Research article

Traveling wave solutions to the Boussinesq equation via Sardar sub-equation technique

  • Received: 07 December 2021 Revised: 26 February 2022 Accepted: 28 February 2022 Published: 08 April 2022
  • MSC : 32W50, 35C08, 35C15

  • In present study, the Boussinesq equation is obtained by means of the Sardar Sub-Equation Technique (SSET) to create unique soliton solutions containing parameters. Using this technique, different solutions are obtained, such as the singular soliton, the dark-bright soliton, the bright soliton and the periodic soliton. The graphs of these solutions are plotted for a batter understanding of the model. The results show that the technique is very effective in solving nonlinear partial differential equations (PDEs) arising in mathematical physics.

    Citation: Hamood-Ur-Rahman, Muhammad Imran Asjad, Nayab Munawar, Foroud parvaneh, Taseer Muhammad, Ahmed A. Hamoud, Homan Emadifar, Faraidun K. Hamasalh, Hooshmand Azizi, Masoumeh Khademi. Traveling wave solutions to the Boussinesq equation via Sardar sub-equation technique[J]. AIMS Mathematics, 2022, 7(6): 11134-11149. doi: 10.3934/math.2022623

    Related Papers:

  • In present study, the Boussinesq equation is obtained by means of the Sardar Sub-Equation Technique (SSET) to create unique soliton solutions containing parameters. Using this technique, different solutions are obtained, such as the singular soliton, the dark-bright soliton, the bright soliton and the periodic soliton. The graphs of these solutions are plotted for a batter understanding of the model. The results show that the technique is very effective in solving nonlinear partial differential equations (PDEs) arising in mathematical physics.



