{6 \right\}} | 0.03286 ^{\left\{1 \right\}} | 0.05699 ^{\left\{2 \right\}} | 0.05980 ^{\left\{5 \right\}} | 0.05870 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.64853 ^{\left\{8 \right\}} | 0.39956 ^{\left\{2 \right\}} | 0.49396 ^{\left\{7 \right\}} | 0.44278 ^{\left\{4 \right\}} | 0.16292 ^{\left\{1 \right\}} | 0.43570 ^{\left\{3 \right\}} | 0.47512 ^{\left\{6 \right\}} | 0.45276 ^{\left\{5 \right\}} | ||
MSEs | \hat{\vartheta} | 3.14585 ^{\left\{8 \right\}} | 1.58782 ^{\left\{2 \right\}} | 2.33956 ^{\left\{7 \right\}} | 1.79431 ^{\left\{3 \right\}} | 0.08679 ^{\left\{1 \right\}} | 1.96177 ^{\left\{4 \right\}} | 2.22845 ^{\left\{6 \right\}} | 2.05141 ^{\left\{5 \right\}} | |
\hat{\varphi} | 0.15254 ^{\left\{2 \right\}} | 0.23761 ^{\left\{7 \right\}} | 0.18156 ^{\left\{4 \right\}} | 0.24031 ^{\left\{8 \right\}} | 0.12335 ^{\left\{1 \right\}} | 0.22013 ^{\left\{6 \right\}} | 0.15798 ^{\left\{3 \right\}} | 0.19064 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00707 ^{\left\{8 \right\}} | 0.00520 ^{\left\{4 \right\}} | 0.00579 ^{\left\{7 \right\}} | 0.00566 ^{\left\{6 \right\}} | 0.00171 ^{\left\{1 \right\}} | 0.00514 ^{\left\{2 \right\}} | 0.00541 ^{\left\{5 \right\}} | 0.00519 ^{\left\{3 \right\}} | ||
\hat{\theta} | 0.56658 ^{\left\{8 \right\}} | 0.28713 ^{\left\{2 \right\}} | 0.38674 ^{\left\{7 \right\}} | 0.34041 ^{\left\{4 \right\}} | 0.04197 ^{\left\{1 \right\}} | 0.32550 ^{\left\{3 \right\}} | 0.36722 ^{\left\{6 \right\}} | 0.35156 ^{\left\{5 \right\}} | ||
MREs | \hat{\vartheta} | 0.36166 ^{\left\{8 \right\}} | 0.20304 ^{\left\{2 \right\}} | 0.30627 ^{\left\{7 \right\}} | 0.21809 ^{\left\{3 \right\}} | 0.02494 ^{\left\{1 \right\}} | 0.25271 ^{\left\{5 \right\}} | 0.29289 ^{\left\{6 \right\}} | 0.24846 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.42449 ^{\left\{3 \right\}} | 0.53291 ^{\left\{7 \right\}} | 0.45966 ^{\left\{4 \right\}} | 0.53840 ^{\left\{8 \right\}} | 0.36469 ^{\left\{1 \right\}} | 0.49955 ^{\left\{6 \right\}} | 0.42429 ^{\left\{2 \right\}} | 0.46771 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.14337 ^{\left\{8 \right\}} | 0.11609 ^{\left\{3 \right\}} | 0.12506 ^{\left\{7 \right\}} | 0.12226 ^{\left\{6 \right\}} | 0.06572 ^{\left\{1 \right\}} | 0.11399 ^{\left\{2 \right\}} | 0.11961 ^{\left\{5 \right\}} | 0.11740 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.51882 ^{\left\{8 \right\}} | 0.31965 ^{\left\{2 \right\}} | 0.39517 ^{\left\{7 \right\}} | 0.35422 ^{\left\{4 \right\}} | 0.13034 ^{\left\{1 \right\}} | 0.34856 ^{\left\{3 \right\}} | 0.38010 ^{\left\{6 \right\}} | 0.36221 ^{\left\{5 \right\}} | ||
\sum{Ranks} | {\textbf{80}} ^{\left\{8 \right\}} | {\textbf{43}} ^{\left\{2 \right\}} | {\textbf{75}} ^{\left\{7 \right\}} | {\textbf{63}} ^{\left\{6 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{47}} ^{\left\{3 \right\}} | {\textbf{58}} ^{\left\{5 \right\}} | {\textbf{54}} ^{\left\{4 \right\}} | ||
200 | |BIAS| | \hat{\vartheta} | 1.48139 ^{\left\{8 \right\}} | 1.17284 ^{\left\{2 \right\}} | 1.40391 ^{\left\{7 \right\}} | 1.21294 ^{\left\{4 \right\}} | 0.04307 ^{\left\{1 \right\}} | 1.17950 ^{\left\{3 \right\}} | 1.33404 ^{\left\{6 \right\}} | 1.29174 ^{\left\{5 \right\}} |
\hat{\varphi} | 0.20186 ^{\left\{2 \right\}} | 0.26830 ^{\left\{7 \right\}} | 0.21385 ^{\left\{4 \right\}} | 0.26575 ^{\left\{6 \right\}} | 0.16575 ^{\left\{1 \right\}} | 0.27408 ^{\left\{8 \right\}} | 0.20558 ^{\left\{3 \right\}} | 0.23166 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.06056 ^{\left\{8 \right\}} | 0.05260 ^{\left\{3 \right\}} | 0.05573 ^{\left\{7 \right\}} | 0.05571 ^{\left\{6 \right\}} | 0.02038 ^{\left\{1 \right\}} | 0.04542 ^{\left\{2 \right\}} | 0.05309 ^{\left\{4 \right\}} | 0.05470 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.54563 ^{\left\{8 \right\}} | 0.42847 ^{\left\{3 \right\}} | 0.47838 ^{\left\{7 \right\}} | 0.45810 ^{\left\{5 \right\}} | 0.09746 ^{\left\{1 \right\}} | 0.36816 ^{\left\{2 \right\}} | 0.44966 ^{\left\{4 \right\}} | 0.46232 ^{\left\{6 \right\}} | ||
MSEs | \hat{\vartheta} | 2.63270 ^{\left\{8 \right\}} | 2.08923 ^{\left\{3 \right\}} | 2.37558 ^{\left\{7 \right\}} | 2.20468 ^{\left\{5 \right\}} | 0.02535 ^{\left\{1 \right\}} | 1.86391 ^{\left\{2 \right\}} | 2.18628 ^{\left\{4 \right\}} | 2.32684 ^{\left\{6 \right\}} | |
\hat{\varphi} | 0.06343 ^{\left\{2 \right\}} | 0.11259 ^{\left\{7 \right\}} | 0.07126 ^{\left\{4 \right\}} | 0.11064 ^{\left\{6 \right\}} | 0.04499 ^{\left\{1 \right\}} | 0.12626 ^{\left\{8 \right\}} | 0.06649 ^{\left\{3 \right\}} | 0.08397 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00531 ^{\left\{8 \right\}} | 0.00437 ^{\left\{3 \right\}} | 0.00472 ^{\left\{6 \right\}} | 0.00486 ^{\left\{7 \right\}} | 0.00066 ^{\left\{1 \right\}} | 0.00347 ^{\left\{2 \right\}} | 0.00441 ^{\left\{4 \right\}} | 0.00470 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.44122 ^{\left\{8 \right\}} | 0.33416 ^{\left\{3 \right\}} | 0.37078 ^{\left\{5 \right\}} | 0.37139 ^{\left\{6 \right\}} | 0.01519 ^{\left\{1 \right\}} | 0.25838 ^{\left\{2 \right\}} | 0.33754 ^{\left\{4 \right\}} | 0.37704 ^{\left\{7 \right\}} | ||
MREs | \hat{\vartheta} | 0.32920 ^{\left\{8 \right\}} | 0.26063 ^{\left\{2 \right\}} | 0.31198 ^{\left\{7 \right\}} | 0.26954 ^{\left\{4 \right\}} | 0.00957 ^{\left\{1 \right\}} | 0.26211 ^{\left\{3 \right\}} | 0.29645 ^{\left\{6 \right\}} | 0.28705 ^{\left\{5 \right\}} | |
\hat{\varphi} | 0.26915 ^{\left\{2 \right\}} | 0.35774 ^{\left\{7 \right\}} | 0.28513 ^{\left\{4 \right\}} | 0.35434 ^{\left\{6 \right\}} | 0.22100 ^{\left\{1 \right\}} | 0.36544 ^{\left\{8 \right\}} | 0.27411 ^{\left\{3 \right\}} | 0.30888 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.12113 ^{\left\{8 \right\}} | 0.10520 ^{\left\{3 \right\}} | 0.11146 ^{\left\{7 \right\}} | 0.11142 ^{\left\{6 \right\}} | 0.04075 ^{\left\{1 \right\}} | 0.09084 ^{\left\{2 \right\}} | 0.10618 ^{\left\{4 \right\}} | 0.10941 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.43650 ^{\left\{8 \right\}} | 0.34278 ^{\left\{3 \right\}} | 0.38270 ^{\left\{7 \right\}} | 0.36648 ^{\left\{5 \right\}} | 0.07797 ^{\left\{1 \right\}} | 0.29453 ^{\left\{2 \right\}} | 0.35973 ^{\left\{4 \right\}} | 0.36986 ^{\left\{6 \right\}} | ||
\sum{Ranks} | {\textbf{78}} ^{\left\{8 \right\}} | {\textbf{46}} ^{\left\{3 \right\}} | {\textbf{72}} ^{\left\{7 \right\}} | {\textbf{66}} ^{\left\{6 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{44}} ^{\left\{2 \right\}} | {\textbf{49}} ^{\left\{4 \right\}} | {\textbf{65}} ^{\left\{5 \right\}} | ||
500 | |BIAS| | \hat{\vartheta} | 1.29672 ^{\left\{5 \right\}} | 1.27235 ^{\left\{3 \right\}} | 1.31237 ^{\left\{6 \right\}} | 1.32513 ^{\left\{7 \right\}} | 0.01519 ^{\left\{1 \right\}} | 1.15120 ^{\left\{2 \right\}} | 1.28994 ^{\left\{4 \right\}} | 1.34189 ^{\left\{8 \right\}} |
\hat{\varphi} | 0.13744 ^{\left\{2 \right\}} | 0.17802 ^{\left\{6 \right\}} | 0.14815 ^{\left\{4 \right\}} | 0.18664 ^{\left\{7 \right\}} | 0.10227 ^{\left\{1 \right\}} | 0.19392 ^{\left\{8 \right\}} | 0.14640 ^{\left\{3 \right\}} | 0.15865 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.04970 ^{\left\{5 \right\}} | 0.05107 ^{\left\{6 \right\}} | 0.04913 ^{\left\{4 \right\}} | 0.05400 ^{\left\{8 \right\}} | 0.01264 ^{\left\{1 \right\}} | 0.03665 ^{\left\{2 \right\}} | 0.04825 ^{\left\{3 \right\}} | 0.05335 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.44102 ^{\left\{5 \right\}} | 0.44509 ^{\left\{6 \right\}} | 0.43050 ^{\left\{4 \right\}} | 0.47518 ^{\left\{8 \right\}} | 0.05962 ^{\left\{1 \right\}} | 0.31796 ^{\left\{2 \right\}} | 0.42160 ^{\left\{3 \right\}} | 0.46945 ^{\left\{7 \right\}} | ||
MSEs | \hat{\vartheta} | 2.07266 ^{\left\{4 \right\}} | 2.19148 ^{\left\{6 \right\}} | 2.07839 ^{\left\{5 \right\}} | 2.34226 ^{\left\{8 \right\}} | 0.00344 ^{\left\{1 \right\}} | 1.67247 ^{\left\{2 \right\}} | 2.02330 ^{\left\{3 \right\}} | 2.31957 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.02955 ^{\left\{2 \right\}} | 0.05030 ^{\left\{6 \right\}} | 0.03417 ^{\left\{4 \right\}} | 0.05288 ^{\left\{7 \right\}} | 0.01679 ^{\left\{1 \right\}} | 0.06276 ^{\left\{8 \right\}} | 0.03295 ^{\left\{3 \right\}} | 0.03874 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00377 ^{\left\{4 \right\}} | 0.00418 ^{\left\{6 \right\}} | 0.00378 ^{\left\{5 \right\}} | 0.00452 ^{\left\{7 \right\}} | 0.00025 ^{\left\{1 \right\}} | 0.00242 ^{\left\{2 \right\}} | 0.00363 ^{\left\{3 \right\}} | 0.00454 ^{\left\{8 \right\}} | ||
\hat{\theta} | 0.30987 ^{\left\{5 \right\}} | 0.34423 ^{\left\{6 \right\}} | 0.30505 ^{\left\{4 \right\}} | 0.37795 ^{\left\{8 \right\}} | 0.00564 ^{\left\{1 \right\}} | 0.19875 ^{\left\{2 \right\}} | 0.29242 ^{\left\{3 \right\}} | 0.37470 ^{\left\{7 \right\}} | ||
MREs | \hat{\vartheta} | 0.28816 ^{\left\{5 \right\}} | 0.28275 ^{\left\{3 \right\}} | 0.29164 ^{\left\{6 \right\}} | 0.29447 ^{\left\{7 \right\}} | 0.00337 ^{\left\{1 \right\}} | 0.25582 ^{\left\{2 \right\}} | 0.28665 ^{\left\{4 \right\}} | 0.29820 ^{\left\{8 \right\}} | |
\hat{\varphi} | 0.18326 ^{\left\{2 \right\}} | 0.23736 ^{\left\{6 \right\}} | 0.19754 ^{\left\{4 \right\}} | 0.24885 ^{\left\{7 \right\}} | 0.13636 ^{\left\{1 \right\}} | 0.25856 ^{\left\{8 \right\}} | 0.19520 ^{\left\{3 \right\}} | 0.21153 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.09940 ^{\left\{5 \right\}} | 0.10214 ^{\left\{6 \right\}} | 0.09825 ^{\left\{4 \right\}} | 0.10801 ^{\left\{8 \right\}} | 0.02528 ^{\left\{1 \right\}} | 0.07330 ^{\left\{2 \right\}} | 0.09651 ^{\left\{3 \right\}} | 0.10671 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.35281 ^{\left\{5 \right\}} | 0.35607 ^{\left\{6 \right\}} | 0.34440 ^{\left\{4 \right\}} | 0.38014 ^{\left\{8 \right\}} | 0.04770 ^{\left\{1 \right\}} | 0.25437 ^{\left\{2 \right\}} | 0.33728 ^{\left\{3 \right\}} | 0.37556 ^{\left\{7 \right\}} | ||
\sum{Ranks} | {\textbf{49}} ^{\left\{4 \right\}} | {\textbf{66}} ^{\left\{6 \right\}} | {\textbf{54}} ^{\left\{5 \right\}} | {\textbf{90}} ^{\left\{8 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{42}} ^{\left\{3 \right\}} | {\textbf{38}} ^{\left\{2 \right\}} | {\textbf{81}} ^{\left\{7 \right\}} |
\mathit{\boldsymbol{\eta}}^{\intercal} | n | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
(\hat{\vartheta}=1.75, \hat{\varphi}=0.5, \hat{\lambda}=0.25, \hat{\theta}=1.25) | 20 | 2 | 7 | 1 | 5 | 4 | 8 | 3 | 6 |
80 | 3 | 7 | 2 | 6 | 1 | 5 | 4 | 8 | |
200 | 1.5 | 7 | 4 | 5 | 1.5 | 6 | 3 | 8 | |
500 | 2 | 5.5 | 4 | 5.5 | 1 | 7 | 3 | 8 | |
(\hat{\vartheta}=1.75, \hat{\varphi}=2, \hat{\lambda}=1.5, \hat{\theta}=2.5) | 20 | 1 | 3 | 2 | 7 | 4 | 8 | 5.5 | 5.5 |
80 | 1 | 3 | 4 | 6 | 2 | 8 | 5 | 7 | |
200 | 2 | 3 | 4.5 | 6.5 | 1 | 8 | 4.5 | 6.5 | |
500 | 3 | 4 | 5 | 6 | 1 | 8 | 2 | 7 | |
(\hat{\vartheta}=3.5, \hat{\varphi}=0.75, \hat{\lambda}=0.5, \hat{\theta}=1.25) | 20 | 7 | 4 | 3 | 6 | 1 | 8 | 2 | 5 |
80 | 8 | 3 | 4 | 7 | 1 | 5 | 2 | 6 | |
200 | 6 | 5 | 4 | 8 | 1 | 3 | 2 | 7 | |
500 | 2 | 6 | 5 | 7 | 1 | 4 | 3 | 8 | |
(\hat{\vartheta}=3.5, \hat{\varphi}=2, \hat{\lambda}=1.5, \hat{\theta}=2.5) | 20 | 8 | 2 | 6 | 3 | 1 | 7 | 5 | 4 |
80 | 8 | 2 | 7 | 3 | 1 | 6 | 4 | 5 | |
200 | 6.5 | 2 | 6.5 | 3 | 1 | 8 | 4 | 5 | |
500 | 5.5 | 3 | 7 | 5.5 | 1 | 8 | 2 | 4 | |
(\hat{\vartheta}=4.5, \hat{\varphi}=0.75, \hat{\lambda}=0.5, \hat{\theta}=1.25) | 20 | 8 | 2 | 7 | 3 | 1 | 6 | 5 | 4 |
80 | 8 | 2 | 7 | 6 | 1 | 3 | 5 | 4 | |
200 | 8 | 3 | 7 | 6 | 1 | 2 | 4 | 5 | |
500 | 4 | 6 | 5 | 8 | 1 | 3 | 2 | 7 | |
(\hat{\vartheta}=4.5, \hat{\varphi}=0.75, \hat{\lambda}=0.5, \hat{\theta}=1.25) | 20 | 8 | 2 | 5 | 3 | 1 | 7 | 6 | 4 |
80 | 6 | 2 | 4 | 3 | 1 | 8 | 7 | 5 | |
200 | 6 | 2 | 4 | 3 | 1 | 7 | 8 | 5 | |
500 | 6 | 2 | 5 | 3 | 1 | 8 | 7 | 4 | |
(\hat{\vartheta}=0.25, \hat{\varphi}=3.5, \hat{\lambda}=3, \hat{\theta}=0.25) | 20 | 1 | 6 | 8 | 2 | 7 | 5 | 4 | 3 |
80 | 1.5 | 5 | 8 | 1.5 | 6 | 4 | 3 | 7 | |