    加载中


    [1] A. M. Wazwaz, Partial differential equations and solitary waves theory, Berlin, Heidelberg: Springer, 2009. http://doi.org/10.1007/978-3-642-00251-9
    [2] G. B. Whitham, Linear and nonlinear waves, New York: Wiley, 1972.
    [3] A. M. Wazwaz, The extended tanh method for abundant solitary wave solutions of nonlinear wave equations, Appl. Math. Comput., 187 (2007), 1131–1142. http://doi.org/10.1016/j.amc.2006.09.013 doi: 10.1016/j.amc.2006.09.013
    [4] A. R. Seadawy, Three-dimensional weakly nonlinear shallow water waves regime and its travelling wave solutions, Int. J. Comput. Meth., 15 (2018), 1850017. https://doi.org/10.1142/S0219876218500172 doi: 10.1142/S0219876218500172
    [5] A. R. Seadawy, Two-dimensional interaction of a shear flow with a free surface in a stratified fluid and its a solitary wave solutions via mathematical methods, Eur. Phys. J. Plus, 132 (2017), 518. https://doi.org/10.1140/epjp/i2017-11755-6 doi: 10.1140/epjp/i2017-11755-6
    [6] A. R. Seadwy, Traveling wave solutions of two-dimensional non-linear Kadomtev-Petviashvili dynamics equation in a dust acoustic plasma, Pramana-J. Phys., 89 (2017), 49. https://doi.org/10.1007/s12043-017-1446-4 doi: 10.1007/s12043-017-1446-4
    [7] A. R. Seadawy, New exact solutions for the KdV equation with higher order nonlinearity by using the variational method, Comput. Math. Appl., 62 (2011), 3741–3755. https://doi.org/10.1016/j.camwa.2011.09.023 doi: 10.1016/j.camwa.2011.09.023
    [8] A. R. Seadawy, Stability analysis solutions for nonlinear threedimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in a magnetized electron-positron plasma, Physica A, 455 (2016), 44–51. https://doi.org/10.1016/j.physa.2016.02.061 doi: 10.1016/j.physa.2016.02.061
    [9] Rahmatullah, R. Ellahi, S. T. Mohyud-Din, U. Khan, Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method, Results Phys., 8 (2018), 114–120. https://doi.org/10.1016/j.rinp.2017.11.023 doi: 10.1016/j.rinp.2017.11.023
    [10] M. A. Kayum, A. R. Seadawy, A. M. Akbar, T. G. Sugati, Stable solutions to the nonlinear RLC transmission line equation and the Sinh-Poisson equation arising in mathematical physics, Open Phys., 18 (2020), 710–725. https://doi.org/10.1515/phys-2020-0183 doi: 10.1515/phys-2020-0183
    [11] M. A. Kayum, S. Ara, H. K. Barman, M. A. Akbar, Soliton solutions to voltage analysis in nonlinear electrical transmission lines and electric signals in telegraph lines, Results Phys., 18 (2020), 103269. https://doi.org/10.1016/j.rinp.2020.103269 doi: 10.1016/j.rinp.2020.103269
    [12] M. A. Kayum, M. A. Akbar, M. S. Osman, Competent closed form soliton solutions to the nonlinear transmission and the low-pass electrical transmission lines, Eur. Phys. J. Plus, 135 (2020), 575. https://doi.org/10.1140/epjp/s13360-020-00573-8 doi: 10.1140/epjp/s13360-020-00573-8
    [13] R. Roy, S. Roy, M. N. Hossain, M. Z. Alam, Study on nonlinear partial differential equation by implementing MSE method, Global Scientific Journal, 8 (2020), 1651–1665.
    [14] M. A. Kayum, H. K. Barman, M. A. Akbar, Exact soliton solutions to the nano-bioscience and biophysics equations through the modified simple equation method, In: Proceedings of the Sixth International Conference on Mathematics and Computing, Singapore: Springer, 2021,469–482. https://doi.org/10.1007/978-981-15-8061-1_38
    [15] H. K. Barman, R. Roy, F. Mahmud, M. A. Akbar, M. S. Osman, Harmonizing wave solutions to the Fokas-Lenells model through the generalized Kudryashov method, Optik, 229 (2021), 166294. https://doi.org/10.1016/j.ijleo.2021.166294 doi: 10.1016/j.ijleo.2021.166294
    [16] H. K. Barman, A. R. Seadawy, M. A. Akbar, D. Baleanu, Competent closed form soliton solutions to the Riemann wave equation and the Novikov-Veselov equation, Results Phys., 17 (2020), 103131. https://doi.org/10.1016/j.rinp.2020.103131 doi: 10.1016/j.rinp.2020.103131
    [17] M. Ekici, M. Mirzazadeh, M. Eslami, Solitons and other solutions to Boussinesq equation with power law nonlinearity and dual dispersion, Nonlinear Dyn., 84 (2016), 669–676. https://doi.org/10.1007/s11071-015-2515-1 doi: 10.1007/s11071-015-2515-1
    [18] E. C Aslan, M. Inc, Optical soliton solutions of the NLSE with quadratic-cubic- Hamiltonian perturbations and modulation instability analysis, Optik, 196 (2019), 162661. https://doi.org/10.1016/j.ijleo.2019.04.008 doi: 10.1016/j.ijleo.2019.04.008
    [19] A. R. Seadawy, D. Lu, M. M. A. Khater, Bifurcations of solitary wave solutions for the three dimensional Zakharov-Kuznetsov-Burgers equation and Boussinesq equation with dual dispersion, Optik, 143 (2017), 104–114. https://doi.org/10.1016/j.ijleo.2017.06.020 doi: 10.1016/j.ijleo.2017.06.020
    [20] R. Roy, M. A. Akbar, A. M. Wazwaz, Exact wave solutions for the time fractional Sharma-Tasso-Olver equation and the fractional Klein-Gordon equation in mathematical physics, Opt. Quant. Electron., 50 (2018), 25. https://doi.org/10.1007/s11082-017-1296-9 doi: 10.1007/s11082-017-1296-9
    [21] M. A. Akbar, N. H. M. Ali, R. Roy, Closed form solutions of two nonlinear time fractional wave equations, Results Phys., 9 (2018), 1031–1039. https://doi.org/10.1016/j.rinp.2018.03.059 doi: 10.1016/j.rinp.2018.03.059
    [22] R. Roy, M. A. Akbar, A new approach to study nonlinear space-time fractional sine-Gordon and Burgers equations, IOP SciNotes, 1 (2020), 035003. https://doi.org/10.1088/2633-1357/abd3ab doi: 10.1088/2633-1357/abd3ab
    [23] R. Roy, M. A. Akbar, A. R. Seadawy, D. Baleanu, Search for adequate closed form wave solutions to space-time fractional nonlinear equations, Partial Differential Equations in Applied Mathematics, 3 (2021), 100025. https://doi.org/10.1016/j.padiff.2021.100025 doi: 10.1016/j.padiff.2021.100025
    [24] Y. L. Ma, A. M. Wazwaz, B. Q. Li, A new (3+1)-dimensional Kadomtsev-equation and its integrability, multiple-solitons, breathers and lump waves, Math. Comput. Simulat., 187 (2021), 505–519. https://doi.org/10.1016/j.matcom.2021.03.012 doi: 10.1016/j.matcom.2021.03.012
    [25] B. Q. Li, Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics, Appl. Math. Lett., 112 (2021), 106822. https://doi.org/10.1016/j.aml.2020.106822 doi: 10.1016/j.aml.2020.106822
    [26] B. Q. Li, Interaction dynamics of hybrid solitons and breathers for extended generalization of Vakhnenko equation, Nonlinear Dyn., 102 (2020), 1787–1799. https://doi.org/10.1007/s11071-020-06024-4 doi: 10.1007/s11071-020-06024-4
    [27] Y. L. Ma, B. Q. Li, Mixed lump and soliton solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, AIMS Mathematics, 5 (2020) 1162–1176. https://doi.org/10.3934/math.2020080 doi: 10.3934/math.2020080
    [28] S. F. Tian, J. M. Tu, T. T. Zhang, Y. R. Chen, Integrable discretizations and soliton solutions of an Eckhaus-Kundu equation, Appl. Math. Lett., 122 (2021), 107507. https://doi.org/10.1016/j.aml.2021.107507 doi: 10.1016/j.aml.2021.107507
    [29] S. F. Tian, D. Guo, X. B. Wang, T. T. Zhang, Traveling wave, lump wave, rogue wave, multi-kink solitary wave and interaction solutions in a (3+1)-dimensional Kadomtsev-Petviashvili equation with Backlund transformation, J. Appl. Anal. Comput., 11 (2021), 45–58. https://doi.org/10.11948/20190086 doi: 10.11948/20190086
    [30] Z. Y. Yin, S. F. Tian, Nonlinear wave transitions and their mechanisms of (2+ 1)-dimensional Sawada-Kotera equation, Physica D, 427 (2021), 133002. https://doi.org/10.1016/j.physd.2021.133002 doi: 10.1016/j.physd.2021.133002
    [31] D. Vinodh, R. Asokan, Multi-soliton, Rogue wave and periodic wave solutions of generalized (2+1) dimensional Boussinesq equation, Int. J. Appl. Comput. Math., 6 (2020), 15. https://doi.org/10.1007/s40819-020-0768-y doi: 10.1007/s40819-020-0768-y
    [32] B. Q. Li, Y. L. Ma, N-order rogue waves and their novel colliding dynamics for a transient stimulated Raman scattering system arising from nonlinear optics, Nonlinear Dyn., 101 (2020), 2449–2461. https://doi.org/10.1007/s11071-020-05906-x doi: 10.1007/s11071-020-05906-x
    [33] B. Q. Li, Y. L. Ma, Extended generalize Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation, Appl. Math. Comput., 386 (2020), 125469. https://doi.org/10.1016/j.amc.2020.125469 doi: 10.1016/j.amc.2020.125469
    [34] W. Y. Guan, B. Q. Li, Mixed structures of optical breather and rogue wave for a variable coefficient inhomogeneous fiber system, Opt. Quant. Electron., 51 (2019), 352. https://doi.org/10.1007/s11082-019-2060-0 doi: 10.1007/s11082-019-2060-0
    [35] Y. L. Ma, Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrodinger system with two higher-order dispersion operators in optical fibers, Nonlinear Dyn., 97 (2019), 95–105. https://doi.org/10.1007/s11071-019-04956-0 doi: 10.1007/s11071-019-04956-0
    [36] M. T. Darvishi, M. Najafi, A. M. Wazwaz, Traveling wave solutions for Boussinesq-like equations with spatial and spatial-temporal dispersion, Rom. Rep. Phys., 70 (2018), 108.
    [37] M. T. Darvishi, M. Najafi, A. M. Wazwaz, Soliton solutions for Boussinesq-like equations with spatio-temporal dispersion, Ocean Eng., 130 (2017), 228–240. https://doi.org/10.1016/j.oceaneng.2016.11.052 doi: 10.1016/j.oceaneng.2016.11.052