200 | 1 | 7 | 4 | 6 | 2 | 3 | 5 | 8 | |
500 | 2 | 8 | 6 | 7 | 1 | 3 | 4.5 | 4.5 | |
(\hat{\vartheta}=0.75, \hat{\varphi}=2.5, \hat{\lambda}=4.25, \hat{\theta}=0.25) | 20 | 2 | 8 | 6 | 5 | 3 | 1 | 4 | 7 |
80 | 1.5 | 7 | 5 | 6 | 1.5 | 3 | 4 | 8 | |
200 | 2 | 7 | 5 | 6 | 1 | 3 | 4 | 8 | |
500 | 2 | 8 | 5 | 6 | 1 | 3 | 4 | 7 | |
\sum Ranks | \textbf{133.5} | \textbf{143.5} | \textbf{160} | \textbf{164} | \textbf{54} | \textbf{176} | \textbf{130.5} | \textbf{190.5} | |
{\textbf{Overall Rank}} | \textbf{3} | \textbf{4} | \textbf{5} | \textbf{6} | \textbf{1} | \textbf{7} | \textbf{2} | \textbf{8} |
Model | Par.. | Estimates | (SEs) | AIC | CAIC | BIC | HQIC | W^{*} | A^{*} | KS | (PV) |
EWFr | \hat{\vartheta} | 56.93662 | (38.42845) | 827.52150 | 827.84670 | 838.92960 | 832.15660 | 0.01991 | 0.13402 | 0.03757 | 0.99713 |
\hat{\varphi} | 0.46697 | (0.22382) | |||||||||
\hat{\lambda} | 0.71825 | (0.01713) | |||||||||
\hat{\theta} | 0.01794 | (0.01207) | |||||||||
OLxFr | \hat{\vartheta} | 2.18260 | (1.04763) | 827.70270 | 828.02790 | 839.11080 | 832.33780 | 0.02380 | 0.16520 | 0.04060 | 0.98433 |
\hat{\varphi} | 625.38000 | (622.71234) | |||||||||
\hat{a} | 0.12210 | (0.08023) | |||||||||
\hat{b} | 1.38560 | (0.17273) | |||||||||
KMOFr | \hat{\vartheta} | 43.87750 | (128.52731) | 831.05330 | 831.54510 | 845.31340 | 836.84730 | 0.26278 | 0.34950 | 0.04457 | 0.96120 |
\hat{\varphi} | 0.52028 | (0.41388) | |||||||||
\hat{\delta} | 0.01314 | (0.00808) | |||||||||
\hat{a} | 3.27359 | (2.90929) | |||||||||
\hat{b} | 19.93782 | (47.58906) | |||||||||
EFr | \hat{a} | 1426.40000 | (1440.19245) | 830.85880 | 831.05240 | 839.41490 | 834.33520 | 0.06720 | 0.46640 | 0.04910 | 0.91754 |
\hat{b} | 0.26240 | (0.02850) | |||||||||
\hat{\theta} | 46.24800 | (22.87321) | |||||||||
BFr | \hat{\vartheta} | 0.60970 | (0.32261) | 833.09830 | 833.42350 | 844.50640 | 837.73350 | 0.06900 | 0.47650 | 0.05540 | 0.82683 |
\hat{\varphi} | 36.60200 | (19.48341) | |||||||||
\hat{a} | 739.38700 | (629.24021) | |||||||||
\hat{b} | 0.32240 | (0.06044) | |||||||||
GExFr | \hat{\vartheta} | 226.67000 | (267.96324) | 840.21630 | 840.54150 | 851.62450 | 844.85150 | 0.14320 | 0.95970 | 0.06640 | 0.62593 |
\hat{\varphi} | 91.93900 | (133.94324) | |||||||||
\hat{a} | 22.27100 | (119.19139) | |||||||||
\hat{b} | 0.07090 | (0.04132) | |||||||||
TEFr | \hat{\vartheta} | 3.25820 | (0.40714) | 892.00150 | 892.09750 | 897.70560 | 894.31910 | 0.74430 | 4.54640 | 0.14080 | 0.01254 |
\hat{\varphi} | 0.75210 | (0.04224) | |||||||||
\hat{a} | 39.38721 | (40.24321) | |||||||||
\hat{b} | 0.25243 | (0.76041) | |||||||||
Fr | \hat{\theta} | 0.75208 | (0.04242) | 892.00150 | 892.09750 | 897.70560 | 894.31910 | 0.74432 | 4.54642 | 0.14079 | 0.01250 |
\hat{\lambda} | 2.43109 | (0.21928) |
Model | Par.. | Estimates | (SEs) | AIC | CAIC | BIC | HQIC | W^{*} | A^{*} | KS | (PV) |
EWFr | \hat{\vartheta} | 0.76563 | (0.3765631) | 119.68850 | 120.37820 | 128.26110 | 123.06020 | 0.04181 | 0.23988 | 0.06847 | 0.92920 |
\hat{\varphi} | 0.04349 | (0.3074545) | |||||||||
\hat{\lambda} | 145.67068 | (208.851634) | |||||||||
\hat{\theta} | 4.60846 | (1.2033681) | |||||||||
OLxFr | \hat{\vartheta} | 5.14301 | (9.9790719) | 119.94170 | 120.63140 | 128.51430 | 123.31340 | 0.04741 | 0.26530 | 0.07631 | 0.85664 |
\hat{\varphi} | 5.82568 | (7.6204045) | |||||||||
\hat{a} | 4.17374 | (2.671917) | |||||||||
\hat{b} | 2.82338 | (0.9308868) | |||||||||
KMOFr | \hat{\vartheta} | 31946.70000 | (837.7074) | 121.90480 | 122.95750 | 132.62050 | 126.11940 | 0.04616 | 0.26108 | 0.07450 | 0.87551 |
\hat{\varphi} | 3.40405 | (1.493079) | |||||||||
\hat{\delta} | 3.35291 | (0.9682264) | |||||||||
\hat{a} | 0.85381 | (0.1934628) | |||||||||
\hat{b} | 13724.50000 | (32837.29) | |||||||||
EFr | \hat{a} | 2.58672 | (2.2847576) | 122.19730 | 122.88700 | 130.76990 | 125.56900 | 0.07082 | 0.40707 | 0.08894 | 0.70136 |
\hat{b} | 0.50304 | (0.4780356) | |||||||||
\hat{\theta} | 6.25000 | (10.0300775) | |||||||||
BFr | \hat{\vartheta} | 2.38748 | (5.65075) | 120.58420 | 121.27380 | 129.15670 | 123.95580 | 0.06008 | 0.32203 | 0.07953 | 0.82045 |
\hat{\varphi} | 1.00168 | (5.322252) | |||||||||
\hat{a} | 22.38231 | (162.860747) | |||||||||
\hat{b} | 27.37096 | (295.790324) | |||||||||
GExFr | \hat{\vartheta} | 2.41716 | (8.509608) | 120.57980 | 121.26950 | 129.15240 | 123.95150 | 0.06064 | 0.32329 | 0.07962 | 0.81934 |
\hat{\varphi} | 1.20859 | (2.106142) | |||||||||
\hat{a} | 24.77784 | (82.649275) | |||||||||
\hat{b} | 15.60163 | (85.339807) | |||||||||
TEFr | \hat{\vartheta} | 4.04638 | (1.0119058) | 121.04420 | 121.73390 | 129.61670 | 124.41580 | 0.06547 | 0.34378 | 0.07500 | 0.87047 |
\hat{\varphi} | 2.50000 | (0.5973595) | |||||||||
\hat{a} | 5.25000 | (2.6300897) | |||||||||
\hat{b} | 0.09255 | (1.2750272) | |||||||||
Fr | \hat{\theta} | 5.43392 | (0.50788) | 121.80430 | 122.00430 | 126.09060 | 123.49010 | 0.11497 | 0.64202 | 0.10013 | 0.55274 |
\hat{\lambda} | 230.48644 | (110.91778) |
Methods | \hat{\vartheta} | \hat{\varphi} | \hat{\lambda} | \hat{\theta} | W^{*} | A^{*} | KS | PV |
MLEs | 56.93661 | 0.46697 | 0.71825 | 0.01794 | 0.01991 | 0.13402 | 0.03757 | 0.99713 |
LSEs | 56.93660 | 0.55502 | 0.71932 | 0.01871 | 0.01850 | 0.12986 | 0.03334 | 0.99918 |
MPSEs | 56.93660 | 0.46698 | 0.71750 | 0.01717 | 0.01916 | 0.13069 | 0.03617 | 0.99708 |
WLSEs | 56.94615 | 0.51962 | 0.71884 | 0.01825 | 0.01815 | 0.12600 | 0.03251 | 0.99947 |
CRVMEs | 56.93659 | 0.55064 | 0.71962 | 0.01891 | 0.01795 | 0.12584 | 0.03352 | 0.99910 |
ADEs | 56.93668 | 0.47772 | 0.71887 | 0.01815 | 0.01763 | 0.12016 | 0.03167 | 0.99968 |
PCEs | 57.47389 | 0.81500 | 0.72219 | 0.02155 | 0.03320 | 0.23254 | 0.03830 | 0.99367 |
RADEs | 56.93805 | 0.56319 | 0.71967 | 0.01899 | 0.01830 | 0.12878 | 0.03385 | 0.99895 |
\textbf{Methods} | \hat{\vartheta} | \hat{\varphi} | \hat{\lambda} | \hat{\theta} | W^{*} | A^{*} | \textbf{KS} | \textbf{PV} |
\textbf{MLEs} | 0.76563 | 0.04349 | 145.67068 | 4.60846 | 0.04181 | 0.23988 | 0.06847 | 0.92920 |
\textbf{LSEs} | 0.69421 | 0.08110 | 145.67010 | 4.56661 | 0.04850 | 0.26973 | 0.06486 | 0.94154 |
\textbf{MPSEs} | 0.75534 | 0.13947 | 145.66920 | 4.65631 | 0.05531 | 0.29551 | 0.07780 | 0.81897 |
\textbf{WLSEs} | 0.71596 | 0.01530 | 145.66740 | 4.57637 | 0.04747 | 0.26675 | 0.06895 | 0.90999 |
\textbf{CRVMEs} | 0.71398 | 0.00100 | 145.67030 | 4.57259 | 0.04761 | 0.26713 | 0.06733 | 0.92336 |
\textbf{ADEs} | 0.72963 | 0.00010 | 145.67980 | 4.57988 | 0.04696 | 0.26562 | 0.07047 | 0.89642 |
\textbf{PCEs} | 0.75075 | 0.02596 | 145.67020 | 4.59649 | 0.04775 | 0.26737 | 0.07311 | 0.87060 |
\textbf{RADEs} | 0.74062 | 0.00010 | 145.66970 | 4.57722 | 0.04668 | 0.26516 | 0.07058 | 0.89538 |
\mathit{\boldsymbol{\eta}}^{\intercal} | \mu | \sigma^{2} | \xi_{1}(X) | \xi_{2}(X) |
(\vartheta=1.50, \; \varphi=0.50, \; \theta=1.50) | 1.3511 | 0.4752 | 3.1421 | 56.2021 |
(\vartheta=2.50, \; \varphi=0.75, \; \theta=1.75) | 1.2701 | 0.1329 | 1.9395 | 16.1410 |
(\vartheta=2.25, \; \varphi=1.00, \; \theta=2.75) | 1.1904 | 0.0780 | 2.2648 | 19.2907 |
(\vartheta=2.25, \; \varphi=0.25, \; \theta=0.75) | 1.6154 | 0.7600 | 1.6132 | 9.0569 |
(\vartheta=2.25, \; \varphi=1.25, \; \theta=3.25) | 1.1831 | 0.0747 | 2.8068 | 27.8064 |
(\vartheta=5.50, \; \varphi=1.50, \; \theta=2.50) | 1.1927 | 0.0223 | 1.7507 | 11.7806 |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
20 | |BIAS| | \hat{\vartheta} | 0.58150 ^{\{3\}} | 0.59477 ^{\{4\}} | 0.53422 ^{\{1\}} | 0.54541 ^{\{2\}} | 0.60555 ^{\{5\}} | 0.71685 ^{\{8\}} | 0.67445 ^{\{7\}} | 0.61466 ^{\{6\}} |
\hat{\varphi} | 0.47550 ^{\{4\}} | 0.54812 ^{\{7\}} | 0.46820 ^{\{2\}} | 0.53093 ^{\{6\}} | 0.19120 ^{\{1\}} | 0.55104 ^{\{8\}} | 0.46906 ^{\{3\}} | 0.51894 ^{\{5\}} | ||
\hat{\lambda} | 0.08930 ^{\{2\}} | 0.10351 ^{\{7\}} | 0.08402 ^{\{1\}} | 0.10057 ^{\{5\}} | 0.10077 ^{\{6\}} | 0.11204 ^{\{8\}} | 0.09758 ^{\{3\}} | 0.09866 ^{\{4\}} | ||
\hat{\theta} | 0.49749 ^{\{7\}} | 0.47497 ^{\{4\}} | 0.46884 ^{\{3\}} | 0.48364 ^{\{5\}} | 0.45238 ^{\{1\}} | 0.53285 ^{\{8\}} | 0.46505 ^{\{2\}} | 0.48608 ^{\{6\}} | ||
MSEs | \hat{\vartheta} | 0.47425 ^{\{2\}} | 0.52401 ^{\{4\}} | 0.52337 ^{\{3\}} | 0.46463 ^{\{1\}} | 0.54588 ^{\{6\}} | 0.64689 ^{\{8\}} | 0.59726 ^{\{7\}} | 0.53428 ^{\{5\}} | |
\hat{\varphi} | 0.27624 ^{\{1\}} | 0.38734 ^{\{7\}} | 0.29294 ^{\{2\}} | 0.36212 ^{\{6\}} | 0.31849 ^{\{4\}} | 0.39577 ^{\{8\}} | 0.30160 ^{\{3\}} | 0.35513 ^{\{5\}} | ||
\hat{\lambda} | 0.01107 ^{\{2\}} | 0.01423 ^{\{7\}} | 0.00983 ^{\{1\}} | 0.01356 ^{\{5\}} | 0.01357 ^{\{6\}} | 0.01651 ^{\{8\}} | 0.01289 ^{\{3\}} | 0.01296 ^{\{4\}} | ||
\hat{\theta} | 0.37764 ^{\{7\}} | 0.33320 ^{\{3\}} | 0.35778 ^{\{4\}} | 0.36101 ^{\{5\}} | 0.29381 ^{\{1\}} | 0.38887 ^{\{8\}} | 0.32193 ^{\{2\}} | 0.36311 ^{\{6\}} | ||
MREs | \hat{\vartheta} | 0.33229 ^{\{3\}} | 0.33987 ^{\{4\}} | 0.17807 ^{\{1\}} | 0.31166 ^{\{2\}} | 0.34603 ^{\{5\}} | 0.40963 ^{\{8\}} | 0.38540 ^{\{7\}} | 0.35123 ^{\{6\}} | |
\hat{\varphi} | 0.95101 ^{\{3\}} | 1.09624 ^{\{7\}} | 0.93641 ^{\{1\}} | 1.06186 ^{\{6\}} | 0.97231 ^{\{4\}} | 1.10208 ^{\{8\}} | 0.93811 ^{\{2\}} | 1.03788 ^{\{5\}} | ||
\hat{\lambda} | 0.35719 ^{\{2\}} | 0.41405 ^{\{7\}} | 0.33607 ^{\{1\}} | 0.40230 ^{\{5\}} | 0.40307 ^{\{6\}} | 0.44817 ^{\{8\}} | 0.39034 ^{\{3\}} | 0.39464 ^{\{4\}} | ||
\hat{\theta} | 0.39799 ^{\{7\}} | 0.37998 ^{\{4\}} | 0.37507 ^{\{3\}} | 0.38691 ^{\{5\}} | 0.36190 ^{\{1\}} | 0.42628 ^{\{8\}} | 0.37204 ^{\{2\}} | 0.38886 ^{\{6\}} | ||
\sum{Ranks} | 43 ^{\{2\}} | 65 ^{\{7\}} | 23 ^{\{1\}} | 53 ^{\{5\}} | 46 ^{\{4\}} | 96 ^{\{8\}} | 44 ^{\{3\}} | 62 ^{\{6\}} | ||
80 | |BIAS| | \hat{\vartheta} | 0.65720 ^{\{2\}} | 0.73260 ^{\{6\}} | 0.64523 ^{\{1\}} | 0.71780 ^{\{4\}} | 0.67014 ^{\{3\}} | 0.78730 ^{\{8\}} | 0.72979 ^{\{5\}} | 0.78285 ^{\{7\}} |
\hat{\varphi} | 0.29918 ^{\{4\}} | 0.36951 ^{\{7\}} | 0.27270 ^{\{1\}} | 0.36572 ^{\{6\}} | 0.28461 ^{\{2\}} | 0.43485 ^{\{8\}} | 0.29440 ^{\{3\}} | 0.31911 ^{\{5\}} | ||
\hat{\lambda} | 0.06946 ^{\{2\}} | 0.08089 ^{\{7\}} | 0.06755 ^{\{1\}} | 0.07955 ^{\{6\}} | 0.07162 ^{\{4\}} | 0.07099 ^{\{3\}} | 0.07301 ^{\{5\}} | 0.08347 ^{\{8\}} | ||
\hat{\theta} | 0.41705 ^{\{6\}} | 0.41605 ^{\{5\}} | 0.41277 ^{\{4\}} | 0.43216 ^{\{7\}} | 0.34179 ^{\{1\}} | 0.38656 ^{\{3\}} | 0.37952 ^{\{2\}} | 0.45183 ^{\{8\}} | ||
MSEs | \hat{\vartheta} | 0.53699 ^{\{1\}} | 0.65792 ^{\{5\}} | 0.71214 ^{\{7\}} | 0.63722 ^{\{3\}} | 0.62257 ^{\{2\}} | 0.71659 ^{\{8\}} | 0.64185 ^{\{4\}} | 0.70948 ^{\{6\}} | |
\hat{\varphi} | 0.12478 ^{\{3\}} | 0.19502 ^{\{7\}} | 0.11097 ^{\{1\}} | 0.18881 ^{\{6\}} | 0.12320 ^{\{2\}} | 0.28084 ^{\{8\}} | 0.13150 ^{\{4\}} | 0.15268 ^{\{5\}} | ||
\hat{\lambda} | 0.00672 ^{\{1\}} | 0.00884 ^{\{7\}} | 0.00693 ^{\{2\}} | 0.00853 ^{\{6\}} | 0.00712 ^{\{4\}} | 0.00711 ^{\{3\}} | 0.00740 ^{\{5\}} | 0.00932 ^{\{8\}} | ||
\hat{\theta} | 0.26049 ^{\{5\}} | 0.25434 ^{\{4\}} | 0.30456 ^{\{8\}} | 0.27845 ^{\{6\}} | 0.16695 ^{\{1\}} | 0.24032 ^{\{3\}} | 0.20942 ^{\{2\}} | 0.29980 ^{\{7\}} | ||
MREs | \hat{\vartheta} | 0.37554 ^{\{2\}} | 0.41863 ^{\{6\}} | 0.21508 ^{\{1\}} | 0.41017 ^{\{4\}} | 0.38294 ^{\{3\}} | 0.44989 ^{\{8\}} | 0.41702 ^{\{5\}} | 0.44734 ^{\{7\}} | |
\hat{\varphi} | 0.59835 ^{\{4\}} | 0.73902 ^{\{7\}} | 0.54540 ^{\{1\}} | 0.73144 ^{\{6\}} | 0.56922 ^{\{2\}} | 0.86970 ^{\{8\}} | 0.58881 ^{\{3\}} | 0.63822 ^{\{5\}} | ||
\hat{\lambda} | 0.27786 ^{\{2\}} | 0.32356 ^{\{7\}} | 0.27019 ^{\{1\}} | 0.31820 ^{\{6\}} | 0.28647 ^{\{4\}} | 0.28396 ^{\{3\}} | 0.29205 ^{\{5\}} | 0.33388 ^{\{8\}} | ||
\hat{\theta} | 0.33364 ^{\{6\}} | 0.33284 ^{\{5\}} | 0.33022 ^{\{4\}} | 0.34573 ^{\{7\}} | 0.27343 ^{\{1\}} | 0.30924 ^{\{3\}} | 0.30361 ^{\{2\}} | 0.36147 ^{\{8\}} | ||
\sum{Ranks} | 38 ^{\{3\}} | 73 ^{\{7\}} | 32 ^{\{2\}} | 67 ^{\{6\}} | 29 ^{\{1\}} | 66 ^{\{5\}} | 45 ^{\{4\}} | 82 ^{\{8\}} | ||
200 | |BIAS| | \hat{\vartheta} | 0.54244 ^{\{1\}} | 0.74060 ^{\{6\}} | 0.66029 ^{\{4\}} | 0.72065 ^{\{5\}} | 0.56860 ^{\{2\}} | 0.78528 ^{\{8\}} | 0.64417 ^{\{3\}} | 0.74318 ^{\{7\}} |
\hat{\varphi} | 0.20343 ^{\{3\}} | 0.27714 ^{\{7\}} | 0.18758 ^{\{1\}} | 0.27628 ^{\{6\}} | 0.19120 ^{\{2\}} | 0.33648 ^{\{8\}} | 0.21264 ^{\{4\}} | 0.21990 ^{\{5\}} | ||
\hat{\lambda} | 0.05329 ^{\{1\}} | 0.07033 ^{\{7\}} | 0.05985 ^{\{3\}} | 0.06898 ^{\{6\}} | 0.05669 ^{\{2\}} | 0.05992 ^{\{4\}} | 0.06059 ^{\{5\}} | 0.07617 ^{\{8\}} | ||
\hat{\theta} | 0.30910 ^{\{2\}} | 0.38666 ^{\{6\}} | 0.37834 ^{\{5\}} | 0.39240 ^{\{7\}} | 0.26754 ^{\{1\}} | 0.34697 ^{\{4\}} | 0.32167 ^{\{3\}} | 0.42492 ^{\{8\}} | ||
MSEs | \hat{\vartheta} | 0.39682 ^{\{1\}} | 0.65105 ^{\{6\}} | 0.72704 ^{\{8\}} | 0.62292 ^{\{4\}} | 0.51529 ^{\{2\}} | 0.70871 ^{\{7\}} | 0.53035 ^{\{3\}} | 0.65051 ^{\{5\}} | |
\hat{\varphi} | 0.06226 ^{\{3\}} | 0.11401 ^{\{7\}} | 0.05424 ^{\{1\}} | 0.11214 ^{\{6\}} | 0.05643 ^{\{2\}} | 0.18593 ^{\{8\}} | 0.06927 ^{\{4\}} | 0.07447 ^{\{5\}} | ||
\hat{\lambda} | 0.00405 ^{\{1\}} | 0.00665 ^{\{7\}} | 0.00571 ^{\{5\}} | 0.00644 ^{\{6\}} | 0.00452 ^{\{2\}} | 0.00513 ^{\{4\}} | 0.00507 ^{\{3\}} | 0.00753 ^{\{8\}} | ||
\hat{\theta} | 0.14395 ^{\{2\}} | 0.20851 ^{\{5\}} | 0.26568 ^{\{8\}} | 0.22075 ^{\{6\}} | 0.10322 ^{\{1\}} | 0.19203 ^{\{4\}} | 0.14560 ^{\{3\}} | 0.25309 ^{\{7\}} | ||
MREs | \hat{\vartheta} | 0.30997 ^{\{2\}} | 0.42320 ^{\{6\}} | 0.22010 ^{\{1\}} | 0.41180 ^{\{5\}} | 0.32491 ^{\{3\}} | 0.44873 ^{\{8\}} | 0.36810 ^{\{4\}} | 0.42468 ^{\{7\}} | |
\hat{\varphi} | 0.40685 ^{\{3\}} | 0.55429 ^{\{7\}} | 0.37516 ^{\{1\}} | 0.55256 ^{\{6\}} | 0.38240 ^{\{2\}} | 0.67295 ^{\{8\}} | 0.42528 ^{\{4\}} | 0.43980 ^{\{5\}} | ||
\hat{\lambda} | 0.21316 ^{\{1\}} | 0.28134 ^{\{7\}} | 0.23940 ^{\{3\}} | 0.27593 ^{\{6\}} | 0.22675 ^{\{2\}} | 0.23969 ^{\{4\}} | 0.24238 ^{\{5\}} | 0.30470 ^{\{8\}} | ||
\hat{\theta} | 0.24728 ^{\{2\}} | 0.30933 ^{\{6\}} | 0.30267 ^{\{5\}} | 0.31392 ^{\{7\}} | 0.21403 ^{\{1\}} | 0.27758 ^{\{4\}} | 0.25734 ^{\{3\}} | 0.33994 ^{\{8\}} | ||
\sum{Ranks} | 22 ^{\{1.5\}} | 77 ^{\{7\}} | 45 ^{\{4\}} | 70 ^{\{5\}} | 22 ^{\{1.5\}} | 71 ^{\{6\}} | 44 ^{\{3\}} | 81 ^{\{8\}} | ||
500 | |BIAS| | \hat{\vartheta} | 0.40816 ^{\{2\}} | 0.63822 ^{\{6\}} | 0.59712 ^{\{4\}} | 0.62303 ^{\{5\}} | 0.38723 ^{\{1\}} | 0.72351 ^{\{8\}} | 0.50869 ^{\{3\}} | 0.64537 ^{\{7\}} |
\hat{\varphi} | 0.13392 ^{\{3\}} | 0.19775 ^{\{6\}} | 0.12778 ^{\{1\}} | 0.19966 ^{\{7\}} | 0.13208 ^{\{2\}} | 0.26446 ^{\{8\}} | 0.14927 ^{\{4\}} | 0.15660 ^{\{5\}} | ||
\hat{\lambda} | 0.03902 ^{\{1\}} | 0.05985 ^{\{7\}} | 0.04987 ^{\{4\}} | 0.05913 ^{\{6\}} | 0.04014 ^{\{2\}} | 0.05408 ^{\{5\}} | 0.04806 ^{\{3\}} | 0.06618 ^{\{8\}} | ||
\hat{\theta} | 0.21255 ^{\{2\}} | 0.32416 ^{\{6\}} | 0.31285 ^{\{5\}} | 0.33146 ^{\{7\}} | 0.18308 ^{\{1\}} | 0.30762 ^{\{4\}} | 0.24975 ^{\{3\}} | 0.35803 ^{\{8\}} | ||
MSEs | \hat{\vartheta} | 0.24842 ^{\{1\}} | 0.52025 ^{\{5\}} | 0.58302 ^{\{7\}} | 0.50041 ^{\{4\}} | 0.33081 ^{\{2\}} | 0.63280 ^{\{8\}} | 0.37071 ^{\{3\}} | 0.52827 ^{\{6\}} | |
\hat{\varphi} | 0.02762 ^{\{3\}} | 0.05937 ^{\{6\}} | 0.02573 ^{\{1\}} | 0.06052 ^{\{7\}} | 0.02727 ^{\{2\}} | 0.12045 ^{\{8\}} | 0.03399 ^{\{4\}} | 0.03724 ^{\{5\}} | ||
\hat{\lambda} | 0.00224 ^{\{1\}} | 0.00478 ^{\{7\}} | 0.00422 ^{\{5\}} | 0.00470 ^{\{6\}} | 0.00257 ^{\{2\}} | 0.00402 ^{\{4\}} | 0.00325 ^{\{3\}} | 0.00569 ^{\{8\}} | ||
\hat{\theta} | 0.06777 ^{\{2\}} | 0.14391 ^{\{5\}} | 0.19157 ^{\{8\}} | 0.15413 ^{\{6\}} | 0.05743 ^{\{1\}} | 0.14128 ^{\{4\}} | 0.08776 ^{\{3\}} | 0.17743 ^{\{7\}} | ||
MREs | \hat{\vartheta} | 0.23323 ^{\{3\}} | 0.36470 ^{\{6\}} | 0.19904 ^{\{1\}} | 0.35602 ^{\{5\}} | 0.22127 ^{\{2\}} | 0.41343 ^{\{8\}} | 0.29068 ^{\{4\}} | 0.36879 ^{\{7\}} | |
\hat{\varphi} | 0.26784 ^{\{3\}} | 0.39550 ^{\{6\}} | 0.25556 ^{\{1\}} | 0.39932 ^{\{7\}} | 0.26417 ^{\{2\}} | 0.52891 ^{\{8\}} | 0.29853 ^{\{4\}} | 0.31320 ^{\{5\}} | ||
\hat{\lambda} | 0.15609 ^{\{1\}} | 0.23939 ^{\{7\}} | 0.19949 ^{\{4\}} | 0.23651 ^{\{6\}} | 0.16056 ^{\{2\}} | 0.21632 ^{\{5\}} | 0.19222 ^{\{3\}} | 0.26474 ^{\{8\}} | ||
\hat{\theta} | 0.17004 ^{\{2\}} | 0.25933 ^{\{6\}} | 0.25028 ^{\{5\}} | 0.26517 ^{\{7\}} | 0.14646 ^{\{1\}} | 0.24610 ^{\{4\}} | 0.19980 ^{\{3\}} | 0.28642 ^{\{8\}} | ||
\sum{Ranks} | 24 ^{\{2\}} | 73 ^{\{5.5\}} | 46 ^{\{4\}} | 73 ^{\{5.5\}} | 20 ^{\{1\}} | 74 ^{\{7\}} | 40 ^{\{3\}} | 82 ^{\{8\}} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
20 | |BIAS| | \hat{\vartheta} | 0.58249 ^{\left\{3 \right\}} | 0.53932 ^{\left\{1 \right\}} | 0.56241 ^{\left\{2 \right\}} | 0.61397 ^{\left\{5 \right\}} | 0.60739 ^{\left\{4 \right\}} | 0.82341 ^{\left\{8 \right\}} | 0.68123 ^{\left\{7 \right\}} | 0.66592 ^{\left\{6 \right\}} |
\hat{\varphi} | 0.70201 ^{\left\{2 \right\}} | 0.74992 ^{\left\{4 \right\}} | 0.71005 ^{\left\{3 \right\}} | 0.99334 ^{\left\{7 \right\}} | 0.41044 ^{\left\{1 \right\}} | 1.11769 ^{\left\{8 \right\}} | 0.88784 ^{\left\{5 \right\}} | 0.97457 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.26246 ^{\left\{1 \right\}} | 0.28717 ^{\left\{3 \right\}} | 0.28400 ^{\left\{2 \right\}} | 0.42881 ^{\left\{5 \right\}} | 0.40138 ^{\left\{4 \right\}} | 0.64545 ^{\left\{8 \right\}} | 0.43589 ^{\left\{7 \right\}} | 0.43050 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.83485 ^{\left\{6 \right\}} | 0.91523 ^{\left\{7 \right\}} | 0.92408 ^{\left\{8 \right\}} | 0.76222 ^{\left\{3 \right\}} | 0.77841 ^{\left\{4 \right\}} | 0.78092 ^{\left\{5 \right\}} | 0.74535 ^{\left\{1 \right\}} | 0.74828 ^{\left\{2 \right\}} | ||
MSEs | \hat{\vartheta} | 0.45340 ^{\left\{3 \right\}} | 0.42087 ^{\left\{1 \right\}} | 0.44427 ^{\left\{2 \right\}} | 0.51220 ^{\left\{4 \right\}} | 0.51720 ^{\left\{5 \right\}} | 0.77654 ^{\left\{8 \right\}} | 0.58720 ^{\left\{7 \right\}} | 0.56968 ^{\left\{6 \right\}} | |
\hat{\varphi} | 0.65182 ^{\left\{1 \right\}} | 0.75540 ^{\left\{3 \right\}} | 0.66110 ^{\left\{2 \right\}} | 1.25282 ^{\left\{7 \right\}} | 0.95641 ^{\left\{4 \right\}} | 1.49737 ^{\left\{8 \right\}} | 1.01553 ^{\left\{5 \right\}} | 1.19476 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.07059 ^{\left\{1 \right\}} | 0.08751 ^{\left\{3 \right\}} | 0.08543 ^{\left\{2 \right\}} | 0.29909 ^{\left\{7 \right\}} | 0.24742 ^{\left\{4 \right\}} | 0.52940 ^{\left\{8 \right\}} | 0.29252 ^{\left\{6 \right\}} | 0.29154 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.84612 ^{\left\{6 \right\}} | 1.00860 ^{\left\{8 \right\}} | 1.00532 ^{\left\{7 \right\}} | 0.71906 ^{\left\{3 \right\}} | 0.75325 ^{\left\{4 \right\}} | 0.82231 ^{\left\{5 \right\}} | 0.69565 ^{\left\{1 \right\}} | 0.70768 ^{\left\{2 \right\}} | ||
MREs | \hat{\vartheta} | 0.33285 ^{\left\{3 \right\}} | 0.30818 ^{\left\{1 \right\}} | 0.32138 ^{\left\{2 \right\}} | 0.35084 ^{\left\{5 \right\}} | 0.34708 ^{\left\{4 \right\}} | 0.47052 ^{\left\{8 \right\}} | 0.38927 ^{\left\{7 \right\}} | 0.38052 ^{\left\{6 \right\}} | |
\hat{\varphi} | 0.35100 ^{\left\{1 \right\}} | 0.37496 ^{\left\{3 \right\}} | 0.35503 ^{\left\{2 \right\}} | 0.49667 ^{\left\{7 \right\}} | 0.42863 ^{\left\{4 \right\}} | 0.55884 ^{\left\{8 \right\}} | 0.44392 ^{\left\{5 \right\}} | 0.48728 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.17497 ^{\left\{1 \right\}} | 0.19145 ^{\left\{3 \right\}} | 0.18933 ^{\left\{2 \right\}} | 0.28587 ^{\left\{5 \right\}} | 0.26758 ^{\left\{4 \right\}} | 0.43030 ^{\left\{8 \right\}} | 0.29059 ^{\left\{7 \right\}} | 0.28700 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.33394 ^{\left\{6 \right\}} | 0.36609 ^{\left\{7 \right\}} | 0.36963 ^{\left\{8 \right\}} | 0.30489 ^{\left\{3 \right\}} | 0.31136 ^{\left\{4 \right\}} | 0.31237 ^{\left\{5 \right\}} | 0.29814 ^{\left\{1 \right\}} | 0.29931 ^{\left\{2 \right\}} | ||
\sum{Ranks} | {\textbf{34}} ^{\left\{1 \right\}} | {\textbf{44}} ^{\left\{3 \right\}} | {\textbf{42}} ^{\left\{2 \right\}} | {\textbf{61}} ^{\left\{7 \right\}} | {\textbf{46}} ^{\left\{4 \right\}} | {\textbf{87}} ^{\left\{8 \right\}} | {\textbf{59}} ^{\left\{5.5 \right\}} | {\textbf{59}} ^{\left\{5.5 \right\}} | ||
80 | |BIAS| | \hat{\vartheta} | 0.49925 ^{\left\{2 \right\}} | 0.47135 ^{\left\{1 \right\}} | 0.52766 ^{\left\{3 \right\}} | 0.66329 ^{\left\{5 \right\}} | 0.55966 ^{\left\{4 \right\}} | 0.89224 ^{\left\{8 \right\}} | 0.67228 ^{\left\{6 \right\}} | 0.69447 ^{\left\{7 \right\}} |
\hat{\varphi} | 0.52063 ^{\left\{1 \right\}} | 0.55025 ^{\left\{3 \right\}} | 0.52909 ^{\left\{2 \right\}} | 0.70683 ^{\left\{7 \right\}} | 0.56354 ^{\left\{4 \right\}} | 0.93582 ^{\left\{8 \right\}} | 0.63998 ^{\left\{5 \right\}} | 0.69954 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.25198 ^{\left\{1 \right\}} | 0.25883 ^{\left\{3 \right\}} | 0.25641 ^{\left\{2 \right\}} | 0.43311 ^{\left\{7 \right\}} | 0.30034 ^{\left\{4 \right\}} | 0.66563 ^{\left\{8 \right\}} | 0.40607 ^{\left\{5 \right\}} | 0.43206 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.78480 ^{\left\{6 \right\}} | 0.82532 ^{\left\{7 \right\}} | 0.83697 ^{\left\{8 \right\}} | 0.69063 ^{\left\{3 \right\}} | 0.58559 ^{\left\{1 \right\}} | 0.72122 ^{\left\{5 \right\}} | 0.63842 ^{\left\{2 \right\}} | 0.69164 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 0.31719 ^{\left\{2 \right\}} | 0.30026 ^{\left\{1 \right\}} | 0.34946 ^{\left\{3 \right\}} | 0.55815 ^{\left\{5 \right\}} | 0.49857 ^{\left\{4 \right\}} | 0.86629 ^{\left\{8 \right\}} | 0.56483 ^{\left\{6 \right\}} | 0.59417 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.27881 ^{\left\{1 \right\}} | 0.32553 ^{\left\{3 \right\}} | 0.29109 ^{\left\{2 \right\}} | 0.66883 ^{\left\{7 \right\}} | 0.44978 ^{\left\{4 \right\}} | 1.03760 ^{\left\{8 \right\}} | 0.55511 ^{\left\{5 \right\}} | 0.64550 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.06369 ^{\left\{1 \right\}} | 0.06795 ^{\left\{3 \right\}} | 0.06642 ^{\left\{2 \right\}} | 0.29117 ^{\left\{7 \right\}} | 0.15725 ^{\left\{4 \right\}} | 0.54984 ^{\left\{8 \right\}} | 0.25250 ^{\left\{5 \right\}} | 0.28331 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.66344 ^{\left\{5 \right\}} | 0.73666 ^{\left\{7 \right\}} | 0.74889 ^{\left\{8 \right\}} | 0.58730 ^{\left\{3 \right\}} | 0.45144 ^{\left\{1 \right\}} | 0.66717 ^{\left\{6 \right\}} | 0.51377 ^{\left\{2 \right\}} | 0.59201 ^{\left\{4 \right\}} | ||
MREs | \hat{\vartheta} | 0.28529 ^{\left\{2 \right\}} | 0.26934 ^{\left\{1 \right\}} | 0.30152 ^{\left\{3 \right\}} | 0.37902 ^{\left\{5 \right\}} | 0.31981 ^{\left\{4 \right\}} | 0.50985 ^{\left\{8 \right\}} | 0.38416 ^{\left\{6 \right\}} | 0.39684 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.26032 ^{\left\{1 \right\}} | 0.27512 ^{\left\{3 \right\}} | 0.26454 ^{\left\{2 \right\}} | 0.35341 ^{\left\{7 \right\}} | 0.28177 ^{\left\{4 \right\}} | 0.46791 ^{\left\{8 \right\}} | 0.31999 ^{\left\{5 \right\}} | 0.34977 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.16798 ^{\left\{1 \right\}} | 0.17255 ^{\left\{3 \right\}} | 0.17094 ^{\left\{2 \right\}} | 0.28874 ^{\left\{7 \right\}} | 0.20023 ^{\left\{4 \right\}} | 0.44375 ^{\left\{8 \right\}} | 0.27071 ^{\left\{5 \right\}} | 0.28804 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.31392 ^{\left\{6 \right\}} | 0.33013 ^{\left\{7 \right\}} | 0.33479 ^{\left\{8 \right\}} | 0.27625 ^{\left\{3 \right\}} | 0.23423 ^{\left\{1 \right\}} | 0.28849 ^{\left\{5 \right\}} | 0.25537 ^{\left\{2 \right\}} | 0.27666 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{29}} ^{\left\{1 \right\}} | {\textbf{42}} ^{\left\{3 \right\}} | {\textbf{45}} ^{\left\{4 \right\}} | {\textbf{66}} ^{\left\{6 \right\}} | {\textbf{39}} ^{\left\{2 \right\}} | {\textbf{88}} ^{\left\{8 \right\}} | {\textbf{54}} ^{\left\{5 \right\}} | {\textbf{69}} ^{\left\{7 \right\}} | ||
200 | |BIAS| | \hat{\vartheta} | 0.47555 ^{\left\{3 \right\}} | 0.44985 ^{\left\{2 \right\}} | 0.51341 ^{\left\{4 \right\}} | 0.67707 ^{\left\{6 \right\}} | 0.42436 ^{\left\{1 \right\}} | 0.89805 ^{\left\{8 \right\}} | 0.66134 ^{\left\{5 \right\}} | 0.69895 ^{\left\{7 \right\}} |
\hat{\varphi} | 0.50115 ^{\left\{2 \right\}} | 0.50837 ^{\left\{4 \right\}} | 0.50279 ^{\left\{3 \right\}} | 0.56296 ^{\left\{7 \right\}} | 0.41044 ^{\left\{1 \right\}} | 0.81679 ^{\left\{8 \right\}} | 0.51451 ^{\left\{5 \right\}} | 0.55936 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.25019 ^{\left\{2 \right\}} | 0.25187 ^{\left\{4 \right\}} | 0.25076 ^{\left\{3 \right\}} | 0.41917 ^{\left\{7 \right\}} | 0.21499 ^{\left\{1 \right\}} | 0.65544 ^{\left\{8 \right\}} | 0.37297 ^{\left\{5 \right\}} | 0.41435 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.79159 ^{\left\{6 \right\}} | 0.80107 ^{\left\{7 \right\}} | 0.82123 ^{\left\{8 \right\}} | 0.64647 ^{\left\{3 \right\}} | 0.43028 ^{\left\{1 \right\}} | 0.75308 ^{\left\{5 \right\}} | 0.57181 ^{\left\{2 \right\}} | 0.66234 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 0.25888 ^{\left\{2 \right\}} | 0.23847 ^{\left\{1 \right\}} | 0.29413 ^{\left\{3 \right\}} | 0.56097 ^{\left\{6 \right\}} | 0.37531 ^{\left\{4 \right\}} | 0.86783 ^{\left\{8 \right\}} | 0.54545 ^{\left\{5 \right\}} | 0.59107 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.25134 ^{\left\{1 \right\}} | 0.26082 ^{\left\{4 \right\}} | 0.25349 ^{\left\{2 \right\}} | 0.43952 ^{\left\{7 \right\}} | 0.25968 ^{\left\{3 \right\}} | 0.80523 ^{\left\{8 \right\}} | 0.37160 ^{\left\{5 \right\}} | 0.43084 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.06261 ^{\left\{1 \right\}} | 0.06361 ^{\left\{3 \right\}} | 0.06295 ^{\left\{2 \right\}} | 0.25891 ^{\left\{7 \right\}} | 0.09970 ^{\left\{4 \right\}} | 0.52619 ^{\left\{8 \right\}} | 0.20829 ^{\left\{5 \right\}} | 0.25203 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.64670 ^{\left\{5 \right\}} | 0.66161 ^{\left\{6 \right\}} | 0.69240 ^{\left\{8 \right\}} | 0.51309 ^{\left\{3 \right\}} | 0.27527 ^{\left\{1 \right\}} | 0.68347 ^{\left\{7 \right\}} | 0.41304 ^{\left\{2 \right\}} | 0.53268 ^{\left\{4 \right\}} | ||
MREs | \hat{\vartheta} | 0.27175 ^{\left\{3 \right\}} | 0.25705 ^{\left\{2 \right\}} | 0.29338 ^{\left\{4 \right\}} | 0.38690 ^{\left\{6 \right\}} | 0.24249 ^{\left\{1 \right\}} | 0.51317 ^{\left\{8 \right\}} | 0.37791 ^{\left\{5 \right\}} | 0.39940 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.25057 ^{\left\{2 \right\}} | 0.25419 ^{\left\{4 \right\}} | 0.25139 ^{\left\{3 \right\}} | 0.28148 ^{\left\{7 \right\}} | 0.20522 ^{\left\{1 \right\}} | 0.40839 ^{\left\{8 \right\}} | 0.25725 ^{\left\{5 \right\}} | 0.27968 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.16679 ^{\left\{2 \right\}} | 0.16791 ^{\left\{4 \right\}} | 0.16717 ^{\left\{3 \right\}} | 0.27945 ^{\left\{7 \right\}} | 0.14333 ^{\left\{1 \right\}} | 0.43696 ^{\left\{8 \right\}} | 0.24865 ^{\left\{5 \right\}} | 0.27623 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.31664 ^{\left\{6 \right\}} | 0.32043 ^{\left\{7 \right\}} | 0.32849 ^{\left\{8 \right\}} | 0.25859 ^{\left\{3 \right\}} | 0.17211 ^{\left\{1 \right\}} | 0.30123 ^{\left\{5 \right\}} | 0.22872 ^{\left\{2 \right\}} | 0.26494 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{35}} ^{\left\{2 \right\}} | {\textbf{48}} ^{\left\{3 \right\}} | {\textbf{51}} ^{\left\{4.5 \right\}} | {\textbf{69}} ^{\left\{6.5 \right\}} | {\textbf{20}} ^{\left\{1 \right\}} | {\textbf{89}} ^{\left\{8 \right\}} | {\textbf{51}} ^{\left\{4.5 \right\}} | {\textbf{69}} ^{\left\{6.5 \right\}} | ||
500 | |BIAS| | \hat{\vartheta} | 0.47314 ^{\left\{3 \right\}} | 0.44590 ^{\left\{2 \right\}} | 0.51215 ^{\left\{4 \right\}} | 0.64549 ^{\left\{6 \right\}} | 0.23589 ^{\left\{1 \right\}} | 0.89642 ^{\left\{8 \right\}} | 0.57765 ^{\left\{5 \right\}} | 0.66728 ^{\left\{7 \right\}} |
\hat{\varphi} | 0.50000 ^{\left\{5 \right\}} | 0.50031 ^{\left\{7 \right\}} | 0.50001 ^{\left\{6 \right\}} | 0.44580 ^{\left\{4 \right\}} | 0.25497 ^{\left\{1 \right\}} | 0.66140 ^{\left\{8 \right\}} | 0.39329 ^{\left\{2 \right\}} | 0.42269 ^{\left\{3 \right\}} | ||
\hat{\lambda} | 0.25000 ^{\left\{2 \right\}} | 0.25003 ^{\left\{4 \right\}} | 0.25001 ^{\left\{3 \right\}} | 0.38068 ^{\left\{6 \right\}} | 0.11500 ^{\left\{1 \right\}} | 0.63857 ^{\left\{8 \right\}} | 0.31593 ^{\left\{5 \right\}} | 0.38454 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.79445 ^{\left\{5 \right\}} | 0.80134 ^{\left\{6 \right\}} | 0.82604 ^{\left\{8 \right\}} | 0.59243 ^{\left\{3 \right\}} | 0.25280 ^{\left\{1 \right\}} | 0.80505 ^{\left\{7 \right\}} | 0.49356 ^{\left\{2 \right\}} | 0.61821 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 0.23703 ^{\left\{3 \right\}} | 0.21187 ^{\left\{2 \right\}} | 0.27432 ^{\left\{4 \right\}} | 0.51809 ^{\left\{6 \right\}} | 0.19898 ^{\left\{1 \right\}} | 0.86166 ^{\left\{8 \right\}} | 0.44538 ^{\left\{5 \right\}} | 0.54549 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.25000 ^{\left\{3 \right\}} | 0.25034 ^{\left\{5 \right\}} | 0.25001 ^{\left\{4 \right\}} | 0.28548 ^{\left\{7 \right\}} | 0.11705 ^{\left\{1 \right\}} | 0.56366 ^{\left\{8 \right\}} | 0.22462 ^{\left\{2 \right\}} | 0.25796 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.06250 ^{\left\{2.5 \right\}} | 0.06252 ^{\left\{4 \right\}} | 0.06250 ^{\left\{2.5 \right\}} | 0.20888 ^{\left\{6 \right\}} | 0.03935 ^{\left\{1 \right\}} | 0.50179 ^{\left\{8 \right\}} | 0.14873 ^{\left\{5 \right\}} | 0.20922 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.63903 ^{\left\{5 \right\}} | 0.64949 ^{\left\{6 \right\}} | 0.68943 ^{\left\{7 \right\}} | 0.43597 ^{\left\{3 \right\}} | 0.12546 ^{\left\{1 \right\}} | 0.74499 ^{\left\{8 \right\}} | 0.31912 ^{\left\{2 \right\}} | 0.46804 ^{\left\{4 \right\}} | ||
MREs | \hat{\vartheta} | 0.27037 ^{\left\{3 \right\}} | 0.25480 ^{\left\{2 \right\}} | 0.29266 ^{\left\{4 \right\}} | 0.36885 ^{\left\{6 \right\}} | 0.13479 ^{\left\{1 \right\}} | 0.51224 ^{\left\{8 \right\}} | 0.33008 ^{\left\{5 \right\}} | 0.38130 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.25000 ^{\left\{5.5 \right\}} | 0.25015 ^{\left\{7 \right\}} | 0.25000 ^{\left\{5.5 \right\}} | 0.22290 ^{\left\{4 \right\}} | 0.12748 ^{\left\{1 \right\}} | 0.33070 ^{\left\{8 \right\}} | 0.19665 ^{\left\{2 \right\}} | 0.21134 ^{\left\{3 \right\}} | ||
\hat{\lambda} | 0.16667 ^{\left\{2.5 \right\}} | 0.16669 ^{\left\{4 \right\}} | 0.16667 ^{\left\{2.5 \right\}} | 0.25379 ^{\left\{6 \right\}} | 0.07667 ^{\left\{1 \right\}} | 0.42571 ^{\left\{8 \right\}} | 0.21062 ^{\left\{5 \right\}} | 0.25636 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.31778 ^{\left\{5 \right\}} | 0.32053 ^{\left\{6 \right\}} | 0.33042 ^{\left\{8 \right\}} | 0.23697 ^{\left\{3 \right\}} | 0.10112 ^{\left\{1 \right\}} | 0.32202 ^{\left\{7 \right\}} | 0.19742 ^{\left\{2 \right\}} | 0.24728 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{44.5}} ^{\left\{3 \right\}} | {\textbf{55}} ^{\left\{4 \right\}} | {\textbf{58.5}} ^{\left\{5 \right\}} | {\textbf{60}} ^{\left\{6 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{94}} ^{\left\{8 \right\}} | {\textbf{42}} ^{\left\{2 \right\}} | {\textbf{66}} ^{\left\{7 \right\}} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
20 | |BIAS| | \hat{\vartheta} | 1.05821 ^{\left\{8 \right\}} | 0.62985 ^{\left\{3 \right\}} | 0.96882 ^{\left\{6 \right\}} | 0.61879 ^{\left\{2 \right\}} | 0.39728 ^{\left\{1 \right\}} | 1.00062 ^{\left\{7 \right\}} | 0.93184 ^{\left\{5 \right\}} | 0.74851 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.58239 ^{\left\{4 \right\}} | 0.61540 ^{\left\{8 \right\}} | 0.57588 ^{\left\{3 \right\}} | 0.61442 ^{\left\{7 \right\}} | 0.16810 ^{\left\{1 \right\}} | 0.59648 ^{\left\{6 \right\}} | 0.54321 ^{\left\{2 \right\}} | 0.58344 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.09205 ^{\left\{8 \right\}} | 0.08984 ^{\left\{5 \right\}} | 0.08749 ^{\left\{3 \right\}} | 0.09161 ^{\left\{6 \right\}} | 0.07490 ^{\left\{1 \right\}} | 0.09181 ^{\left\{7 \right\}} | 0.08360 ^{\left\{2 \right\}} | 0.08890 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.65193 ^{\left\{8 \right\}} | 0.48317 ^{\left\{2 \right\}} | 0.52978 ^{\left\{5 \right\}} | 0.51841 ^{\left\{4 \right\}} | 0.37874 ^{\left\{1 \right\}} | 0.57738 ^{\left\{7 \right\}} | 0.51808 ^{\left\{3 \right\}} | 0.53685 ^{\left\{6 \right\}} | ||
MSEs | \hat{\vartheta} | 1.62863 ^{\left\{8 \right\}} | 0.80009 ^{\left\{2 \right\}} | 1.26747 ^{\left\{6 \right\}} | 0.83422 ^{\left\{3 \right\}} | 0.44242 ^{\left\{1 \right\}} | 1.52407 ^{\left\{7 \right\}} | 1.26323 ^{\left\{5 \right\}} | 1.02485 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.42299 ^{\left\{3 \right\}} | 0.47351 ^{\left\{8 \right\}} | 0.43072 ^{\left\{4 \right\}} | 0.47310 ^{\left\{7 \right\}} | 0.39842 ^{\left\{2 \right\}} | 0.45399 ^{\left\{6 \right\}} | 0.39008 ^{\left\{1 \right\}} | 0.43912 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.01191 ^{\left\{6 \right\}} | 0.01157 ^{\left\{5 \right\}} | 0.01104 ^{\left\{3 \right\}} | 0.01199 ^{\left\{7 \right\}} | 0.00839 ^{\left\{1 \right\}} | 0.01226 ^{\left\{8 \right\}} | 0.01037 ^{\left\{2 \right\}} | 0.01130 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.56633 ^{\left\{8 \right\}} | 0.35145 ^{\left\{2 \right\}} | 0.39993 ^{\left\{3 \right\}} | 0.40530 ^{\left\{5 \right\}} | 0.22597 ^{\left\{1 \right\}} | 0.46238 ^{\left\{7 \right\}} | 0.39998 ^{\left\{4 \right\}} | 0.42492 ^{\left\{6 \right\}} | ||
MREs | \hat{\vartheta} | 0.30235 ^{\left\{8 \right\}} | 0.17996 ^{\left\{3 \right\}} | 0.27681 ^{\left\{6 \right\}} | 0.17680 ^{\left\{2 \right\}} | 0.11351 ^{\left\{1 \right\}} | 0.28589 ^{\left\{7 \right\}} | 0.26624 ^{\left\{5 \right\}} | 0.21386 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.77652 ^{\left\{4 \right\}} | 0.82054 ^{\left\{8 \right\}} | 0.76784 ^{\left\{3 \right\}} | 0.81923 ^{\left\{7 \right\}} | 0.73001 ^{\left\{2 \right\}} | 0.79531 ^{\left\{6 \right\}} | 0.72428 ^{\left\{1 \right\}} | 0.77792 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.18410 ^{\left\{8 \right\}} | 0.17968 ^{\left\{5 \right\}} | 0.17498 ^{\left\{3 \right\}} | 0.18321 ^{\left\{6 \right\}} | 0.14981 ^{\left\{1 \right\}} | 0.18363 ^{\left\{7 \right\}} | 0.16720 ^{\left\{2 \right\}} | 0.17780 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.52155 ^{\left\{8 \right\}} | 0.38654 ^{\left\{2 \right\}} | 0.42382 ^{\left\{5 \right\}} | 0.41473 ^{\left\{4 \right\}} | 0.30299 ^{\left\{1 \right\}} | 0.46190 ^{\left\{7 \right\}} | 0.41446 ^{\left\{3 \right\}} | 0.42948 ^{\left\{6 \right\}} | ||
\sum{Ranks} | {\textbf{81}} ^{\left\{7 \right\}} | {\textbf{53}} ^{\left\{4 \right\}} | {\textbf{50}} ^{\left\{3 \right\}} | {\textbf{60}} ^{\left\{6 \right\}} | {\textbf{14}} ^{\left\{1 \right\}} | {\textbf{82}} ^{\left\{8 \right\}} | {\textbf{35}} ^{\left\{2 \right\}} | {\textbf{57}} ^{\left\{5 \right\}} | ||
80 | |BIAS| | \hat{\vartheta} | 1.30458 ^{\left\{8 \right\}} | 0.99944 ^{\left\{2 \right\}} | 1.19014 ^{\left\{7 \right\}} | 1.02885 ^{\left\{3 \right\}} | 0.28553 ^{\left\{1 \right\}} | 1.10670 ^{\left\{4 \right\}} | 1.14568 ^{\left\{6 \right\}} | 1.11457 ^{\left\{5 \right\}} |
\hat{\varphi} | 0.32983 ^{\left\{3 \right\}} | 0.40620 ^{\left\{6 \right\}} | 0.34267 ^{\left\{4 \right\}} | 0.40746 ^{\left\{7 \right\}} | 0.27616 ^{\left\{1 \right\}} | 0.42471 ^{\left\{8 \right\}} | 0.32604 ^{\left\{2 \right\}} | 0.35934 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.06496 ^{\left\{7 \right\}} | 0.06255 ^{\left\{5 \right\}} | 0.05976 ^{\left\{3 \right\}} | 0.06558 ^{\left\{8 \right\}} | 0.03810 ^{\left\{1 \right\}} | 0.06030 ^{\left\{4 \right\}} | 0.05724 ^{\left\{2 \right\}} | 0.06303 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.60157 ^{\left\{8 \right\}} | 0.45112 ^{\left\{2 \right\}} | 0.47825 ^{\left\{5 \right\}} | 0.49541 ^{\left\{6 \right\}} | 0.19099 ^{\left\{1 \right\}} | 0.45370 ^{\left\{3 \right\}} | 0.45453 ^{\left\{4 \right\}} | 0.50033 ^{\left\{7 \right\}} | ||
MSEs | \hat{\vartheta} | 1.98067 ^{\left\{8 \right\}} | 1.42246 ^{\left\{2 \right\}} | 1.62721 ^{\left\{7 \right\}} | 1.51028 ^{\left\{3 \right\}} | 0.28600 ^{\left\{1 \right\}} | 1.54773 ^{\left\{5 \right\}} | 1.54350 ^{\left\{4 \right\}} | 1.62460 ^{\left\{6 \right\}} | |
\hat{\varphi} | 0.16347 ^{\left\{2 \right\}} | 0.24145 ^{\left\{7 \right\}} | 0.17842 ^{\left\{4 \right\}} | 0.24070 ^{\left\{6 \right\}} | 0.12275 ^{\left\{1 \right\}} | 0.27309 ^{\left\{8 \right\}} | 0.16427 ^{\left\{3 \right\}} | 0.19753 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00614 ^{\left\{7 \right\}} | 0.00590 ^{\left\{5 \right\}} | 0.00549 ^{\left\{3 \right\}} | 0.00646 ^{\left\{8 \right\}} | 0.00224 ^{\left\{1 \right\}} | 0.00582 ^{\left\{4 \right\}} | 0.00513 ^{\left\{2 \right\}} | 0.00600 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.50150 ^{\left\{8 \right\}} | 0.33442 ^{\left\{3 \right\}} | 0.35764 ^{\left\{5 \right\}} | 0.39078 ^{\left\{6 \right\}} | 0.06108 ^{\left\{1 \right\}} | 0.33595 ^{\left\{4 \right\}} | 0.33240 ^{\left\{2 \right\}} | 0.39877 ^{\left\{7 \right\}} | ||
MREs | \hat{\vartheta} | 0.37274 ^{\left\{8 \right\}} | 0.28555 ^{\left\{2 \right\}} | 0.34004 ^{\left\{7 \right\}} | 0.29396 ^{\left\{3 \right\}} | 0.08158 ^{\left\{1 \right\}} | 0.31620 ^{\left\{4 \right\}} | 0.32734 ^{\left\{6 \right\}} | 0.31845 ^{\left\{5 \right\}} | |
\hat{\varphi} | 0.43977 ^{\left\{3 \right\}} | 0.54161 ^{\left\{6 \right\}} | 0.45690 ^{\left\{4 \right\}} | 0.54328 ^{\left\{7 \right\}} | 0.36821 ^{\left\{1 \right\}} | 0.56628 ^{\left\{8 \right\}} | 0.43472 ^{\left\{2 \right\}} | 0.47912 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.12992 ^{\left\{7 \right\}} | 0.12509 ^{\left\{5 \right\}} | 0.11952 ^{\left\{3 \right\}} | 0.13116 ^{\left\{8 \right\}} | 0.07620 ^{\left\{1 \right\}} | 0.12061 ^{\left\{4 \right\}} | 0.11448 ^{\left\{2 \right\}} | 0.12607 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.48126 ^{\left\{8 \right\}} | 0.36089 ^{\left\{2 \right\}} | 0.38260 ^{\left\{5 \right\}} | 0.39633 ^{\left\{6 \right\}} | 0.15279 ^{\left\{1 \right\}} | 0.36296 ^{\left\{3 \right\}} | 0.36362 ^{\left\{4 \right\}} | 0.40027 ^{\left\{7 \right\}} | ||
\sum{Ranks} | {\textbf{77}} ^{\left\{8 \right\}} | {\textbf{47}} ^{\left\{3 \right\}} | {\textbf{57}} ^{\left\{4 \right\}} | {\textbf{71}} ^{\left\{7 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{59}} ^{\left\{5 \right\}} | {\textbf{39}} ^{\left\{2 \right\}} | {\textbf{70}} ^{\left\{6 \right\}} | ||
200 | |BIAS| | \hat{\vartheta} | 1.18071 ^{\left\{8 \right\}} | 1.13329 ^{\left\{4 \right\}} | 1.15680 ^{\left\{6 \right\}} | 1.15101 ^{\left\{5 \right\}} | 0.12881 ^{\left\{1 \right\}} | 1.09310 ^{\left\{2 \right\}} | 1.11947 ^{\left\{3 \right\}} | 1.17399 ^{\left\{7 \right\}} |
\hat{\varphi} | 0.21288 ^{\left\{2 \right\}} | 0.27282 ^{\left\{6 \right\}} | 0.22827 ^{\left\{4 \right\}} | 0.28207 ^{\left\{7 \right\}} | 0.16810 ^{\left\{1 \right\}} | 0.31936 ^{\left\{8 \right\}} | 0.21687 ^{\left\{3 \right\}} | 0.23691 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.05455 ^{\left\{5 \right\}} | 0.05483 ^{\left\{6 \right\}} | 0.05139 ^{\left\{4 \right\}} | 0.05648 ^{\left\{8 \right\}} | 0.02373 ^{\left\{1 \right\}} | 0.04586 ^{\left\{2 \right\}} | 0.05000 ^{\left\{3 \right\}} | 0.05607 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.50995 ^{\left\{8 \right\}} | 0.46810 ^{\left\{5 \right\}} | 0.45161 ^{\left\{4 \right\}} | 0.48892 ^{\left\{7 \right\}} | 0.11088 ^{\left\{1 \right\}} | 0.36948 ^{\left\{2 \right\}} | 0.42847 ^{\left\{3 \right\}} | 0.48519 ^{\left\{6 \right\}} | ||
MSEs | \hat{\vartheta} | 1.65210 ^{\left\{6 \right\}} | 1.59933 ^{\left\{5 \right\}} | 1.54359 ^{\left\{4 \right\}} | 1.65457 ^{\left\{7 \right\}} | 0.11230 ^{\left\{1 \right\}} | 1.41356 ^{\left\{2 \right\}} | 1.45126 ^{\left\{3 \right\}} | 1.65710 ^{\left\{8 \right\}} | |
\hat{\varphi} | 0.06995 ^{\left\{2 \right\}} | 0.11564 ^{\left\{6 \right\}} | 0.08167 ^{\left\{4 \right\}} | 0.12209 ^{\left\{7 \right\}} | 0.04607 ^{\left\{1 \right\}} | 0.16683 ^{\left\{8 \right\}} | 0.07397 ^{\left\{3 \right\}} | 0.08772 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00441 ^{\left\{5 \right\}} | 0.00457 ^{\left\{6 \right\}} | 0.00403 ^{\left\{4 \right\}} | 0.00483 ^{\left\{8 \right\}} | 0.00088 ^{\left\{1 \right\}} | 0.00341 ^{\left\{2 \right\}} | 0.00386 ^{\left\{3 \right\}} | 0.00477 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.38578 ^{\left\{8 \right\}} | 0.35447 ^{\left\{5 \right\}} | 0.32071 ^{\left\{4 \right\}} | 0.38130 ^{\left\{7 \right\}} | 0.02076 ^{\left\{1 \right\}} | 0.24604 ^{\left\{2 \right\}} | 0.29346 ^{\left\{3 \right\}} | 0.38069 ^{\left\{6 \right\}} | ||
MREs | \hat{\vartheta} | 0.33734 ^{\left\{8 \right\}} | 0.32380 ^{\left\{4 \right\}} | 0.33052 ^{\left\{6 \right\}} | 0.32886 ^{\left\{5 \right\}} | 0.03680 ^{\left\{1 \right\}} | 0.31232 ^{\left\{2 \right\}} | 0.31985 ^{\left\{3 \right\}} | 0.33543 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.28384 ^{\left\{2 \right\}} | 0.36376 ^{\left\{6 \right\}} | 0.30437 ^{\left\{4 \right\}} | 0.37610 ^{\left\{7 \right\}} | 0.22413 ^{\left\{1 \right\}} | 0.42582 ^{\left\{8 \right\}} | 0.28917 ^{\left\{3 \right\}} | 0.31587 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.10910 ^{\left\{5 \right\}} | 0.10967 ^{\left\{6 \right\}} | 0.10278 ^{\left\{4 \right\}} | 0.11295 ^{\left\{8 \right\}} | 0.04745 ^{\left\{1 \right\}} | 0.09173 ^{\left\{2 \right\}} | 0.10000 ^{\left\{3 \right\}} | 0.11214 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.40796 ^{\left\{8 \right\}} | 0.37448 ^{\left\{5 \right\}} | 0.36129 ^{\left\{4 \right\}} | 0.39114 ^{\left\{7 \right\}} | 0.08871 ^{\left\{1 \right\}} | 0.29559 ^{\left\{2 \right\}} | 0.34277 ^{\left\{3 \right\}} | 0.38815 ^{\left\{6 \right\}} | ||
\sum{Ranks} | {\textbf{67}} ^{\left\{6 \right\}} | {\textbf{64}} ^{\left\{5 \right\}} | {\textbf{52}} ^{\left\{4 \right\}} | {\textbf{83}} ^{\left\{8 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{42}} ^{\left\{3 \right\}} | {\textbf{36}} ^{\left\{2 \right\}} | {\textbf{76}} ^{\left\{7 \right\}} | ||
500 | |BIAS| | \hat{\vartheta} | 0.99609 ^{\left\{2 \right\}} | 1.12481 ^{\left\{6 \right\}} | 1.05940 ^{\left\{5 \right\}} | 1.12860 ^{\left\{7 \right\}} | 0.04256 ^{\left\{1 \right\}} | 1.04542 ^{\left\{4 \right\}} | 1.03887 ^{\left\{3 \right\}} | 1.14079 ^{\left\{8 \right\}} |
\hat{\varphi} | 0.14496 ^{\left\{2 \right\}} | 0.18941 ^{\left\{6 \right\}} | 0.15844 ^{\left\{4 \right\}} | 0.19306 ^{\left\{7 \right\}} | 0.10411 ^{\left\{1 \right\}} | 0.23525 ^{\left\{8 \right\}} | 0.15349 ^{\left\{3 \right\}} | 0.16453 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.04309 ^{\left\{3 \right\}} | 0.05010 ^{\left\{7 \right\}} | 0.04425 ^{\left\{5 \right\}} | 0.04998 ^{\left\{6 \right\}} | 0.01474 ^{\left\{1 \right\}} | 0.03603 ^{\left\{2 \right\}} | 0.04334 ^{\left\{4 \right\}} | 0.05109 ^{\left\{8 \right\}} | ||
\hat{\theta} | 0.38900 ^{\left\{4 \right\}} | 0.44670 ^{\left\{6 \right\}} | 0.39875 ^{\left\{5 \right\}} | 0.45266 ^{\left\{7 \right\}} | 0.06374 ^{\left\{1 \right\}} | 0.31824 ^{\left\{2 \right\}} | 0.38560 ^{\left\{3 \right\}} | 0.45867 ^{\left\{8 \right\}} | ||
MSEs | \hat{\vartheta} | 1.21294 ^{\left\{2 \right\}} | 1.50352 ^{\left\{6 \right\}} | 1.31440 ^{\left\{5 \right\}} | 1.52047 ^{\left\{8 \right\}} | 0.02893 ^{\left\{1 \right\}} | 1.25338 ^{\left\{3 \right\}} | 1.26686 ^{\left\{4 \right\}} | 1.51668 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.03263 ^{\left\{2 \right\}} | 0.05612 ^{\left\{6 \right\}} | 0.03902 ^{\left\{4 \right\}} | 0.05818 ^{\left\{7 \right\}} | 0.01736 ^{\left\{1 \right\}} | 0.09221 ^{\left\{8 \right\}} | 0.03639 ^{\left\{3 \right\}} | 0.04120 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00278 ^{\left\{3 \right\}} | 0.00378 ^{\left\{6.5 \right\}} | 0.00295 ^{\left\{5 \right\}} | 0.00378 ^{\left\{6.5 \right\}} | 0.00034 ^{\left\{1 \right\}} | 0.00220 ^{\left\{2 \right\}} | 0.00283 ^{\left\{4 \right\}} | 0.00400 ^{\left\{8 \right\}} | ||
\hat{\theta} | 0.23678 ^{\left\{4 \right\}} | 0.31580 ^{\left\{6 \right\}} | 0.25000 ^{\left\{5 \right\}} | 0.32430 ^{\left\{7 \right\}} | 0.00703 ^{\left\{1 \right\}} | 0.18536 ^{\left\{2 \right\}} | 0.23280 ^{\left\{3 \right\}} | 0.33477 ^{\left\{8 \right\}} | ||
MREs | \hat{\vartheta} | 0.28460 ^{\left\{2 \right\}} | 0.32137 ^{\left\{6 \right\}} | 0.30269 ^{\left\{5 \right\}} | 0.32246 ^{\left\{7 \right\}} | 0.01216 ^{\left\{1 \right\}} | 0.29869 ^{\left\{4 \right\}} | 0.29682 ^{\left\{3 \right\}} | 0.32594 ^{\left\{8 \right\}} | |
\hat{\varphi} | 0.19328 ^{\left\{2 \right\}} | 0.25255 ^{\left\{6 \right\}} | 0.21126 ^{\left\{4 \right\}} | 0.25741 ^{\left\{7 \right\}} | 0.13881 ^{\left\{1 \right\}} | 0.31367 ^{\left\{8 \right\}} | 0.20466 ^{\left\{3 \right\}} | 0.21938 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.08617 ^{\left\{3 \right\}} | 0.10020 ^{\left\{7 \right\}} | 0.08850 ^{\left\{5 \right\}} | 0.09997 ^{\left\{6 \right\}} | 0.02948 ^{\left\{1 \right\}} | 0.07207 ^{\left\{2 \right\}} | 0.08669 ^{\left\{4 \right\}} | 0.10217 ^{\left\{8 \right\}} | ||
\hat{\theta} | 0.31120 ^{\left\{4 \right\}} | 0.35736 ^{\left\{6 \right\}} | 0.31900 ^{\left\{5 \right\}} | 0.36213 ^{\left\{7 \right\}} | 0.05100 ^{\left\{1 \right\}} | 0.25459 ^{\left\{2 \right\}} | 0.30848 ^{\left\{3 \right\}} | 0.36694 ^{\left\{8 \right\}} | ||
\sum{Ranks} | {\textbf{33}} ^{\left\{2 \right\}} | {\textbf{74.5}} ^{\left\{6 \right\}} | {\textbf{57}} ^{\left\{5 \right\}} | {\textbf{82.5}} ^{\left\{7 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{47}} ^{\left\{4 \right\}} | {\textbf{40}} ^{\left\{3 \right\}} | {\textbf{86}} ^{\left\{8 \right\}} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
20 | |BIAS| | \hat{\vartheta} | 0.98923 ^{\left\{7 \right\}} | 0.64331 ^{\left\{3 \right\}} | 0.95672 ^{\left\{6 \right\}} | 0.63413 ^{\left\{2 \right\}} | 0.44818 ^{\left\{1 \right\}} | 1.04755 ^{\left\{8 \right\}} | 0.90857 ^{\left\{5 \right\}} | 0.78916 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.95367 ^{\left\{6 \right\}} | 0.90318 ^{\left\{4 \right\}} | 0.88553 ^{\left\{3 \right\}} | 0.95450 ^{\left\{7 \right\}} | 0.31253 ^{\left\{1 \right\}} | 0.97463 ^{\left\{8 \right\}} | 0.85825 ^{\left\{2 \right\}} | 0.93652 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.50387 ^{\left\{8 \right\}} | 0.29370 ^{\left\{2 \right\}} | 0.38814 ^{\left\{5 \right\}} | 0.31558 ^{\left\{3 \right\}} | 0.23477 ^{\left\{1 \right\}} | 0.41787 ^{\left\{7 \right\}} | 0.38863 ^{\left\{6 \right\}} | 0.36144 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.83605 ^{\left\{8 \right\}} | 0.71444 ^{\left\{3 \right\}} | 0.81238 ^{\left\{7 \right\}} | 0.68991 ^{\left\{2 \right\}} | 0.62151 ^{\left\{1 \right\}} | 0.74404 ^{\left\{5 \right\}} | 0.75604 ^{\left\{6 \right\}} | 0.71561 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 1.35323 ^{\left\{7 \right\}} | 0.71389 ^{\left\{2 \right\}} | 1.18225 ^{\left\{6 \right\}} | 0.73718 ^{\left\{3 \right\}} | 0.37586 ^{\left\{1 \right\}} | 1.57224 ^{\left\{8 \right\}} | 1.13154 ^{\left\{5 \right\}} | 1.02701 ^{\left\{4 \right\}} | |
\hat{\varphi} | 1.18857 ^{\left\{8 \right\}} | 1.06788 ^{\left\{4 \right\}} | 1.02750 ^{\left\{3 \right\}} | 1.18599 ^{\left\{7 \right\}} | 0.87512 ^{\left\{1 \right\}} | 1.15778 ^{\left\{6 \right\}} | 0.96462 ^{\left\{2 \right\}} | 1.13400 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.36432 ^{\left\{8 \right\}} | 0.14714 ^{\left\{2 \right\}} | 0.22539 ^{\left\{5 \right\}} | 0.17712 ^{\left\{3 \right\}} | 0.09172 ^{\left\{1 \right\}} | 0.28638 ^{\left\{7 \right\}} | 0.23923 ^{\left\{6 \right\}} | 0.22267 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.77865 ^{\left\{8 \right\}} | 0.64926 ^{\left\{4 \right\}} | 0.77561 ^{\left\{7 \right\}} | 0.60519 ^{\left\{2 \right\}} | 0.52925 ^{\left\{1 \right\}} | 0.67762 ^{\left\{5 \right\}} | 0.68866 ^{\left\{6 \right\}} | 0.64046 ^{\left\{3 \right\}} | ||
MREs | \hat{\vartheta} | 0.28264 ^{\left\{7 \right\}} | 0.18380 ^{\left\{3 \right\}} | 0.27335 ^{\left\{6 \right\}} | 0.18118 ^{\left\{2 \right\}} | 0.12805 ^{\left\{1 \right\}} | 0.29930 ^{\left\{8 \right\}} | 0.25959 ^{\left\{5 \right\}} | 0.22547 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.47683 ^{\left\{6 \right\}} | 0.45159 ^{\left\{4 \right\}} | 0.44276 ^{\left\{3 \right\}} | 0.47725 ^{\left\{7 \right\}} | 0.40539 ^{\left\{1 \right\}} | 0.48731 ^{\left\{8 \right\}} | 0.42912 ^{\left\{2 \right\}} | 0.46826 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.33591 ^{\left\{8 \right\}} | 0.19580 ^{\left\{2 \right\}} | 0.25876 ^{\left\{5 \right\}} | 0.21038 ^{\left\{3 \right\}} | 0.15651 ^{\left\{1 \right\}} | 0.27858 ^{\left\{7 \right\}} | 0.25908 ^{\left\{6 \right\}} | 0.24096 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.33442 ^{\left\{8 \right\}} | 0.28578 ^{\left\{3 \right\}} | 0.32495 ^{\left\{7 \right\}} | 0.27596 ^{\left\{2 \right\}} | 0.24860 ^{\left\{1 \right\}} | 0.29762 ^{\left\{5 \right\}} | 0.30242 ^{\left\{6 \right\}} | 0.28624 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{89}} ^{\left\{8 \right\}} | {\textbf{36}} ^{\left\{2 \right\}} | {\textbf{63}} ^{\left\{6 \right\}} | {\textbf{43}} ^{\left\{3 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{82}} ^{\left\{7 \right\}} | {\textbf{57}} ^{\left\{5 \right\}} | {\textbf{50}} ^{\left\{4 \right\}} | ||
80 | |BIAS| | \hat{\vartheta} | 1.00512 ^{\left\{8 \right\}} | 0.76116 ^{\left\{3 \right\}} | 0.98814 ^{\left\{7 \right\}} | 0.76068 ^{\left\{2 \right\}} | 0.22490 ^{\left\{1 \right\}} | 0.94177 ^{\left\{5 \right\}} | 0.95845 ^{\left\{6 \right\}} | 0.83406 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.56247 ^{\left\{3 \right\}} | 0.64453 ^{\left\{6 \right\}} | 0.57353 ^{\left\{4 \right\}} | 0.64522 ^{\left\{7 \right\}} | 0.46925 ^{\left\{1 \right\}} | 0.76277 ^{\left\{8 \right\}} | 0.55915 ^{\left\{2 \right\}} | 0.63949 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.45485 ^{\left\{8 \right\}} | 0.31115 ^{\left\{2 \right\}} | 0.36895 ^{\left\{6 \right\}} | 0.33000 ^{\left\{3 \right\}} | 0.11306 ^{\left\{1 \right\}} | 0.39112 ^{\left\{7 \right\}} | 0.36093 ^{\left\{5 \right\}} | 0.34405 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.76702 ^{\left\{8 \right\}} | 0.62063 ^{\left\{3 \right\}} | 0.68635 ^{\left\{7 \right\}} | 0.62598 ^{\left\{4 \right\}} | 0.33066 ^{\left\{1 \right\}} | 0.60384 ^{\left\{2 \right\}} | 0.66063 ^{\left\{6 \right\}} | 0.63130 ^{\left\{5 \right\}} | ||
MSEs | \hat{\vartheta} | 1.24539 ^{\left\{7 \right\}} | 0.92842 ^{\left\{2 \right\}} | 1.16588 ^{\left\{6 \right\}} | 0.94580 ^{\left\{3 \right\}} | 0.13919 ^{\left\{1 \right\}} | 1.25646 ^{\left\{8 \right\}} | 1.12647 ^{\left\{5 \right\}} | 1.05555 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.45689 ^{\left\{3 \right\}} | 0.57098 ^{\left\{6 \right\}} | 0.46410 ^{\left\{4 \right\}} | 0.57244 ^{\left\{7 \right\}} | 0.32482 ^{\left\{1 \right\}} | 0.71835 ^{\left\{8 \right\}} | 0.44181 ^{\left\{2 \right\}} | 0.55971 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.28629 ^{\left\{8 \right\}} | 0.17260 ^{\left\{2 \right\}} | 0.20504 ^{\left\{5 \right\}} | 0.19582 ^{\left\{3 \right\}} | 0.02220 ^{\left\{1 \right\}} | 0.25122 ^{\left\{7 \right\}} | 0.20232 ^{\left\{4 \right\}} | 0.20735 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.68706 ^{\left\{8 \right\}} | 0.51170 ^{\left\{3 \right\}} | 0.58072 ^{\left\{7 \right\}} | 0.52071 ^{\left\{4 \right\}} | 0.16747 ^{\left\{1 \right\}} | 0.49400 ^{\left\{2 \right\}} | 0.55280 ^{\left\{6 \right\}} | 0.52733 ^{\left\{5 \right\}} | ||
MREs | \hat{\vartheta} | 0.28718 ^{\left\{8 \right\}} | 0.21747 ^{\left\{3 \right\}} | 0.28233 ^{\left\{7 \right\}} | 0.21734 ^{\left\{2 \right\}} | 0.06426 ^{\left\{1 \right\}} | 0.26908 ^{\left\{5 \right\}} | 0.27384 ^{\left\{6 \right\}} | 0.23830 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.28123 ^{\left\{3 \right\}} | 0.32226 ^{\left\{6 \right\}} | 0.28677 ^{\left\{4 \right\}} | 0.32261 ^{\left\{7 \right\}} | 0.23462 ^{\left\{1 \right\}} | 0.38138 ^{\left\{8 \right\}} | 0.27957 ^{\left\{2 \right\}} | 0.31974 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.30323 ^{\left\{8 \right\}} | 0.20744 ^{\left\{2 \right\}} | 0.24597 ^{\left\{6 \right\}} | 0.22000 ^{\left\{3 \right\}} | 0.07538 ^{\left\{1 \right\}} | 0.26075 ^{\left\{7 \right\}} | 0.24062 ^{\left\{5 \right\}} | 0.22937 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.30681 ^{\left\{8 \right\}} | 0.24825 ^{\left\{3 \right\}} | 0.27454 ^{\left\{7 \right\}} | 0.25039 ^{\left\{4 \right\}} | 0.13226 ^{\left\{1 \right\}} | 0.24153 ^{\left\{2 \right\}} | 0.26425 ^{\left\{6 \right\}} | 0.25252 ^{\left\{5 \right\}} | ||
\sum{Ranks} | {\textbf{80}} ^{\left\{8 \right\}} | {\textbf{41}} ^{\left\{2 \right\}} | {\textbf{70}} ^{\left\{7 \right\}} | {\textbf{49}} ^{\left\{3 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{69}} ^{\left\{6 \right\}} | {\textbf{55}} ^{\left\{4 \right\}} | {\textbf{56}} ^{\left\{5 \right\}} | ||
200 | |BIAS| | \hat{\vartheta} | 0.98460 ^{\left\{6 \right\}} | 0.86500 ^{\left\{3 \right\}} | 1.00674 ^{\left\{7 \right\}} | 0.86298 ^{\left\{2 \right\}} | 0.12154 ^{\left\{1 \right\}} | 1.05269 ^{\left\{8 \right\}} | 0.98185 ^{\left\{5 \right\}} | 0.89235 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.38859 ^{\left\{2 \right\}} | 0.45911 ^{\left\{5 \right\}} | 0.41129 ^{\left\{4 \right\}} | 0.46722 ^{\left\{6 \right\}} | 0.31253 ^{\left\{1 \right\}} | 0.67732 ^{\left\{8 \right\}} | 0.40329 ^{\left\{3 \right\}} | 0.46920 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.39873 ^{\left\{8 \right\}} | 0.31023 ^{\left\{2 \right\}} | 0.35370 ^{\left\{6 \right\}} | 0.32546 ^{\left\{3 \right\}} | 0.06881 ^{\left\{1 \right\}} | 0.37938 ^{\left\{7 \right\}} | 0.34126 ^{\left\{5 \right\}} | 0.32900 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.68985 ^{\left\{8 \right\}} | 0.57483 ^{\left\{3 \right\}} | 0.64129 ^{\left\{7 \right\}} | 0.59868 ^{\left\{5 \right\}} | 0.21029 ^{\left\{1 \right\}} | 0.55195 ^{\left\{2 \right\}} | 0.61763 ^{\left\{6 \right\}} | 0.59808 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 1.11626 ^{\left\{6 \right\}} | 1.01791 ^{\left\{2 \right\}} | 1.13048 ^{\left\{7 \right\}} | 1.02064 ^{\left\{3 \right\}} | 0.05498 ^{\left\{1 \right\}} | 1.30905 ^{\left\{8 \right\}} | 1.09868 ^{\left\{5 \right\}} | 1.05550 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.23053 ^{\left\{2 \right\}} | 0.31234 ^{\left\{5 \right\}} | 0.25573 ^{\left\{4 \right\}} | 0.32276 ^{\left\{6 \right\}} | 0.15678 ^{\left\{1 \right\}} | 0.58268 ^{\left\{8 \right\}} | 0.24649 ^{\left\{3 \right\}} | 0.32421 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.22103 ^{\left\{7 \right\}} | 0.16583 ^{\left\{2 \right\}} | 0.18036 ^{\left\{5 \right\}} | 0.17985 ^{\left\{4 \right\}} | 0.00837 ^{\left\{1 \right\}} | 0.22479 ^{\left\{8 \right\}} | 0.17270 ^{\left\{3 \right\}} | 0.18259 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.58585 ^{\left\{8 \right\}} | 0.45832 ^{\left\{3 \right\}} | 0.51809 ^{\left\{7 \right\}} | 0.48976 ^{\left\{5 \right\}} | 0.07171 ^{\left\{1 \right\}} | 0.44322 ^{\left\{2 \right\}} | 0.49209 ^{\left\{6 \right\}} | 0.48968 ^{\left\{4 \right\}} | ||
MREs | \hat{\vartheta} | 0.28132 ^{\left\{6 \right\}} | 0.24714 ^{\left\{3 \right\}} | 0.28764 ^{\left\{7 \right\}} | 0.24657 ^{\left\{2 \right\}} | 0.03472 ^{\left\{1 \right\}} | 0.30077 ^{\left\{8 \right\}} | 0.28053 ^{\left\{5 \right\}} | 0.25496 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.19429 ^{\left\{2 \right\}} | 0.22956 ^{\left\{5 \right\}} | 0.20564 ^{\left\{4 \right\}} | 0.23361 ^{\left\{6 \right\}} | 0.15627 ^{\left\{1 \right\}} | 0.33866 ^{\left\{8 \right\}} | 0.20165 ^{\left\{3 \right\}} | 0.23460 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.26582 ^{\left\{8 \right\}} | 0.20682 ^{\left\{2 \right\}} | 0.23580 ^{\left\{6 \right\}} | 0.21697 ^{\left\{3 \right\}} | 0.04587 ^{\left\{1 \right\}} | 0.25292 ^{\left\{7 \right\}} | 0.22751 ^{\left\{5 \right\}} | 0.21933 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.27594 ^{\left\{8 \right\}} | 0.22993 ^{\left\{3 \right\}} | 0.25652 ^{\left\{7 \right\}} | 0.23947 ^{\left\{5 \right\}} | 0.08412 ^{\left\{1 \right\}} | 0.22078 ^{\left\{2 \right\}} | 0.24705 ^{\left\{6 \right\}} | 0.23923 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{71}} ^{\left\{6.5 \right\}} | {\textbf{38}} ^{\left\{2 \right\}} | {\textbf{71}} ^{\left\{6.5 \right\}} | {\textbf{50}} ^{\left\{3 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{76}} ^{\left\{8 \right\}} | {\textbf{55}} ^{\left\{4 \right\}} | {\textbf{59}} ^{\left\{5 \right\}} | ||
500 | |BIAS| | \hat{\vartheta} | 0.93304 ^{\left\{5 \right\}} | 0.93263 ^{\left\{4 \right\}} | 0.97539 ^{\left\{7 \right\}} | 0.92961 ^{\left\{3 \right\}} | 0.05348 ^{\left\{1 \right\}} | 1.08240 ^{\left\{8 \right\}} | 0.95522 ^{\left\{6 \right\}} | 0.92527 ^{\left\{2 \right\}} |
\hat{\varphi} | 0.27572 ^{\left\{2 \right\}} | 0.32936 ^{\left\{5 \right\}} | 0.29210 ^{\left\{4 \right\}} | 0.33160 ^{\left\{6 \right\}} | 0.19113 ^{\left\{1 \right\}} | 0.58412 ^{\left\{8 \right\}} | 0.28766 ^{\left\{3 \right\}} | 0.33820 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.34882 ^{\left\{7 \right\}} | 0.31976 ^{\left\{2 \right\}} | 0.33838 ^{\left\{6 \right\}} | 0.33117 ^{\left\{5 \right\}} | 0.03908 ^{\left\{1 \right\}} | 0.35124 ^{\left\{8 \right\}} | 0.32736 ^{\left\{3 \right\}} | 0.32969 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.61892 ^{\left\{8 \right\}} | 0.57580 ^{\left\{3 \right\}} | 0.60923 ^{\left\{7 \right\}} | 0.59341 ^{\left\{6 \right\}} | 0.12272 ^{\left\{1 \right\}} | 0.51040 ^{\left\{2 \right\}} | 0.59246 ^{\left\{5 \right\}} | 0.58416 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 0.99386 ^{\left\{2 \right\}} | 1.04383 ^{\left\{6 \right\}} | 1.04849 ^{\left\{7 \right\}} | 1.04352 ^{\left\{5 \right\}} | 0.00732 ^{\left\{1 \right\}} | 1.28318 ^{\left\{8 \right\}} | 1.01861 ^{\left\{3 \right\}} | 1.03056 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.11591 ^{\left\{2 \right\}} | 0.16651 ^{\left\{5 \right\}} | 0.13079 ^{\left\{4 \right\}} | 0.16807 ^{\left\{6 \right\}} | 0.06394 ^{\left\{1 \right\}} | 0.45248 ^{\left\{8 \right\}} | 0.12739 ^{\left\{3 \right\}} | 0.17250 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.17000 ^{\left\{7 \right\}} | 0.15789 ^{\left\{3 \right\}} | 0.15993 ^{\left\{4 \right\}} | 0.16663 ^{\left\{5 \right\}} | 0.00250 ^{\left\{1 \right\}} | 0.18698 ^{\left\{8 \right\}} | 0.15186 ^{\left\{2 \right\}} | 0.16915 ^{\left\{6 \right\}} | ||
\hat{\theta} | 0.48714 ^{\left\{8 \right\}} | 0.45146 ^{\left\{4 \right\}} | 0.47250 ^{\left\{6 \right\}} | 0.47497 ^{\left\{7 \right\}} | 0.02504 ^{\left\{1 \right\}} | 0.39915 ^{\left\{2 \right\}} | 0.45105 ^{\left\{3 \right\}} | 0.47078 ^{\left\{5 \right\}} | ||
MREs | \hat{\vartheta} | 0.26658 ^{\left\{5 \right\}} | 0.26647 ^{\left\{4 \right\}} | 0.27868 ^{\left\{7 \right\}} | 0.26560 ^{\left\{3 \right\}} | 0.01528 ^{\left\{1 \right\}} | 0.30926 ^{\left\{8 \right\}} | 0.27292 ^{\left\{6 \right\}} | 0.26436 ^{\left\{2 \right\}} | |
\hat{\varphi} | 0.13786 ^{\left\{2 \right\}} | 0.16468 ^{\left\{5 \right\}} | 0.14605 ^{\left\{4 \right\}} | 0.16580 ^{\left\{6 \right\}} | 0.09557 ^{\left\{1 \right\}} | 0.29206 ^{\left\{8 \right\}} | 0.14383 ^{\left\{3 \right\}} | 0.16910 ^{\left\{7 \right\}} | ||
\hat{\lambda} | 0.23255 ^{\left\{7 \right\}} | 0.21318 ^{\left\{2 \right\}} | 0.22559 ^{\left\{6 \right\}} | 0.22078 ^{\left\{5 \right\}} | 0.02606 ^{\left\{1 \right\}} | 0.23416 ^{\left\{8 \right\}} | 0.21824 ^{\left\{3 \right\}} | 0.21980 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.24757 ^{\left\{8 \right\}} | 0.23032 ^{\left\{3 \right\}} | 0.24369 ^{\left\{7 \right\}} | 0.23736 ^{\left\{6 \right\}} | 0.04909 ^{\left\{1 \right\}} | 0.20416 ^{\left\{2 \right\}} | 0.23698 ^{\left\{5 \right\}} | 0.23367 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{63}} ^{\left\{5.5 \right\}} | {\textbf{46}} ^{\left\{3 \right\}} | {\textbf{69}} ^{\left\{7 \right\}} | {\textbf{63}} ^{\left\{5.5 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{78}} ^{\left\{8 \right\}} | {\textbf{45}} ^{\left\{2 \right\}} | {\textbf{56}} ^{\left\{4 \right\}} |
n | Est. | Est. Par. | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
20 | |BIAS| | \hat{\vartheta} | 1.25197 ^{\left\{8 \right\}} | 0.45438 ^{\left\{3 \right\}} | 1.06521 ^{\left\{7 \right\}} | 0.44888 ^{\left\{2 \right\}} | 0.20680 ^{\left\{1 \right\}} | 0.83805 ^{\left\{5 \right\}} | 1.02528 ^{\left\{6 \right\}} | 0.62513 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.58123 ^{\left\{5 \right\}} | 0.60203 ^{\left\{7 \right\}} | 0.57995 ^{\left\{4 \right\}} | 0.61278 ^{\left\{8 \right\}} | 0.16575 ^{\left\{1 \right\}} | 0.57749 ^{\left\{3 \right\}} | 0.53508 ^{\left\{2 \right\}} | 0.58165 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.08854 ^{\left\{8 \right\}} | 0.07652 ^{\left\{2 \right\}} | 0.08227 ^{\left\{7 \right\}} | 0.07831 ^{\left\{3 \right\}} | 0.06474 ^{\left\{1 \right\}} | 0.08065 ^{\left\{6 \right\}} | 0.07939 ^{\left\{4 \right\}} | 0.07980 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.66759 ^{\left\{8 \right\}} | 0.42262 ^{\left\{2 \right\}} | 0.53041 ^{\left\{7 \right\}} | 0.44839 ^{\left\{3 \right\}} | 0.32466 ^{\left\{1 \right\}} | 0.51024 ^{\left\{5 \right\}} | 0.52797 ^{\left\{6 \right\}} | 0.48959 ^{\left\{4 \right\}} | ||
MSEs | \hat{\vartheta} | 2.41625 ^{\left\{8 \right\}} | 0.60512 ^{\left\{2 \right\}} | 1.67131 ^{\left\{6 \right\}} | 0.67908 ^{\left\{3 \right\}} | 0.18285 ^{\left\{1 \right\}} | 1.58289 ^{\left\{5 \right\}} | 1.74298 ^{\left\{7 \right\}} | 1.01407 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.42148 ^{\left\{3 \right\}} | 0.46192 ^{\left\{7 \right\}} | 0.43565 ^{\left\{5 \right\}} | 0.46874 ^{\left\{8 \right\}} | 0.38218 ^{\left\{1 \right\}} | 0.43432 ^{\left\{4 \right\}} | 0.38271 ^{\left\{2 \right\}} | 0.43679 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.01072 ^{\left\{8 \right\}} | 0.00870 ^{\left\{2 \right\}} | 0.00963 ^{\left\{7 \right\}} | 0.00906 ^{\left\{3 \right\}} | 0.00620 ^{\left\{1 \right\}} | 0.00950 ^{\left\{6 \right\}} | 0.00923 ^{\left\{5 \right\}} | 0.00919 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.58894 ^{\left\{8 \right\}} | 0.28693 ^{\left\{2 \right\}} | 0.40885 ^{\left\{6 \right\}} | 0.32249 ^{\left\{3 \right\}} | 0.16767 ^{\left\{1 \right\}} | 0.38646 ^{\left\{5 \right\}} | 0.41599 ^{\left\{7 \right\}} | 0.36863 ^{\left\{4 \right\}} | ||
MREs | \hat{\vartheta} | 0.27821 ^{\left\{8 \right\}} | 0.10097 ^{\left\{3 \right\}} | 0.23671 ^{\left\{7 \right\}} | 0.09975 ^{\left\{2 \right\}} | 0.04596 ^{\left\{1 \right\}} | 0.18623 ^{\left\{5 \right\}} | 0.22784 ^{\left\{6 \right\}} | 0.13892 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.77497 ^{\left\{5 \right\}} | 0.80271 ^{\left\{7 \right\}} | 0.77327 ^{\left\{4 \right\}} | 0.81704 ^{\left\{8 \right\}} | 0.70903 ^{\left\{1 \right\}} | 0.76998 ^{\left\{3 \right\}} | 0.71344 ^{\left\{2 \right\}} | 0.77554 ^{\left\{6 \right\}} | ||
\hat{\lambda} | 0.17707 ^{\left\{8 \right\}} | 0.15303 ^{\left\{2 \right\}} | 0.16453 ^{\left\{7 \right\}} | 0.15662 ^{\left\{3 \right\}} | 0.12948 ^{\left\{1 \right\}} | 0.16130 ^{\left\{6 \right\}} | 0.15879 ^{\left\{4 \right\}} | 0.15960 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.53407 ^{\left\{8 \right\}} | 0.33809 ^{\left\{2 \right\}} | 0.42432 ^{\left\{7 \right\}} | 0.35871 ^{\left\{3 \right\}} | 0.25973 ^{\left\{1 \right\}} | 0.40819 ^{\left\{5 \right\}} | 0.42237 ^{\left\{6 \right\}} | 0.39167 ^{\left\{4 \right\}} | ||
\sum{Ranks} | {\textbf{85}} ^{\left\{8 \right\}} | {\textbf{41}} ^{\left\{2 \right\}} | {\textbf{74}} ^{\left\{7 \right\}} | {\textbf{49}} ^{\left\{3 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{58}} ^{\left\{6 \right\}} | {\textbf{57}} ^{\left\{5 \right\}} | {\textbf{56}} ^{\left\{4 \right\}} | ||
80 | |BIAS| | \hat{\vartheta} | 1.62748 ^{\left\{8 \right\}} | 0.91367 ^{\left\{2 \right\}} | 1.37823 ^{\left\{7 \right\}} | 0.98139 ^{\left\{3 \right\}} | 0.11224 ^{\left\{1 \right\}} | 1.13720 ^{\left\{5 \right\}} | 1.31803 ^{\left\{6 \right\}} | 1.11805 ^{\left\{4 \right\}} |
\hat{\varphi} | 0.31837 ^{\left\{3 \right\}} | 0.39968 ^{\left\{7 \right\}} | 0.34474 ^{\left\{4 \right\}} | 0.40380 ^{\left\{8 \right\}} | 0.27352 ^{\left\{1 \right\}} | 0.37466 ^{\left\{6 \right\}} | 0.31821 ^{\left\{2 \right\}} | 0.35079 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.07169 ^{\left\{8 \right\}} | 0.05804 ^{\left\{3 \right\}} | 0.06253 ^{\left\{7 \right\}} | 0.06113 ^{\left\{6 \right\}} | 0.03286 ^{\left\{1 \right\}} | 0.05699 ^{\left\{2 \right\}} | 0.05980 ^{\left\{5 \right\}} | 0.05870 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.64853 ^{\left\{8 \right\}} | 0.39956 ^{\left\{2 \right\}} | 0.49396 ^{\left\{7 \right\}} | 0.44278 ^{\left\{4 \right\}} | 0.16292 ^{\left\{1 \right\}} | 0.43570 ^{\left\{3 \right\}} | 0.47512 ^{\left\{6 \right\}} | 0.45276 ^{\left\{5 \right\}} | ||
MSEs | \hat{\vartheta} | 3.14585 ^{\left\{8 \right\}} | 1.58782 ^{\left\{2 \right\}} | 2.33956 ^{\left\{7 \right\}} | 1.79431 ^{\left\{3 \right\}} | 0.08679 ^{\left\{1 \right\}} | 1.96177 ^{\left\{4 \right\}} | 2.22845 ^{\left\{6 \right\}} | 2.05141 ^{\left\{5 \right\}} | |
\hat{\varphi} | 0.15254 ^{\left\{2 \right\}} | 0.23761 ^{\left\{7 \right\}} | 0.18156 ^{\left\{4 \right\}} | 0.24031 ^{\left\{8 \right\}} | 0.12335 ^{\left\{1 \right\}} | 0.22013 ^{\left\{6 \right\}} | 0.15798 ^{\left\{3 \right\}} | 0.19064 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00707 ^{\left\{8 \right\}} | 0.00520 ^{\left\{4 \right\}} | 0.00579 ^{\left\{7 \right\}} | 0.00566 ^{\left\{6 \right\}} | 0.00171 ^{\left\{1 \right\}} | 0.00514 ^{\left\{2 \right\}} | 0.00541 ^{\left\{5 \right\}} | 0.00519 ^{\left\{3 \right\}} | ||
\hat{\theta} | 0.56658 ^{\left\{8 \right\}} | 0.28713 ^{\left\{2 \right\}} | 0.38674 ^{\left\{7 \right\}} | 0.34041 ^{\left\{4 \right\}} | 0.04197 ^{\left\{1 \right\}} | 0.32550 ^{\left\{3 \right\}} | 0.36722 ^{\left\{6 \right\}} | 0.35156 ^{\left\{5 \right\}} | ||
MREs | \hat{\vartheta} | 0.36166 ^{\left\{8 \right\}} | 0.20304 ^{\left\{2 \right\}} | 0.30627 ^{\left\{7 \right\}} | 0.21809 ^{\left\{3 \right\}} | 0.02494 ^{\left\{1 \right\}} | 0.25271 ^{\left\{5 \right\}} | 0.29289 ^{\left\{6 \right\}} | 0.24846 ^{\left\{4 \right\}} | |
\hat{\varphi} | 0.42449 ^{\left\{3 \right\}} | 0.53291 ^{\left\{7 \right\}} | 0.45966 ^{\left\{4 \right\}} | 0.53840 ^{\left\{8 \right\}} | 0.36469 ^{\left\{1 \right\}} | 0.49955 ^{\left\{6 \right\}} | 0.42429 ^{\left\{2 \right\}} | 0.46771 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.14337 ^{\left\{8 \right\}} | 0.11609 ^{\left\{3 \right\}} | 0.12506 ^{\left\{7 \right\}} | 0.12226 ^{\left\{6 \right\}} | 0.06572 ^{\left\{1 \right\}} | 0.11399 ^{\left\{2 \right\}} | 0.11961 ^{\left\{5 \right\}} | 0.11740 ^{\left\{4 \right\}} | ||
\hat{\theta} | 0.51882 ^{\left\{8 \right\}} | 0.31965 ^{\left\{2 \right\}} | 0.39517 ^{\left\{7 \right\}} | 0.35422 ^{\left\{4 \right\}} | 0.13034 ^{\left\{1 \right\}} | 0.34856 ^{\left\{3 \right\}} | 0.38010 ^{\left\{6 \right\}} | 0.36221 ^{\left\{5 \right\}} | ||
\sum{Ranks} | {\textbf{80}} ^{\left\{8 \right\}} | {\textbf{43}} ^{\left\{2 \right\}} | {\textbf{75}} ^{\left\{7 \right\}} | {\textbf{63}} ^{\left\{6 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{47}} ^{\left\{3 \right\}} | {\textbf{58}} ^{\left\{5 \right\}} | {\textbf{54}} ^{\left\{4 \right\}} | ||
200 | |BIAS| | \hat{\vartheta} | 1.48139 ^{\left\{8 \right\}} | 1.17284 ^{\left\{2 \right\}} | 1.40391 ^{\left\{7 \right\}} | 1.21294 ^{\left\{4 \right\}} | 0.04307 ^{\left\{1 \right\}} | 1.17950 ^{\left\{3 \right\}} | 1.33404 ^{\left\{6 \right\}} | 1.29174 ^{\left\{5 \right\}} |
\hat{\varphi} | 0.20186 ^{\left\{2 \right\}} | 0.26830 ^{\left\{7 \right\}} | 0.21385 ^{\left\{4 \right\}} | 0.26575 ^{\left\{6 \right\}} | 0.16575 ^{\left\{1 \right\}} | 0.27408 ^{\left\{8 \right\}} | 0.20558 ^{\left\{3 \right\}} | 0.23166 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.06056 ^{\left\{8 \right\}} | 0.05260 ^{\left\{3 \right\}} | 0.05573 ^{\left\{7 \right\}} | 0.05571 ^{\left\{6 \right\}} | 0.02038 ^{\left\{1 \right\}} | 0.04542 ^{\left\{2 \right\}} | 0.05309 ^{\left\{4 \right\}} | 0.05470 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.54563 ^{\left\{8 \right\}} | 0.42847 ^{\left\{3 \right\}} | 0.47838 ^{\left\{7 \right\}} | 0.45810 ^{\left\{5 \right\}} | 0.09746 ^{\left\{1 \right\}} | 0.36816 ^{\left\{2 \right\}} | 0.44966 ^{\left\{4 \right\}} | 0.46232 ^{\left\{6 \right\}} | ||
MSEs | \hat{\vartheta} | 2.63270 ^{\left\{8 \right\}} | 2.08923 ^{\left\{3 \right\}} | 2.37558 ^{\left\{7 \right\}} | 2.20468 ^{\left\{5 \right\}} | 0.02535 ^{\left\{1 \right\}} | 1.86391 ^{\left\{2 \right\}} | 2.18628 ^{\left\{4 \right\}} | 2.32684 ^{\left\{6 \right\}} | |
\hat{\varphi} | 0.06343 ^{\left\{2 \right\}} | 0.11259 ^{\left\{7 \right\}} | 0.07126 ^{\left\{4 \right\}} | 0.11064 ^{\left\{6 \right\}} | 0.04499 ^{\left\{1 \right\}} | 0.12626 ^{\left\{8 \right\}} | 0.06649 ^{\left\{3 \right\}} | 0.08397 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00531 ^{\left\{8 \right\}} | 0.00437 ^{\left\{3 \right\}} | 0.00472 ^{\left\{6 \right\}} | 0.00486 ^{\left\{7 \right\}} | 0.00066 ^{\left\{1 \right\}} | 0.00347 ^{\left\{2 \right\}} | 0.00441 ^{\left\{4 \right\}} | 0.00470 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.44122 ^{\left\{8 \right\}} | 0.33416 ^{\left\{3 \right\}} | 0.37078 ^{\left\{5 \right\}} | 0.37139 ^{\left\{6 \right\}} | 0.01519 ^{\left\{1 \right\}} | 0.25838 ^{\left\{2 \right\}} | 0.33754 ^{\left\{4 \right\}} | 0.37704 ^{\left\{7 \right\}} | ||
MREs | \hat{\vartheta} | 0.32920 ^{\left\{8 \right\}} | 0.26063 ^{\left\{2 \right\}} | 0.31198 ^{\left\{7 \right\}} | 0.26954 ^{\left\{4 \right\}} | 0.00957 ^{\left\{1 \right\}} | 0.26211 ^{\left\{3 \right\}} | 0.29645 ^{\left\{6 \right\}} | 0.28705 ^{\left\{5 \right\}} | |
\hat{\varphi} | 0.26915 ^{\left\{2 \right\}} | 0.35774 ^{\left\{7 \right\}} | 0.28513 ^{\left\{4 \right\}} | 0.35434 ^{\left\{6 \right\}} | 0.22100 ^{\left\{1 \right\}} | 0.36544 ^{\left\{8 \right\}} | 0.27411 ^{\left\{3 \right\}} | 0.30888 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.12113 ^{\left\{8 \right\}} | 0.10520 ^{\left\{3 \right\}} | 0.11146 ^{\left\{7 \right\}} | 0.11142 ^{\left\{6 \right\}} | 0.04075 ^{\left\{1 \right\}} | 0.09084 ^{\left\{2 \right\}} | 0.10618 ^{\left\{4 \right\}} | 0.10941 ^{\left\{5 \right\}} | ||
\hat{\theta} | 0.43650 ^{\left\{8 \right\}} | 0.34278 ^{\left\{3 \right\}} | 0.38270 ^{\left\{7 \right\}} | 0.36648 ^{\left\{5 \right\}} | 0.07797 ^{\left\{1 \right\}} | 0.29453 ^{\left\{2 \right\}} | 0.35973 ^{\left\{4 \right\}} | 0.36986 ^{\left\{6 \right\}} | ||
\sum{Ranks} | {\textbf{78}} ^{\left\{8 \right\}} | {\textbf{46}} ^{\left\{3 \right\}} | {\textbf{72}} ^{\left\{7 \right\}} | {\textbf{66}} ^{\left\{6 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{44}} ^{\left\{2 \right\}} | {\textbf{49}} ^{\left\{4 \right\}} | {\textbf{65}} ^{\left\{5 \right\}} | ||
500 | |BIAS| | \hat{\vartheta} | 1.29672 ^{\left\{5 \right\}} | 1.27235 ^{\left\{3 \right\}} | 1.31237 ^{\left\{6 \right\}} | 1.32513 ^{\left\{7 \right\}} | 0.01519 ^{\left\{1 \right\}} | 1.15120 ^{\left\{2 \right\}} | 1.28994 ^{\left\{4 \right\}} | 1.34189 ^{\left\{8 \right\}} |
\hat{\varphi} | 0.13744 ^{\left\{2 \right\}} | 0.17802 ^{\left\{6 \right\}} | 0.14815 ^{\left\{4 \right\}} | 0.18664 ^{\left\{7 \right\}} | 0.10227 ^{\left\{1 \right\}} | 0.19392 ^{\left\{8 \right\}} | 0.14640 ^{\left\{3 \right\}} | 0.15865 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.04970 ^{\left\{5 \right\}} | 0.05107 ^{\left\{6 \right\}} | 0.04913 ^{\left\{4 \right\}} | 0.05400 ^{\left\{8 \right\}} | 0.01264 ^{\left\{1 \right\}} | 0.03665 ^{\left\{2 \right\}} | 0.04825 ^{\left\{3 \right\}} | 0.05335 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.44102 ^{\left\{5 \right\}} | 0.44509 ^{\left\{6 \right\}} | 0.43050 ^{\left\{4 \right\}} | 0.47518 ^{\left\{8 \right\}} | 0.05962 ^{\left\{1 \right\}} | 0.31796 ^{\left\{2 \right\}} | 0.42160 ^{\left\{3 \right\}} | 0.46945 ^{\left\{7 \right\}} | ||
MSEs | \hat{\vartheta} | 2.07266 ^{\left\{4 \right\}} | 2.19148 ^{\left\{6 \right\}} | 2.07839 ^{\left\{5 \right\}} | 2.34226 ^{\left\{8 \right\}} | 0.00344 ^{\left\{1 \right\}} | 1.67247 ^{\left\{2 \right\}} | 2.02330 ^{\left\{3 \right\}} | 2.31957 ^{\left\{7 \right\}} | |
\hat{\varphi} | 0.02955 ^{\left\{2 \right\}} | 0.05030 ^{\left\{6 \right\}} | 0.03417 ^{\left\{4 \right\}} | 0.05288 ^{\left\{7 \right\}} | 0.01679 ^{\left\{1 \right\}} | 0.06276 ^{\left\{8 \right\}} | 0.03295 ^{\left\{3 \right\}} | 0.03874 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.00377 ^{\left\{4 \right\}} | 0.00418 ^{\left\{6 \right\}} | 0.00378 ^{\left\{5 \right\}} | 0.00452 ^{\left\{7 \right\}} | 0.00025 ^{\left\{1 \right\}} | 0.00242 ^{\left\{2 \right\}} | 0.00363 ^{\left\{3 \right\}} | 0.00454 ^{\left\{8 \right\}} | ||
\hat{\theta} | 0.30987 ^{\left\{5 \right\}} | 0.34423 ^{\left\{6 \right\}} | 0.30505 ^{\left\{4 \right\}} | 0.37795 ^{\left\{8 \right\}} | 0.00564 ^{\left\{1 \right\}} | 0.19875 ^{\left\{2 \right\}} | 0.29242 ^{\left\{3 \right\}} | 0.37470 ^{\left\{7 \right\}} | ||
MREs | \hat{\vartheta} | 0.28816 ^{\left\{5 \right\}} | 0.28275 ^{\left\{3 \right\}} | 0.29164 ^{\left\{6 \right\}} | 0.29447 ^{\left\{7 \right\}} | 0.00337 ^{\left\{1 \right\}} | 0.25582 ^{\left\{2 \right\}} | 0.28665 ^{\left\{4 \right\}} | 0.29820 ^{\left\{8 \right\}} | |
\hat{\varphi} | 0.18326 ^{\left\{2 \right\}} | 0.23736 ^{\left\{6 \right\}} | 0.19754 ^{\left\{4 \right\}} | 0.24885 ^{\left\{7 \right\}} | 0.13636 ^{\left\{1 \right\}} | 0.25856 ^{\left\{8 \right\}} | 0.19520 ^{\left\{3 \right\}} | 0.21153 ^{\left\{5 \right\}} | ||
\hat{\lambda} | 0.09940 ^{\left\{5 \right\}} | 0.10214 ^{\left\{6 \right\}} | 0.09825 ^{\left\{4 \right\}} | 0.10801 ^{\left\{8 \right\}} | 0.02528 ^{\left\{1 \right\}} | 0.07330 ^{\left\{2 \right\}} | 0.09651 ^{\left\{3 \right\}} | 0.10671 ^{\left\{7 \right\}} | ||
\hat{\theta} | 0.35281 ^{\left\{5 \right\}} | 0.35607 ^{\left\{6 \right\}} | 0.34440 ^{\left\{4 \right\}} | 0.38014 ^{\left\{8 \right\}} | 0.04770 ^{\left\{1 \right\}} | 0.25437 ^{\left\{2 \right\}} | 0.33728 ^{\left\{3 \right\}} | 0.37556 ^{\left\{7 \right\}} | ||
\sum{Ranks} | {\textbf{49}} ^{\left\{4 \right\}} | {\textbf{66}} ^{\left\{6 \right\}} | {\textbf{54}} ^{\left\{5 \right\}} | {\textbf{90}} ^{\left\{8 \right\}} | {\textbf{12}} ^{\left\{1 \right\}} | {\textbf{42}} ^{\left\{3 \right\}} | {\textbf{38}} ^{\left\{2 \right\}} | {\textbf{81}} ^{\left\{7 \right\}} |
\mathit{\boldsymbol{\eta}}^{\intercal} | n | MLEs | LSEs | WLSEs | CRVMEs | MPSEs | PCEs | ADEs | RADEs |
(\hat{\vartheta}=1.75, \hat{\varphi}=0.5, \hat{\lambda}=0.25, \hat{\theta}=1.25) | 20 | 2 | 7 | 1 | 5 | 4 | 8 | 3 | 6 |
80 | 3 | 7 | 2 | 6 | 1 | 5 | 4 | 8 | |
200 | 1.5 | 7 | 4 | 5 | 1.5 | 6 | 3 | 8 | |
500 | 2 | 5.5 | 4 | 5.5 | 1 | 7 | 3 | 8 | |
(\hat{\vartheta}=1.75, \hat{\varphi}=2, \hat{\lambda}=1.5, \hat{\theta}=2.5) | 20 | 1 | 3 | 2 | 7 | 4 | 8 | 5.5 | 5.5 |
80 | 1 | 3 | 4 | 6 | 2 | 8 | 5 | 7 | |
200 | 2 | 3 | 4.5 | 6.5 | 1 | 8 | 4.5 | 6.5 | |
500 | 3 | 4 | 5 | 6 | 1 | 8 | 2 | 7 | |
(\hat{\vartheta}=3.5, \hat{\varphi}=0.75, \hat{\lambda}=0.5, \hat{\theta}=1.25) | 20 | 7 | 4 | 3 | 6 | 1 | 8 | 2 | 5 |
80 | 8 | 3 | 4 | 7 | 1 | 5 | 2 | 6 | |
200 | 6 | 5 | 4 | 8 | 1 | 3 | 2 | 7 | |
500 | 2 | 6 | 5 | 7 | 1 | 4 | 3 | 8 | |
(\hat{\vartheta}=3.5, \hat{\varphi}=2, \hat{\lambda}=1.5, \hat{\theta}=2.5) | 20 | 8 | 2 | 6 | 3 | 1 | 7 | 5 | 4 |
80 | 8 | 2 | 7 | 3 | 1 | 6 | 4 | 5 | |
200 | 6.5 | 2 | 6.5 | 3 | 1 | 8 | 4 | 5 | |
500 | 5.5 | 3 | 7 | 5.5 | 1 | 8 | 2 | 4 | |
(\hat{\vartheta}=4.5, \hat{\varphi}=0.75, \hat{\lambda}=0.5, \hat{\theta}=1.25) | 20 | 8 | 2 | 7 | 3 | 1 | 6 | 5 | 4 |
80 | 8 | 2 | 7 | 6 | 1 | 3 | 5 | 4 | |
200 | 8 | 3 | 7 | 6 | 1 | 2 | 4 | 5 | |
500 | 4 | 6 | 5 | 8 | 1 | 3 | 2 | 7 | |
(\hat{\vartheta}=4.5, \hat{\varphi}=0.75, \hat{\lambda}=0.5, \hat{\theta}=1.25) | 20 | 8 | 2 | 5 | 3 | 1 | 7 | 6 | 4 |
80 | 6 | 2 | 4 | 3 | 1 | 8 | 7 | 5 | |
200 | 6 | 2 | 4 | 3 | 1 | 7 | 8 | 5 | |
500 | 6 | 2 | 5 | 3 | 1 | 8 | 7 | 4 | |
(\hat{\vartheta}=0.25, \hat{\varphi}=3.5, \hat{\lambda}=3, \hat{\theta}=0.25) | 20 | 1 | 6 | 8 | 2 | 7 | 5 | 4 | 3 |
80 | 1.5 | 5 | 8 | 1.5 | 6 | 4 | 3 | 7 | |
200 | 1 | 7 | 4 | 6 | 2 | 3 | 5 | 8 | |
500 | 2 | 8 | 6 | 7 | 1 | 3 | 4.5 | 4.5 | |
(\hat{\vartheta}=0.75, \hat{\varphi}=2.5, \hat{\lambda}=4.25, \hat{\theta}=0.25) | 20 | 2 | 8 | 6 | 5 | 3 | 1 | 4 | 7 |
80 | 1.5 | 7 | 5 | 6 | 1.5 | 3 | 4 | 8 | |
200 | 2 | 7 | 5 | 6 | 1 | 3 | 4 | 8 | |
500 | 2 | 8 | 5 | 6 | 1 | 3 | 4 | 7 | |
\sum Ranks | \textbf{133.5} | \textbf{143.5} | \textbf{160} | \textbf{164} | \textbf{54} | \textbf{176} | \textbf{130.5} | \textbf{190.5} | |
{\textbf{Overall Rank}} | \textbf{3} | \textbf{4} | \textbf{5} | \textbf{6} | \textbf{1} | \textbf{7} | \textbf{2} | \textbf{8} |
Model | Par.. | Estimates | (SEs) | AIC | CAIC | BIC | HQIC | W^{*} | A^{*} | KS | (PV) |
EWFr | \hat{\vartheta} | 56.93662 | (38.42845) | 827.52150 | 827.84670 | 838.92960 | 832.15660 | 0.01991 | 0.13402 | 0.03757 | 0.99713 |
\hat{\varphi} | 0.46697 | (0.22382) | |||||||||
\hat{\lambda} | 0.71825 | (0.01713) | |||||||||
\hat{\theta} | 0.01794 | (0.01207) | |||||||||
OLxFr | \hat{\vartheta} | 2.18260 | (1.04763) | 827.70270 | 828.02790 | 839.11080 | 832.33780 | 0.02380 | 0.16520 | 0.04060 | 0.98433 |
\hat{\varphi} | 625.38000 | (622.71234) | |||||||||
\hat{a} | 0.12210 | (0.08023) | |||||||||
\hat{b} | 1.38560 | (0.17273) | |||||||||
KMOFr | \hat{\vartheta} | 43.87750 | (128.52731) | 831.05330 | 831.54510 | 845.31340 | 836.84730 | 0.26278 | 0.34950 | 0.04457 | 0.96120 |
\hat{\varphi} | 0.52028 | (0.41388) | |||||||||
\hat{\delta} | 0.01314 | (0.00808) | |||||||||
\hat{a} | 3.27359 | (2.90929) | |||||||||
\hat{b} | 19.93782 | (47.58906) | |||||||||
EFr | \hat{a} | 1426.40000 | (1440.19245) | 830.85880 | 831.05240 | 839.41490 | 834.33520 | 0.06720 | 0.46640 | 0.04910 | 0.91754 |
\hat{b} | 0.26240 | (0.02850) | |||||||||
\hat{\theta} | 46.24800 | (22.87321) | |||||||||
BFr | \hat{\vartheta} | 0.60970 | (0.32261) | 833.09830 | 833.42350 | 844.50640 | 837.73350 | 0.06900 | 0.47650 | 0.05540 | 0.82683 |
\hat{\varphi} | 36.60200 | (19.48341) | |||||||||
\hat{a} | 739.38700 | (629.24021) | |||||||||
\hat{b} | 0.32240 | (0.06044) | |||||||||
GExFr | \hat{\vartheta} | 226.67000 | (267.96324) | 840.21630 | 840.54150 | 851.62450 | 844.85150 | 0.14320 | 0.95970 | 0.06640 | 0.62593 |
\hat{\varphi} | 91.93900 | (133.94324) | |||||||||
\hat{a} | 22.27100 | (119.19139) | |||||||||
\hat{b} | 0.07090 | (0.04132) | |||||||||
TEFr | \hat{\vartheta} | 3.25820 | (0.40714) | 892.00150 | 892.09750 | 897.70560 | 894.31910 | 0.74430 | 4.54640 | 0.14080 | 0.01254 |
\hat{\varphi} | 0.75210 | (0.04224) | |||||||||
\hat{a} | 39.38721 | (40.24321) | |||||||||
\hat{b} | 0.25243 | (0.76041) | |||||||||
Fr | \hat{\theta} | 0.75208 | (0.04242) | 892.00150 | 892.09750 | 897.70560 | 894.31910 | 0.74432 | 4.54642 | 0.14079 | 0.01250 |
\hat{\lambda} | 2.43109 | (0.21928) |
Model | Par.. | Estimates | (SEs) | AIC | CAIC | BIC | HQIC | W^{*} | A^{*} | KS | (PV) |
EWFr | \hat{\vartheta} | 0.76563 | (0.3765631) | 119.68850 | 120.37820 | 128.26110 | 123.06020 | 0.04181 | 0.23988 | 0.06847 | 0.92920 |
\hat{\varphi} | 0.04349 | (0.3074545) | |||||||||
\hat{\lambda} | 145.67068 | (208.851634) | |||||||||
\hat{\theta} | 4.60846 | (1.2033681) | |||||||||
OLxFr | \hat{\vartheta} | 5.14301 | (9.9790719) | 119.94170 | 120.63140 | 128.51430 | 123.31340 | 0.04741 | 0.26530 | 0.07631 | 0.85664 |
\hat{\varphi} | 5.82568 | (7.6204045) | |||||||||
\hat{a} | 4.17374 | (2.671917) | |||||||||
\hat{b} | 2.82338 | (0.9308868) | |||||||||
KMOFr | \hat{\vartheta} | 31946.70000 | (837.7074) | 121.90480 | 122.95750 | 132.62050 | 126.11940 | 0.04616 | 0.26108 | 0.07450 | 0.87551 |
\hat{\varphi} | 3.40405 | (1.493079) | |||||||||
\hat{\delta} | 3.35291 | (0.9682264) | |||||||||
\hat{a} | 0.85381 | (0.1934628) | |||||||||
\hat{b} | 13724.50000 | (32837.29) | |||||||||
EFr | \hat{a} | 2.58672 | (2.2847576) | 122.19730 | 122.88700 | 130.76990 | 125.56900 | 0.07082 | 0.40707 | 0.08894 | 0.70136 |
\hat{b} | 0.50304 | (0.4780356) | |||||||||
\hat{\theta} | 6.25000 | (10.0300775) | |||||||||
BFr | \hat{\vartheta} | 2.38748 | (5.65075) | 120.58420 | 121.27380 | 129.15670 | 123.95580 | 0.06008 | 0.32203 | 0.07953 | 0.82045 |
\hat{\varphi} | 1.00168 | (5.322252) | |||||||||
\hat{a} | 22.38231 | (162.860747) | |||||||||
\hat{b} | 27.37096 | (295.790324) | |||||||||
GExFr | \hat{\vartheta} | 2.41716 | (8.509608) | 120.57980 | 121.26950 | 129.15240 | 123.95150 | 0.06064 | 0.32329 | 0.07962 | 0.81934 |
\hat{\varphi} | 1.20859 | (2.106142) | |||||||||
\hat{a} | 24.77784 | (82.649275) | |||||||||
\hat{b} | 15.60163 | (85.339807) | |||||||||
TEFr | \hat{\vartheta} | 4.04638 | (1.0119058) | 121.04420 | 121.73390 | 129.61670 | 124.41580 | 0.06547 | 0.34378 | 0.07500 | 0.87047 |
\hat{\varphi} | 2.50000 | (0.5973595) | |||||||||
\hat{a} | 5.25000 | (2.6300897) | |||||||||
\hat{b} | 0.09255 | (1.2750272) | |||||||||
Fr | \hat{\theta} | 5.43392 | (0.50788) | 121.80430 | 122.00430 | 126.09060 | 123.49010 | 0.11497 | 0.64202 | 0.10013 | 0.55274 |
\hat{\lambda} | 230.48644 | (110.91778) |
Methods | \hat{\vartheta} | \hat{\varphi} | \hat{\lambda} | \hat{\theta} | W^{*} | A^{*} | KS | PV |
MLEs | 56.93661 | 0.46697 | 0.71825 | 0.01794 | 0.01991 | 0.13402 | 0.03757 | 0.99713 |
LSEs | 56.93660 | 0.55502 | 0.71932 | 0.01871 | 0.01850 | 0.12986 | 0.03334 | 0.99918 |
MPSEs | 56.93660 | 0.46698 | 0.71750 | 0.01717 | 0.01916 | 0.13069 | 0.03617 | 0.99708 |
WLSEs | 56.94615 | 0.51962 | 0.71884 | 0.01825 | 0.01815 | 0.12600 | 0.03251 | 0.99947 |
CRVMEs | 56.93659 | 0.55064 | 0.71962 | 0.01891 | 0.01795 | 0.12584 | 0.03352 | 0.99910 |
ADEs | 56.93668 | 0.47772 | 0.71887 | 0.01815 | 0.01763 | 0.12016 | 0.03167 | 0.99968 |
PCEs | 57.47389 | 0.81500 | 0.72219 | 0.02155 | 0.03320 | 0.23254 | 0.03830 | 0.99367 |
RADEs | 56.93805 | 0.56319 | 0.71967 | 0.01899 | 0.01830 | 0.12878 | 0.03385 | 0.99895 |
\textbf{Methods} | \hat{\vartheta} | \hat{\varphi} | \hat{\lambda} | \hat{\theta} | W^{*} | A^{*} | \textbf{KS} | \textbf{PV} |
\textbf{MLEs} | 0.76563 | 0.04349 | 145.67068 | 4.60846 | 0.04181 | 0.23988 | 0.06847 | 0.92920 |
\textbf{LSEs} | 0.69421 | 0.08110 | 145.67010 | 4.56661 | 0.04850 | 0.26973 | 0.06486 | 0.94154 |
\textbf{MPSEs} | 0.75534 | 0.13947 | 145.66920 | 4.65631 | 0.05531 | 0.29551 | 0.07780 | 0.81897 |
\textbf{WLSEs} | 0.71596 | 0.01530 | 145.66740 | 4.57637 | 0.04747 | 0.26675 | 0.06895 | 0.90999 |
\textbf{CRVMEs} | 0.71398 | 0.00100 | 145.67030 | 4.57259 | 0.04761 | 0.26713 | 0.06733 | 0.92336 |
\textbf{ADEs} | 0.72963 | 0.00010 | 145.67980 | 4.57988 | 0.04696 | 0.26562 | 0.07047 | 0.89642 |
\textbf{PCEs} | 0.75075 | 0.02596 | 145.67020 | 4.59649 | 0.04775 | 0.26737 | 0.07311 | 0.87060 |
\textbf{RADEs} | 0.74062 | 0.00010 | 145.66970 | 4.57722 | 0.04668 | 0.26516 | 0.07058 | 0.89538 |