    [38] M. Javidi, Y. Jalilian, Exact solitary wave solution of Boussinesq equation by VIM, Chaos Soliton. Fract., 36 (2008), 1256–1260. https://doi.org/10.1016/j.chaos.2006.07.046 doi: 10.1016/j.chaos.2006.07.046
    [39] M. E. Islam, H. K. Barman, M. A. Akbar, Search for interactions of phenomena described by the coupled Higgs field equation through analytical solutions, Opt. Quant. Electron., 52 (2020), 468. https://doi.org/10.1007/s11082-020-02583-3 doi: 10.1007/s11082-020-02583-3
    [40] M. A. Kayum, M. A. Akbar, M. S. Osman, Stable soliton solutions to the shallow water waves and ion-acoustic waves in a plasma, Waves in Random and Complex Media, in press. https://doi.org/10.1080/17455030.2020.1831711
    [41] M. A. Kayum, S. Ara, M. S. Osman, M. A. Akbar, K. A. Gepreel, Onset of the broad-ranging general stable soliton solutions of nonlinear equations in physics and gas dynamics, Results Phys., 20 (2020), 103762. http://dx.doi.org/10.1016/j.rinp.2020.103762 doi: 10.1016/j.rinp.2020.103762
    [42] S. Zheng, Z. Ouyang, K. Wu, Singular traveling wave solutions for Boussinesq equation with power law nonlinearity and dual dispersion, Adv. Differ. Equ., 2019 (2019), 501. https://doi.org/10.1186/s13662-019-2428-2 doi: 10.1186/s13662-019-2428-2
    [43] S. F. Tian, Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation, Appl. Math. Lett., 100 (2020), 106056. https://doi.org/10.1016/j.aml.2019.106056 doi: 10.1016/j.aml.2019.106056
    [44] M. Khalfallah, Exact traveling wave solutions of the Boussinesq-Burgers equation, Math. Comput. Model., 49 (2009), 666–671. http://dx.doi.org/10.1016/j.mcm.2008.08.004 doi: 10.1016/j.mcm.2008.08.004
    [45] S. F. Tian, M. J. Xu, T. T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, Proc. R. Soc. A, 477 (2021), 20210455. https://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
    [46] Y. L. Ma, B. Q. Li, Analytic rogue wave solutions for a generalized fourth-order Boussinesq equation in fluid mechanics, Math. Method. Appl. Sci., 42 (2019), 39–48. https://doi.org/10.1002/mma.5320 doi: 10.1002/mma.5320
    [47] Y. L. Ma, N-solitons, breathers and rogue waves for a generalized Boussinesq equation, Int. J. Comput. Math., 97 (2020), 1648–1661. https://doi.org/10.1080/00207160.2019.1639678 doi: 10.1080/00207160.2019.1639678
    [48] J. Boussinesq, Theory of wave and swells propagated in long horizontal rectangular canal and imparting to the liquid contained in this canal, J. Math. Pure Appl., 17 (1872), 55–108.
    [49] D. Wang, W. Sun, C. Kong, H. Zhang, New extended rational expansion method and exact solutions of Boussinesq equation and Jimbo-Miwa equations, Appl. Math. Couput., 189 (2007), 878–886. https://doi.org/10.1016/j.amc.2006.11.142 doi: 10.1016/j.amc.2006.11.142
    [50] A. M. Wazwaz, Multiple soliton solutions and multiple complex soliton solutions for two distinct Boussinesq equations, Nonlinear Dyn., 85 (2016), 731–737. https://doi.org/10.1007/s11071-016-2718-0 doi: 10.1007/s11071-016-2718-0
    [51] M. D. Hossain, M. K. Alam, M. A. Akbar, Abundant wave solutions of the Boussinesq equation and the (2+1)-dimensional extended shallow water wave equation, Ocean Eng., 165 (2018), 69–76. https://doi.org/10.1016/j.oceaneng.2018.07.025 doi: 10.1016/j.oceaneng.2018.07.025
    [52] Y. Cao, J. He, D. Mihalache, Families of exact solutions of a new extended (2+1)- dimensional Boussinesq equation, Nonlinear Dyn., 91 (2018), 2593–2605. https://doi.org/10.1007/s11071-017-4033-9 doi: 10.1007/s11071-017-4033-9
    [53] Q. S. Liu, Z. Y. Zhang, R. G. Zhang, C. X. Huang, Dynamical analysis and exact solutions of a new (2+1)-dimensional generalized Boussinesq model equation for nonlinear Rossby waves, Commun. Theor. Phys., 71 (2019), 1054–1062.
    [54] H. Rezazadeh, M. Inc, D. Baleanu, New solitary wave solutions for variants of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equations, Frontiers in Physics Front. Phys., 8 (2020), 332. https://doi.org/10.3389/fphy.2020.00332
    [55] H. U. Rehman, A. R. Seadawy, M. Younis, S. Yasin, S. T. R. Raza, S. Althobaiti, Monochromatic optical beam propagation of paraxial dynamical model in Kerr media, Results Phys., 31 (2021), 105015. https://doi.org/10.1016/j.rinp.2021.105015 doi: 10.1016/j.rinp.2021.105015
    [56] H. Rezazadeh, R. Abazari, M. M. A. Khater, M. Inc, D. Baleanu, New optical solitons of conformable resonant nonlinear Schrödinger's equation, Open Phys., 18 (2020), 761–769. https://doi.org/10.1515/phys-2020-0137 doi: 10.1515/phys-2020-0137
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2991) PDF downloads(277) Cited by(11)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog