Processing math: 38%
Research article

Preinvexity of n-dimensional fuzzy number-valued functions: characterization, variational inequality and optimization problems

  • Received: 13 September 2021 Revised: 27 December 2021 Accepted: 11 January 2022 Published: 17 January 2022
  • MSC : 26E50, 28E10

  • In this paper, the preinvexity of n-dimensional fuzzy number-valued functions are defined and discussed by means of the partial order relation in n-dimensional fuzzy number space which including preinvexity, weak preinvexity, strict preinvexity, weakly strict preinvexity, prequasiinvexity, weak prequasiinvexity, strict prequasiinvexity, weakly strict prequasiinvexity, and so on. In addition, their interrelations of the preinvexity of n-dimensional fuzzy number-valued functions are discussed, and some counterexamples are given. Furthermore, the two-parameter optimization problem, n-dimensional fuzzy variational-like inequality and optimality conditions related to n-dimensional preinvex fuzzy number-valued functions are discussed.

    Citation: Zengtai Gong, Han Gao, Ting Xie. Preinvexity of n-dimensional fuzzy number-valued functions: characterization, variational inequality and optimization problems[J]. AIMS Mathematics, 2022, 7(4): 6099-6127. doi: 10.3934/math.2022340

    Related Papers:

    [1] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860
    [2] Tareq Saeed . Intuitionistic fuzzy variational inequalities and their applications. AIMS Mathematics, 2024, 9(12): 34289-34310. doi: 10.3934/math.20241634
    [3] Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306
    [4] Abdulaziz M. Alanazi, R. Sriraman, R. Gurusamy, S. Athithan, P. Vignesh, Zaid Bassfar, Adel R. Alharbi, Amer Aljaedi . System decomposition method-based global stability criteria for T-S fuzzy Clifford-valued delayed neural networks with impulses and leakage term. AIMS Mathematics, 2023, 8(7): 15166-15188. doi: 10.3934/math.2023774
    [5] Muhammad Bilal Khan, Hakeem A. Othman, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman . Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities. AIMS Mathematics, 2023, 8(3): 6777-6803. doi: 10.3934/math.2023345
    [6] Muhammad Aslam Noor, Khalida Inayat Noor . New classes of strongly exponentially preinvex functions. AIMS Mathematics, 2019, 4(6): 1554-1568. doi: 10.3934/math.2019.6.1554
    [7] Zhenyu Jin, Jianrong Wu . Ulam stability of two fuzzy number-valued functional equations. AIMS Mathematics, 2020, 5(5): 5055-5062. doi: 10.3934/math.2020324
    [8] Shichao Li, Zeeshan Ali, Peide Liu . Prioritized Hamy mean operators based on Dombi t-norm and t-conorm for the complex interval-valued Atanassov-Intuitionistic fuzzy sets and their applications in strategic decision-making problems. AIMS Mathematics, 2025, 10(3): 6589-6635. doi: 10.3934/math.2025302
    [9] Zahra Eidinejad, Reza Saadati, Donal O'Regan, Fehaid Salem Alshammari . Measure of quality and certainty approximation of functional inequalities. AIMS Mathematics, 2024, 9(1): 2022-2031. doi: 10.3934/math.2024100
    [10] Li Li, Mengjing Hao . Interval-valued Pythagorean fuzzy entropy and its application to multi-criterion group decision-making. AIMS Mathematics, 2024, 9(5): 12511-12528. doi: 10.3934/math.2024612
  • In this paper, the preinvexity of n-dimensional fuzzy number-valued functions are defined and discussed by means of the partial order relation in n-dimensional fuzzy number space which including preinvexity, weak preinvexity, strict preinvexity, weakly strict preinvexity, prequasiinvexity, weak prequasiinvexity, strict prequasiinvexity, weakly strict prequasiinvexity, and so on. In addition, their interrelations of the preinvexity of n-dimensional fuzzy number-valued functions are discussed, and some counterexamples are given. Furthermore, the two-parameter optimization problem, n-dimensional fuzzy variational-like inequality and optimality conditions related to n-dimensional preinvex fuzzy number-valued functions are discussed.



    It is well known that the convex analysis is closely linked with the development of optimization theory. Meanwhile, there is often uncertainty of parameters or dates in the process of the mathematical modeling of the specific optimization problems. In order to describe these uncertain parameters or dates in a mathematical modeling, a straightforward and effective way to think about whether it can be represented as fuzzy number in some sense. Therefore, fuzzy convex analysis theory and its corresponding fuzzy optimization problems have been studied by many researchers. In 1992, Nanda and Kar [14] set up a mapping from a vector space to the space of fuzzy numbers, and they introduced the definitions of convex fuzzy mapping, strictly convex fuzzy mapping, quasiconvex fuzzy mapping, strictly quasiconvex fuzzy mapping and logarithmic convex fuzzy mapping, and then applied their results to the problems of fuzzy convex optimization. Moreover, Furukawa [5] proposed the concepts of convex fuzzy mapping and local Lischitz continuous fuzzy mapping by using "fuzzy-max" order, and the basis theorem of fuzzy mapping local Lischitz continuity is given. In 1999, based on the partial order relation of interval number, Syau [17,18] introduced the definitions of the convex fuzzy mapping and quasiconvex fuzzy mapping, and established characterization for convex fuzzy mapping. In 2000, Yang and Teo [27] investigated pseudoconvexity, invexity, pseudoinvexity for fuzzy mappings by considering the concept of ordering proposed by Goetsschel and Voxman [6], and discussed their interrelations. Meanwhile, based on the same order relation, Yan and Xu [28] introduced another concept of convex fuzzy mapping, and studied a kind of fuzzy convex optimization problems. In 2006, the operation of convex fuzzy mapping proposed by Nanda and Kar were investigated by Zhang and Yuan, and the important concepts of positive homogeneous fuzzy mapping, infimal convolution, convex hull were given, and the corresponding characterization theorem was presented by using the parameter of fuzzy number [31]. In 2008, based on the concept of differentiability of fuzzy mapping, Panigrahi and panda [16] gave the concepts of convexity, quasiconvexity, strictly quasiconvexity, strong quasiconvexity and pseudoconvexity of fuzzy mappings from Rn to the set of fuzzy numbers, and derived the Karush-Kuhn-Tucker optimization condition for a constrained fuzzy optimization problem. In 2013, Li and Noor [9] discussed the properties of the convex fuzzy mappings based on a linear ordering of fuzzy numbers proposed by Goestschel and Voxman. Furthermore, they obtained the judgement theorems of convex, strictly convex and semi-strictly convex fuzzy mapping under lower and upper semicontinuity condition, respectively. In addition, convexity and other related problems of the fuzzy mapping have been studied extensively [4,10,23,25]. As a generalization of convex fuzzy mapping, in 1994, Noor [15]introduced the concepts of preinvex fuzzy mapping and invex set, and the minimization problem of preinvex fuzzy number-valued functions was described by using variational inequality. In 1999, Syau in [19] showed that the preinvexity given by Noor is too restrictive, redefined the preinvexity of η vector-valued functions, established two characterizations for the preinvex fuzzy mappings, and applied their results to the optimization theory. After that several investigators [1,2,3,11,12,20,21,24,30] also proposed and studied different types of the preinvexity and the generalized preinvexity for fuzzy mappings. However, all of the above works are discussed for 1-dimensional fuzzy number-valued functions. The main reason is that the partial ordered relation in n-dimensional fuzzy number space, the difference between n-dimensional fuzzy numbers, and convex analysis of high-dimensional fuzzy mapping have not been discussed. Until 2016, Gong Zengtai et al.[7] first introduced the partially ordered relation on n-dimensional fuzzy number space, the convexity of the n-dimensional fuzzy mapping, the differentiability, and the corresponding optimization theory. Based on the partially ordered relation in n-dimensional fuzzy number space, considering the convexity of vector-valued function, and combining with the characteristics of n-dimensional fuzzy mappings, they proposed and investigated the convexity of n-dimensional fuzzy number-valued functions, generalized convexity, upper semicontinuity, lower semicontinuity, and discussed their interrelations, and pointed out the local minimum point of convex fuzzy mapping is its global minimum point [8]. As a continuous research of [7,8], in this paper, we introduce the preinvexity of n-dimensional fuzzy number-valued functions based on the partial order relation in n-dimensional fuzzy number space and some properties of them are discussed. In addition, some counterexamples are given. Then we present criteria for n-dimensional preinvex fuzzy number-valued functions under upper or lower semicontinuity conditions, respectively. Furthermore, the two-parameter optimization problem, n-dimensional fuzzy variational-like inequality problem and the optimal conditions related to n-dimensional preinvex fuzzy number-valued function are discussed.

    Let Rn denote the n-dimensional Euclidean space and F(Rn) denote the set of all fuzzy subset on Rn. Fuzzy set uF(Rn) is called a fuzzy number if u is a normal, convex fuzzy set, upper semi-continuous and [u]0=¯{xRn,u(x)>0} is compact. We denote En as n-dimensional fuzzy number space [22,26].

    Let uF(Rn). For r(0,1], we denote [u]r={xRn,u(x)r}. The addition and non-negative scalar multiplication are defined as follows for fuzzy number u,vEn,αR, k,k1,k2R, according to the Zadeh's extension principle:

    (1) k(u+v)=ku+kv;

    (2) k1(k2u)=(k1k2)u;

    (3)(k1+k2)u=k1u+k2u when k10 and k20.

    Given u,vEn, the distance D:En×En[0,+) between u and v is defined by the equation

    D(u,v)=supr[0,1]d([u]r,[v]r),

    where d is the Hausdorff metric

    d([u]r,[v]r)=inf{ε:[u]rN([v]r,ε),[v]rN([u]r,ε)}=max{supa[u]rinfb[v]rab,supb[v]rinfa[u]rab}.

    For uEn, we denote the centroid of [u]r, r[0,1] as

    ([u]rx1dx1dx2dxn[u]r1dx1dx2dxn,[u]rx2dx1dx2dxn[u]r1dx1dx2dxn,,[u]rxndx1dx2dxn[u]r1dx1dx2dxn)

    where [u]r1dx1dx2dxn is the solidity of [u]r, r[0,1] and [u]rxidx1dx2dxn (i=1,2,,n) is the multiple integral of xi on measurable sets [u]r, r[0,1], refer to [7].

    Let uEn, n-dimensional vector-valued function τ denote the centroid of the fuzzy number,

    τ(u)=(210r[u]rx1dx1dx2dxn[u]r1dx1dx2dxndr,210r[u]rx2dx1dx2dxn[u]r1dx1dx2dxndr,,210r[u]rxndx1dx2dxn[u]r1dx1dx2dxndr)

    where 10r[u]rxidx1dx2dxn[u]r1dx1dx2dxndr (i=1,2,,n) is the Lebesgue integral of r[u]rxidx1dx2dxn[u]r1dx1dx2dxn (i=1,2,,n) on [0,1], refer to [7].

    Definition 2.1 (see [7]) Let u,vEn,CRn be a closed convex cone with 0C and CRn. We say that ucv (u precedes v) if

    τ(v)τ(u)+C.

    The order relation c is reflexive and transitive, and c is a partially ordered relation on En. For u,vEn, if either ucv, or vcu, then we say u and v are comparable; otherwise, they are non-comparable. If u,vE1, C=[0,+)R, then Definition 2.1 coincides with Definition 2.5 from [6].

    Remark 2.1. (see [7].) Let u,vE1. If we write τ(u)=1210r(u+(r)+u(r))dr, then ucv in the sense of Goetschel [6] if and only if τ(u)τ(v), i.e., τ(v)τ(u)+[0,+). Furthermore,

    τ(λ1u+λ2v)=λ1τ(u)+λ1τ(v).

    for λ1,λ2>0, where [u]r=[u(r),u+(r)].

    Based on Definition 2.1 and the vector-valued function τ, we say ucv if ucv and τ(u)τ(v). Sometimes we may write vcu(resp. vcu) instead of ucv(resp. ucv).

    Set-valued mappings Fr:KPk(Rn) are defined by Fr(t)=[˜F(t)]r, r[0,1], where Pk(Rn) denotes the power set of Rn.

    Definition 2.2. (see [7].) Let ˜F:KEn, τF:KRn is defined by τF(t)=τ(˜F(t)) =(210rFr(t)x1dx1dx2dxnFr(t)1dx1dx2dxndr,210rFr(t)x2dx1dx2dxnFr(t)1dx1dx2dxndr,210rFr(t)xndx1dx2dxnFr(t)1dx1dx2dxndr).

    Obviously, the fuzzy number-valued function ˜F:EmEn is said to be increasing if ˜F(u)c˜F(v), whenever u,vEm, and ucv.

    In this article, the epigraph of ˜F, which is denoted by epi(˜F), is defined as

    epi(˜F)={(t,u):tK,uEn,˜F(t)cu}.

    The generalized difference (gH-difference for short, and refer to [8]) of two fuzzy numbers ˜u,˜vEn is given by its level sets as

    [˜ug˜v]r=cl(convβr([˜u]βgH[˜v]β)), r[0,1],

    where the gH-difference gH is with interval operands [˜u]β and [˜v]β.

    Definition 2.3. Let ˜F:KEn be a fuzzy number-valued function on an invex set KRn, K, with respect to (w.r.t.) a function η:K×KRn. If for any x,yK, there exists a δ>0, such that the H-difference ˜F(y+hη(x,y))˜F(y) exists for any real number h(0,δ), and uiηEn, i=1,2,n, such that

    ˜˜Fη(y)η(x,y)=limh0+˜F(y+hη(x,y))˜F(y)h,

    then ˜F is called fuzzy η-extended directionally differentiable at y. ˜˜Fη(y)η(x,y) is called the fuzzy η-extended directional derivative at y in the direction η(x,y)(denoted ˜˜Fη(y)=(u1η,u2η,unη)).

    The example 4.4 illustrates the notion of fuzzy η-extended directional differentiability.

    Since the space of the n-dimensional fuzzy numbers is a partially ordered set, two n-dimensional fuzzy numbers might not be comparable. For a fuzzy number-valued function ˜F:KEn, ˜F is said to be a comparable fuzzy number-valued function if for each pair x,yK and xy, ˜F(x) and ˜F(y) could be compared. In this paper, we assume that a fuzzy number-valued function ˜F:KEn involved is comparable.

    Refer to the definition of [29], a set KRn is said to be an invex set w.r.t. a function η:Rn×RnRn if x,yK implies that y+λη(x,y)K for λ[0,1].

    Definition 3.1. Let K be an invex set of Rn w.r.t. η, and ˜F:KEn be a fuzzy number-valued function.

    (1) ˜F is said to be preinvex (p.) on K if

    ˜F(y+λη(x,y))cλ˜F(x)+(1λ)˜F(y),

    for any x,yK and λ[0,1].

    (2) ˜F is said to be weakly preinvex (w.p.) on K if there exists a λ(0,1) such that

    ˜F(y+λη(x,y))cλ˜F(x)+(1λ)˜F(y),

    for any x,yK.

    (3) ˜F is said to be strictly preinvex (s.p.) on K if

    ˜F(y+λη(x,y))cλ˜F(x)+(1λ)˜F(y),

    for any x,yK with xy and λ(0,1).

    (4) ˜F is said to be weakly strictly preinvex (w.s.p.) on K if there exists a λ(0,1) such that

    ˜F(y+λη(x,y))cλ˜F(x)+(1λ)˜F(y),

    for any x,yK with xy.

    (5) ˜F is said to be prequasiinvex (q.p.) on K if

    ˜F(y+λη(x,y))cmax{˜F(x),˜F(y)},

    for any x,yK and λ[0,1].

    (6) ˜F is said to be weakly prequasiinvex (w.q.p.) on K if there exists a λ(0,1) such that

    ˜F(y+λη(x,y))cmax{˜F(x),˜F(y)},

    for any x,yK.

    (7) ˜F is said to be strictly prequasiinvex (s.q.p.) on K if

    ˜F(y+λη(x,y))cmax{˜F(x),˜F(y)},

    for any x,yK with xy and λ(0,1).

    (8) ˜F is said to be weakly strictly prequasiinvex (w.s.q.p.) on K if there exists a λ(0,1) such that

    ˜F(y+λη(x,y))cmax{˜F(x),˜F(y)},

    for any x,yK with xy.

    Remark 3.1. Let ˜F:KEn be a preinvex fuzzy number-valued function, then ˜F is preincave on K.

    Remark 3.2. Let ˜F:KEn be a strictly preinvex fuzzy number-valued function, then ˜F is strictly preincave on K.

    Remark 3.3. In Definition 3.1, taking η(x,y)=xy, ˜F is said to be convex, weakly convex, strictly convex, weakly strictly convex, quasiconvex, weakly quasiconvex, strictly quasiconvex, and weakly strictly quasiconvex on K, respectively [7].

    Theorem 4.1. If ˜F:KEn is a preinvex fuzzy number-valuedfunction, then ˜F is prequasiinvex on K.

    Proof. If ˜F is preinvex on K, then we obtain

    ˜F(y+λη(x,y))cλ˜F(x)+(1λ)˜F(y)cmax{˜F(x)˜F(y)},

    for any x,yK and λ[0,1], This completes the proof.

    Theorem 4.2. If ˜F:KEn is a strictly preinvex fuzzy number-valuedfunction, then ˜F is strictly prequasiinvex on K.

    The proof is similar to the proof of Theorem 4.1.

    Example 4.1. Let K=[1,2][3,4]. It is easy to prove that K is invex w.r.t. η:R2×R2R2 defined by

    η(x,y)={xy,(x,y)[1,2]2[3,4]2,1y,(x,y)[3,4]×[1,2],3y,(x,y)[1,2]×[3,4].

    In fact, if (x,y)[1,2]2[3,4]2, from the convexity of [1,2] and [3,4], we have

    y+λη(x,y)=y+λ(xy)[1,2][3,4].

    If (x,y)[3,4]×[1,2], y+λη(x,y)=y+λ(1y)=(1λ)y+λ, we can choose λ=1 and λ=0, it follows that 1(1λ)y+λ2, i.e., y+λη(x,y)[1,2]K. Similarly, if (x,y)[1,2]×[3,4], we have y+λη(x,y)[3,4]K.

    Let the fuzzy number-valued function ˜F:KE2 be defined by

    ˜F(ξ)(x1,x2)={2x1+3ξ6ξ,32ξx132ξ,0x22ξ,1,32ξx10,0x22ξ,9ξ23ξx13ξ,0x13ξ,0x22ξ,0,otherwise.

    and C=R2+R2, where R2+={(x1,x2)R2:x10,x20}. Then

    Fr(ξ)={(x1,x2):3ξr32ξx13ξ(1r2),0x22ξ},r[0,1].

    For any ξ[1,2][3,4], from Definition 2.2, it follows that

    τ(˜F(ξ))=(ξ,ξ).

    Therefore, for any ξ1,ξ2[1,2][3,4] and (ξ1,ξ2)[1,2]2[3,4]2, and for any λ[0,1], we have ξ2+λη(ξ1,ξ2)=ξ2+λ(ξ1ξ2). Thus,

    τ(˜F(ξ2+λη(ξ1,ξ2)))=(ξ2+λη(ξ1,ξ2),ξ2+λη(ξ1,ξ2))=(ξ2+λ(ξ1ξ2),ξ2+λ(ξ1ξ2))
    =(λξ1+(1λ)ξ2,λξ1+(1λ)ξ2)=λ(ξ1,ξ1)+(1λ)(ξ2,ξ2)=λτ(˜F(ξ1))+(1λ)τ(˜F(ξ2)).

    In particular, from [7], we get λτ(˜F(ξ1))+(1λ)τ(˜F(ξ2))=τ(λ˜F(ξ1)+(1λ)˜F(ξ2)). We find that, for any ξ1,ξ2[1,2][3,4] and (ξ1,ξ2)[1,2]2[3,4]2, λ[0,1],

    τ(λ˜F(ξ1)+(1λ)˜F(ξ2)))=τ(˜F(ξ2+λη(ξ1,ξ2)))τ(˜F(ξ2+λη(ξ1,ξ2)))+C,

    i.e., ˜F(ξ2+λη(ξ1,ξ2))cλ˜F(ξ1)+(1λ)˜F(ξ2).

    For any ξ1,ξ2[1,2][3,4] and (ξ1,ξ2)[3,4]×[1,2],

    ξ2+λη(ξ1,ξ2)=ξ2+λη(ξ1,ξ2)=ξ2+λ(1ξ2),

    and (ξ1,ξ1)(1,1)+C, it follows that

    τ(˜F(ξ2+λη(ξ1,ξ2)))=(ξ2+λ(1ξ2),ξ2+λ(1ξ2))=λ(1,1)+(1λ)(ξ2,ξ2)
    cλτ(˜F(ξ1))+(1λ)τ(˜F(ξ2))=τ(λ˜F(ξ1)+(1λ)˜F(ξ2)))

    i.e., ˜F(t2+λη(t1,t2))cλ˜F(t1)+(1λ)˜F(t2).

    For any ξ1,ξ2[1,2][3,4], and(ξ1,ξ2)[1,2]×[3,4],

    ξ2+λη(ξ1,ξ2)=ξ2+λ(3ξ2)=3λ+(1λ)ξ2

    and (3,3)(ξ1,ξ1)+C, it follows that

    τ(˜F(ξ2+λη(ξ1,ξ2)))=(ξ2+λ(3ξ2),ξ2+λ(3ξ2))=λ(3,3)+(1λ)(ξ2,ξ2)
    cλτ(˜F(ξ1))+(1λ)τ(˜F(ξ2))=τ(λ˜F(ξ1)+(1λ)˜F(ξ2))

    i.e., ˜F(ξ2+λη(ξ1,ξ2))cλ˜F(ξ1)+(1λ)˜F(ξ2). Above all, we denote K1=[1,2],K2=[3,4],K=K1K2, then

    (1) ˜F is preinvex on K1 w.r.t. η, but it is not strictly preinvex.

    (2) ˜F is preinvex on K2 w.r.t. η, but it is not strictly preinvex.

    (3) ˜F is not preinvex on K w.r.t. η. Since ˜F(ξ2+λη(ξ1,ξ2))cλ˜F(ξ1)+(1λ)˜F(ξ2), for ξ1,ξ2K1, or ξ1,ξ2K2, or ξ1K2,ξ2K1. However, ˜F(ξ2+λη(ξ1,ξ2))cλ˜F(ξ1)+(1λ)˜F(ξ2), for ξ1K1,ξ2K2. Also, it is not strictly preinvex.

    Example 4.2. Let K=[1,2][3,4]. It is an invex set w.r.t. η:R2×R2R2, η(x,y) is the same as Example 4.1. Let the fuzzy number-valued function ˜F:KE2 be defined by

    ˜F(ξ)(x1,x2)={1(x1ln2ξ)2,0x1ln(2ξ),0x23,0,otherwise,

    and C=R2+R2. Then, Fr(ξ)={(x1,x2):0x1ln2ξ1r2,0x23},r[0,1]. It is not difficult to calculate, for any ξ[1,2][3,4],

    τ(˜F(ξ))=(ln2ξ3,32).

    Thus, if for any ξ1,ξ2[1,2][3,4] and (ξ1,ξ2)[1,2]2[3,4]2, we have ξ2+λη(ξ1,ξ2)=ξ2+λ(ξ1ξ2), In addition, for any λ[0,1],

    ln(2ξ2+λ(2ξ12ξ2))max{ln2ξ1,ln2ξ2}.

    Without loss of generality, we assume that ln(2ξ2+λ(2ξ12ξ2))max{ln2ξ1,ln2ξ2}=ln2ξ2, Thus

    max{τ(˜F(ξ1)),τ(˜F(ξ2))}=max{(ln2ξ13,32),(ln2ξ23,32)}=(ln2ξ23,32)
    (ln(2ξ2+λ(2ξ12ξ2))3,32)+C=τ(˜F(ξ2+λη(ξ1,ξ2)))+C.

    i.e., ˜F(ξ2+λη(ξ1,ξ2))cmax{˜F(ξ1),˜F(ξ2)}. However, for any ξ1,ξ2[1,2][3,4] and (ξ1,ξ2)[1,2]2[3,4]2, λ[0,1], we have ln(2ξ2+λ(2ξ12ξ2))λln2ξ1+(1λ)ln2ξ2. Taking 2ξ1=2,2ξ2=e,λ=12, then

    τ(˜F(ξ2+λη(ξ1,ξ2)))=(ln(1+e2)3,32)12(ln23,32)+12(lne3,32)+C=λτ(˜F(ξ1))+(1λ)τ(˜F(ξ2))+C.

    i.e., ˜F(ξ2+λη(ξ1,ξ2))cλ˜F(ξ1)+(1λ)˜F(ξ2).

    If ξ1,ξ2[1,2][3,4] and (ξ1,ξ2)[3,4]×[1,2], then ξ2+λη(ξ1,ξ2)=ξ2+λ(1ξ2)ξ2+λ(ξ1ξ2). In addition, for any λ[0,1],

    ln(2ξ2+λ(2ξ12ξ2))max{ln2ξ1,ln2ξ2}=ln2ξ1

    Thus, max{τ(˜F(ξ1)),τ(˜F(ξ2))}τ(˜F(ξ2+λη(ξ1,ξ2))+C. i.e., ˜F(ξ2+λη(ξ1,ξ2))cmax{˜F(ξ1),˜F(ξ2)}. For any ξ1,ξ2[1,2][3,4] and (ξ1,ξ2)[3,4]×[1,2], for any λ[0,1], ln(2ξ2+λ(22ξ2))λln2ξ1+(1λ)ln2ξ2, it follows that,

    λτ(˜F(ξ1))+(1λ)τ(˜F(ξ2))=λ(ln2ξ13,32)+(1λ)(ln2ξ23,32)
    (ln(2ξ2+λ(22ξ2))3,32)+C=τ(˜F(ξ2+λη(ξ1,ξ2))+C,

    i.e., ˜F(ξ2+λη(ξ1,ξ2))cλ˜F(ξ1)+(1λ)˜F(ξ2).

    If ξ1,ξ2[1,2][3,4] and (ξ1,ξ2)[1,2]×[3,4], then ξ2+λη(ξ1,ξ2)=ξ2+λ(3ξ2). It is easy to verify that ˜F(ξ2+λη(ξ1,ξ2))cmax{˜F(ξ1),˜F(ξ2)}. However, when 2ξ1=2,2ξ2=7,λ=45, we obtain

    τ(˜F(ξ2+λη(ξ1,ξ2)))=(ln3153,32)15(ln63,32)+45(ln23,32)+C=λτ(˜F(ξ1))+(1λ)τ(˜F(ξ2))+C.

    i.e. ˜F(ξ2+λη(ξ1,ξ2))cλ˜F(ξ1)+(1λ)˜F(ξ2).

    Above all, we denote K1=[1,2],K2=[3,4],K=K1K2, then ˜F is prequasiinvex on K w.r.t. η, but ˜F is not preinvex on K w.r.t. η. Since we have ˜F(ξ2+λη(ξ1,ξ2))cλ˜F(ξ1)+(1λ)˜F(ξ2), for ξ1K2,ξ2K1 and ˜F(ξ2+λη(ξ1,ξ2))cλ˜F(ξ1)+(1λ)˜F(ξ2), for ξ1,ξ2K1, or ξ1,ξ2K2, or ξ1K1,ξ2K2.

    Example 4.3. Let K=[2,1][1,3]. It is easy to prove that K is an invex set w.r.t. η:R2×R2R2 defined by

    η(x,y)={xy,(x,y)[2,1]2[1,3]2,2y,(x,y)[1,3]×[2,1],1y,(x,y)[2,1]×[1,3]

    Let a fuzzy number-valued function ˜F:KE2 be defined by

    ˜F(ξ)(x1,x2)={1eξe2ξx12x22,1ξ3,x12+x22e2ξ,x10,x201,2ξ1,1x10,2x200,otherwise.

    and C=R2+R2. Then,

    Fr(ξ)={(x1,x2):1x10,2x20}, when 2ξ1;

    Fr(ξ)={(x1,x2):x12+x22e2ξ(1r2),x10,x20}, when 1ξ3.

    According to Definition 2.2, we obtain

    τ(˜F(ξ))=(12,1), when 2ξ1;

    τ(˜F(ξ))=(8eξ9π,8eξ9π), when 1ξ3.

    Then, we have

    max{τ(˜F(ξ1)),τ(˜F(ξ2))}τ(˜F(ξ2+λη(ξ1,ξ2)))+C,

    for any ξ1,ξ2[2,1][1,3] and for any λ[0,1]. i.e., ˜F(ξ2+λη(ξ1,ξ2))cmax{˜F(ξ1),˜F(ξ2)}.

    Above all, we denote K1=[2,1],K2=[1,3],K=K1K2, then ˜F is prequasiinvex on K w.r.t. η, but ˜F is not strictly prequasiinvex on K w.r.t. η. In fact, since we have ˜F(ξ2+λη(ξ1,ξ2))cmax{˜F(ξ1),˜F(ξ2)}, for any ξ1K2,ξ2K1,ξ2+λη(ξ1,ξ2)K1 or ξ1,ξ2K2,ξ2+λη(ξ1,ξ2)K2 or ξ1K1, ξ2K2,ξ2+λη(ξ1,ξ2)K2, with ξ1ξ2 and for any λ(0,1). However, τ(˜F(ξ2+λη(ξ1,ξ2)))=max{τ(˜F(ξ1)),τ(˜F(ξ2))}, for ξ1,ξ2K1,ξ2+λη(ξ1,ξ2)K1 with ξ1ξ2.

    In order to discuss the relationships of preinvex and prequasiinvex fuzzy number-valued functions, we get the following special function η and the fuzzy number-valued functions according to the discussion of [13].

    Let η:Rn×RnRn, we say that a function η satisfies the condition C if

    C1:η(y,y+λη(x,y))=λη(x,y),
    C2:η(x,y+λη(x,y))=(1λ)η(x,y),

    for any x,yRn, λ[0,1] (refer to [13]).

    A fuzzy number-valued function ˜F:KEn satisfies Condition D, if KRn is an invex set w.r.t. η:Rn×RnRn, for any x,yK, we have

    ˜F(y+η(x,y))c˜F(x).

    In order to include singletons in Rn as an invex sets, we assume that for all xRn,

    η(x,x)=O,

    where O being the origin of Rn.

    Example 4.4. Let K=[1,12][14,1]. It is easy to prove that K is invex w.r.t. η:R2×R2R2 defined by

    η(x,y)={xy,(x,y)[1,12]2[14,1]2,1y,(x,y)[14,1]×[1,12],14y,(x,y)[1,12]×[14,1].

    In fact, if (x,y)[1,12]2[14,1]2, from the convexity of [1,12] and [14,1], we have

    y+λη(x,y)=y+λ(xy)[1,12][14,1].

    If (x,y)[14,1]×[1,12], y+λη(x,y)=y+λ(1y)=(1λ)y+λ, we can choose λ=1 and λ=0), it follows that 1(1λ)y+λ12, i.e., y+λη(x,y)[1,12]K. Similarly, if (x,y)[1,12]×[14,1], we have y+λη(x,y)[14,1]K.

    Let the fuzzy-number-valued function ˜F:KE2 be defined as

    ˜F(ξ)(x1,x2)={x1+1+|ξ|1+|ξ|,1|ξ|x10,|ξ|x2|ξ|,x1+1+|ξ|1+|ξ|,0x11+|ξ|,|t|x2|ξ|,0,otherwise.

    Then, for any r[0,1],

    Fr(ξ)={(x1,x2):(1+r)(1+|ξ|)x1(1r)(1+|ξ|),|ξ|x2|ξ|}=[(1+r)(1+|ξ|),(1r)(1+|ξ|)]×[|ξ|,|ξ|].

    Since

    [˜F(hη(x,y))g˜F(0)]r=[infβrmin{(1+β)|hη(x,y)|,(1β)|hη(x,y)|},supβrmax{(1+β)|hη(x,y)|,(1β)|hη(x,y)|}]×[infβrmin{|hη(x,y)|,|hη(x,y)|},supβrmax{|hη(x,y)|,|hη(x,y)|}]=[(1+r)|hη(x,y)|,(1r)|hη(x,y)|]×[|hη(x,y)|,|hη(x,y)|].

    Thus, [˜F(0+hη(x,y))g˜F(0)h]r=[˜F(hη(x,y))g˜F(0)]rh=[1+r,1r]|η(x,y)|×[1,1]|η(x,y)| for any r[0,1]. Assume that

    ˜u(x1,x2)={x1+1,1x10,1x21,x1+1,0x11,1x21,0,otherwise,

    we have [˜u]r=[1+r,1r]×[1,1] for any r[0,1]. Then,

    ˜˜Fη(0)η(x,y)=limh0+˜F(0+hη(x,y))˜F(0)h=|η(x,y)|˜u

    ˜F is fuzzy η-extended directionally differentiable at 0, and ˜˜Fη(0) is the fuzzy η-extended directional derivative at 0 in the direction η(x,y)(denoted ˜˜Fη(0)=(1)˜u.

    Theorem 4.3. Let KRn be an invex set w.r.t. η, η satisfy Condition C, and ˜F:KEn be a preinvex fuzzy number-valued function. If ˜F is weakly strictly preinvex on K, i.e., there exists a λ0(0,1) such that

    ˜F(y+λ0η(x,y))cλ0˜F(x)+(1λ0)˜F(y), (4.1)

    for any x,yK, with xy, then ˜F is strictly preinvex on K.

    Proof. Assume that ˜F is not strictly preinvex on K, then x,yK with xy and for any λ(0,1) such that

    ˜F(y+λη(x,y))cλ˜F(x)+(1λ)˜F(y). (4.2)

    Choose λ1,λ2(0,1) such that λ=λ0λ1+(1λ0)λ2 and by taking ¯x=y+λ1η(x,y), ¯y=y+λ2η(x,y), from Condition C, we have

    ¯y+λ0η(¯x,¯y)=y+λ2η(x,y)+λ0η(y+λ1η(x,y),y+λ2η(x,y))=y+λ2η(x,y)+λ0(λ1λ2)η(x,y)=y+(λ0λ1+(1λ0)λ2)η(x,y)=y+λη(x,y).

    From the preinvexity of ˜F, we find that

    ˜F(¯x)cλ1˜F(x)+(1λ1)˜F(y),˜F(¯y)cλ2˜F(x)+(1λ2)˜F(y).

    From (4.1), it follows that

    ˜F(y+λη(x,y))=˜F(¯y+λ0η(¯x,¯y))cλ0˜F(¯x)+(1λ0)˜F(¯y)cλ0[λ1˜F(x)+(1λ1)˜F(y)]+(1λ0)[λ2˜F(x)+(1λ2)˜F(y)]=[λ0λ1+(1λ0)λ2]˜F(x)+[1λ0λ1(1λ0)λ2]˜F(y)=λ˜F(x)+(1λ)˜F(y).

    It is a contradiction to (4.2), i.e., ˜F is strictly preinvex on K.

    Lemma 4.1. Let KRn be an invex set w.r.t. η, η satisfy Condition C, and ˜F:KEn satisfy Condition D. If there exists a α(0,1) such that

    ˜F(y+αη(x,y))cα˜F(x)+(1α)˜F(y),

    for any x,yK, then the set

    A={λ[0,1]:˜F(y+λη(x,y))cλ˜F(x)+(1λ)˜F(y)}

    is dense in [0,1].

    Proof. It is obvious that 0A, from Condition D, it follows that 1A, i.e., A and A is not a single point set. Suppose that A is not dense in [0,1], then there exists a λ0(0,1) such that UA=, and where U is a δ-neighborhood Nδ(λ0) of λ0. Now, we denote

    λ1=inf{λA:λλ0},λ2=sup{λA:λλ0},

    then, we have 0λ2λ11. Due to α,(1α)(0,1), we can choose u1,u2A such that

    max{α(u1u2),(1α)(u1u2)}<λ1λ2,

    and take u1λ1, u2λ2. Let ¯λ=αu1+(1α)u2, from Condition C, for any x,yK, we have

    y+u2η(x,y)+αη(y+u1η(x,y),y+u2η(x,y))=y+(u2+α(u1u2))η(x,y)=y+¯λη(x,y).

    According to the fact that u1,u2A, we find that

    f(y+¯λη(x,y))=f(y+u2η(x,y)+αη(y+u1η(x,y),y+u2η(x,y)))cαf(y+u1η(x,y))+(1α)f(y+u2η(x,y))cα(u1f(x)+(1u1)f(y))+(1α)(u2f(x)+(1u2)f(y))=¯λf(x)+(1¯λ)f(y).

    Then, it follows that ¯λA. If ¯λλ0, from the definition of λ1, we get λ1¯λ. In addition, we have

    ¯λu2=α(u1u2)<λ1λ2,

    moreover,

    λ1>¯λu2+λ2¯λλ2+λ2=¯λ.

    It is a contradiction. Similar to that ¯λλ0. Thus, A is dense in [0,1].

    Theorem 4.4. Let KRn be an invex set w.r.t. η, η satisfy Condition C, ˜F:KEn satisfy Condition D, and ˜F be a prequasiinvex fuzzy number-valued function. If ˜F is weakly preinvex on K , i.e., there exists a \lambda_0\in(0, 1) such that

    \begin{equation} \widetilde{F}(y+\lambda_0\eta(x, y))\prec_c\lambda_0\widetilde{F}(x)+(1-\lambda_0)\widetilde{F}(y) \end{equation} (4.3)

    for any x, y\in{K}, then \widetilde{F} is preinvex on K .

    Proof . Assume that \widetilde{F} is not preinvex on K , then for x, y\in{K} , there exists a \lambda\in[0, 1] such that

    \begin{equation} \widetilde{F}(y+\lambda\eta(x, y))\succ_c\lambda{\widetilde{F}(x)}+(1-\lambda)\widetilde{F}(y) \end{equation} (4.4)

    If \widetilde{F}(x) = \widetilde{F}(y) , then we have \widetilde{F}(y+\lambda\eta(x, y))\succ_c{\widetilde{F}(x)} . Choose \lambda_1, \lambda_2\in[0, 1] , such that \lambda = \lambda_0\lambda_1+(1-\lambda_0)\lambda_2 and by taking \overline{x} = y+\lambda_1\eta(x, y), \overline{y} = y+\lambda_2\eta(x, y) , from Condition C, we get y+\lambda\eta(x, y) = \overline{y}+\lambda_0\eta(\overline{x}, \overline{y}). From the prequasiinvexity of \widetilde{F} , it follows that

    \widetilde{F}(\overline{x})\preceq_c{\max}\{\widetilde{F}(x), \widetilde{F}(y)\}, \; \; \widetilde{F}(\overline{y})\preceq_c{\max}\{\widetilde{F}(x), \widetilde{F}(y)\}.

    From (4.3), we find that

    \widetilde{F}(y+\lambda\eta(x, y)) = \widetilde{F}(\overline{y}+\lambda_0\eta(\overline{x}, \overline{y})) \prec_c\lambda_0{\widetilde{F}}(\overline{x})+(1-\lambda_0)\widetilde{F}(\overline{y})\preceq_c{\max}\{\widetilde{F}(x), \widetilde{F}(y)\} = \widetilde{F}(x),

    which is a contradiction to (4.4), i.e., \widetilde{F} is preinvex on K .

    Otherwise, let \widetilde{F}(x)\prec_c{\widetilde{F}}(y) . Since \widetilde{F} is weakly preinvex on K , then, according to Lemma 4.1, there exists a \lambda_1\in{A} with \lambda_1 < \lambda , such that

    \lambda_1{\widetilde{F}}(x)+(1-\lambda_1)\widetilde{F}(y)\prec_c{\widetilde{F}}(y+\lambda\eta(x, y)).

    Thus,

    \begin{equation} \widetilde{F}(y+\lambda_1\eta(x, y))\preceq_c\lambda_1{\widetilde{F}(x)}+(1-\lambda_1)\widetilde{F}(y)\prec_c{\widetilde{F}}(y+\lambda\eta(x, y)). \end{equation} (4.5)

    Choose \lambda_2 = \frac{\lambda-\lambda_1}{1-\lambda_1} and by taking \overline{x} = x, \overline{y} = y+\lambda_1\eta(x, y) , then from Condition C, we have

    \begin{align} \; \; \; \; \; \; \; \; \; \; \; \; \overline{y}+\lambda_2\eta(\overline{x}, \overline{y})& = y+\lambda_1\eta(x, y)+\lambda_2\eta(x, y+\lambda_1\eta(x, y))\\ & = y+\lambda_1\eta(x, y)+\lambda_2(1-\lambda_1)\eta(x, y) = y+\lambda\eta(x, y). \end{align}

    If \widetilde{F}(\overline{x})\preceq_c{\widetilde{F}}(\overline{y}) , then from the prequasiinvexity of \widetilde{F} , we obtain

    \widetilde{F}(y+\lambda\eta(x, y)) = \widetilde{F}(\overline{y}+\lambda_2\eta(\overline{x}, \overline{y})) \preceq_c{\max}\{\widetilde{F}(\overline{x}), \widetilde{F}(\overline{y})\} = \widetilde{F}(\overline{y}) = \widetilde{F}(y+\lambda_1\eta(x, y)),

    which is a contradiction to (4.5), i.e., \widetilde{F} is preinvex on K .

    If \widetilde{F}(\overline{x})\succ_c{\widetilde{F}}(\overline{y}) , then from the prequasiinvexity of \widetilde{F} , we obtain

    \widetilde{F}(y+\lambda\eta(x, y)) = \widetilde{F}(\overline{y}+\lambda_2\eta(\overline{x}, \overline{y}))\preceq_c{\max}\{\widetilde{F}(\overline{x}), \widetilde{F}(\overline{y})\} = \widetilde{F}(\overline{x}) = \widetilde{F}(x)\prec_c\lambda{\widetilde{F}}(x)+(1-\lambda)\widetilde{F}(y).

    which is a contradiction to (4.4), i.e., \widetilde{F} is preinvex on K .

    According to Theorem 4.3 and Theorem 4.4, we have the following conclusion.

    Theorem 4.5. Let K\subset{R^n} be an invex set w.r.t. \eta , \eta satisfy Condition \textrm{C}, \widetilde{F}:K\rightarrow {E^{n}} satisfy Condition \textrm{D}, and \widetilde{F} be a prequasiinvex fuzzy number-valued function. If \widetilde{F} is weakly strictly preinvex on K , i.e., there exists a \lambda_0\in(0, 1) such that

    \widetilde{F}(y+\lambda_0\eta(x, y))\prec_c\lambda_0\widetilde{F}(x)+(1-\lambda_0)\widetilde{F}(y)

    for any x, y\in{K} with x\neq{y} , then \widetilde{F} is strictly preinvex on K .

    Theorem 4.6. Let K\subset{R^n} be an invex set w.r.t. \eta , \eta satisfy Condition \textrm{C}, and \widetilde{F}:K\rightarrow {E^{n}} be a prequasiinvex fuzzy number-valued function. If \widetilde{F} is weakly strictly prequasiinvex on K , i.e., there exists a \lambda_0\in(0, 1) such that

    \begin{equation} \widetilde{F}(y+\lambda_0\eta(x, y))\prec_c{\max}\{\widetilde{F}(x), \widetilde{F}(y)\} \end{equation} (4.6)

    for any x, y\in{K} with x\neq{y} , then \widetilde{F} is strictly prequasiinvex on K .

    Proof . Assume that \widetilde{F} is not strictly prequasiinvex on K . Then for x, y\in{K} with x\neq{y} , there exists a \lambda\in(0, 1) such that

    \begin{equation} \widetilde{F}(y+\lambda\eta(x, y))\succeq_c{\max}\{\widetilde{F}(x), \widetilde{F}(y)\}. \end{equation} (4.7)

    Choose \lambda_1, \lambda_2\in(0, 1) , such that \lambda = \lambda_0\lambda_1+(1-\lambda_0)\lambda_2 and by taking \overline{x} = y+\lambda_1\eta(x, y) , \overline{y} = y+\lambda_2\eta(x, y), then, using Condition C, we have \overline{y}+\lambda_0\eta(\overline{x}, \overline{y}) = y+\lambda\eta(x, y) . According to the prequasiinvex of \widetilde{F} , it follows that

    \widetilde{F}(\overline{x})\preceq_c{\max}\{\widetilde{F}(x), \widetilde{F}(y)\}, \; \; \widetilde{F}(\overline{y})\preceq_c{\max}\{\widetilde{F}(x), \widetilde{F}(y)\}.

    From (4.6), we get

    \widetilde{F}(y+\lambda\eta(x, y)) = \widetilde{F}(\overline{y}+\lambda_0\eta(\overline{x}, \overline{y})) \prec_c{\max}\{\widetilde{F}(\overline{x}), \widetilde{F}(\overline{y})\}\preceq_c{\max}\{\widetilde{F}(x), \widetilde{F}(y)\},

    which is a contradiction to (4.7). i.e., \widetilde{F} is strictly prequasiinvex on K .

    It is similar to Theorem 4.5, we have the following result.

    Theorem 4.7. Let K\subset{R^n} be an invex set w.r.t. \eta , \eta satisfy Condition \textrm{C}, \widetilde{F}:K\rightarrow {E^{n}} satisfy Condition \textrm{D}, and \widetilde{F} be a strictly prequasiinvex fuzzy number-valued function. If \widetilde{F} is weakly strictly preinvex on K , i.e., there exists a \lambda_0\in(0, 1) such that

    \widetilde{F}(y+\lambda_0\eta(x, y))\prec_c\lambda_0\widetilde{F}(x)+(1-\lambda_0)\widetilde{F}(y)

    for any x, y\in{K} with x\neq{y} , then \widetilde{F} is strictly preinvex on K .

    The above relationships of preinvexity, weak preinvexity, strict preinvexity, weakly strict preinvexity, prequasiinvexity, weak prequasiinvexity, strict prequasiinvexity, weakly strict prequasiinvexity can be summarized in the following diagram (D refers to Condition \textrm{D}, C refers to Condition \textrm{C}).

    In this section, we introduce the properties of n -dimensional preinvex, prequasiinvex fuzzy number-valued functions, and their applications in the fuzzy optimization problems.

    Theorem 5.1. Let K be an invex set of R^{n} w.r.t. \eta , and \widetilde{F}:K\rightarrow {E^{n}} be a preinvex fuzzy number-valued function. Then the epigraph

    \begin{equation} epi(\widetilde{F}) = \{(x, u):\; x\in{K}, u\in{E^{n}}, \widetilde{F}(x)\preceq_{c}u\} \end{equation} (5.1)

    of \widetilde{F} is an invex set of K\times{E}^{n} w.r.t. the function

    \eta':epi(\widetilde{F})\times{epi}(\widetilde{F})\rightarrow {K}\times{E}^{n},

    defined by

    \begin{equation} \eta'((x, u), (y, v)) = (\eta(x, y), u+(-1)v) \end{equation} (5.2)

    for (x, u), (y, v)\in{epi}(\widetilde{F}) with x, y\in{K} and u, v\in{E}^{n} . Here epi(\widetilde{F}) is an invex set of K\times{E}^{n} means that (y, v)+\lambda\eta'((x, u), (y, v)) \in{epi}(\widetilde{F}) for any (x, u), (y, v)\in{epi}(\widetilde{F}) with x, y\in{K}.

    Proof . If epi(\widetilde{F}) is the empty set or a singleton, then it is obvious that it is an invex set w.r.t. \eta' . Let (x, u) , (y, v)\in{epi}(\widetilde{F}) , where x, y\in{K} and u, v\in{E}^{n} . Then, from (5.1), we have

    \widetilde{F}(x)\preceq_{c}u\; \; and\; \; \widetilde{F}(y)\preceq_{c}v.

    From the preinvexity of \widetilde{F} , for any \lambda\in[0, 1] , we have

    \widetilde{F}(y+\lambda\eta(x, y))\preceq_c{\lambda}\widetilde{F}(x)+(1-\lambda)\widetilde{F}(y)\preceq_{c}\lambda{u}+(1-\lambda)v,

    which implies that for any \lambda\in[0, 1] ,

    (y, v)+\lambda\eta'((x, u), (y, v)) = (y, v)+\lambda(\eta(x, y), u+(-1)v) = (y+\lambda\eta(x, y), \lambda{u}+(1-\lambda)v)\in{epi(\widetilde{F})}.

    This proves that {epi(\widetilde{F})} is an invex set of K\times{E}^{n} w.r.t. the function \eta' defined by (5.2).

    Theorem 5.2. Let \widetilde{F}:K\rightarrow {E^{l}} be a preinvex fuzzy number-valued function.

    (1) If \widetilde{G}:E^{l}\rightarrow {E^n} is convex and increasing, then \widetilde{G}\circ{\widetilde{F}}:K\rightarrow {E^{n}} is a preinvex fuzzy number-valued function;

    (2) If \widetilde{G}:E^{l}\rightarrow {E^n} is a positively homogeneous, increasing and sub-addition, then \widetilde{G}\circ{\widetilde{F}}:K\rightarrow {E^{n}} is a preinvex fuzzy number-valued function.

    Proof . Let x, y\in{K}, \lambda\in[0, 1], since \widetilde{F}:K\rightarrow {E^{l}} is a preinvex, we have

    \widetilde{F}(y+\lambda\eta(x, y))\preceq_c{\lambda}\widetilde{F}(x)+(1-\lambda)\widetilde{F}(y).

    (1) Since \widetilde{G}:E^{l}\rightarrow {E^n} is an increasing, it follows that

    \widetilde{G}(\widetilde{F}(y+\lambda\eta(x, y)))\preceq_c\widetilde{G}({\lambda}\widetilde{F}(x)+(1-\lambda)\widetilde{F}(y)).

    In addition, since \widetilde{G} is a convex fuzzy mapping, it follows that

    \widetilde{G}({\lambda}\widetilde{F}(x)+(1-\lambda)\widetilde{F}(y))\preceq_c\lambda{\widetilde{G}}(\widetilde{F}(x))+(1-\lambda)\widetilde{G}(\widetilde{F}(y)).

    From the above arguments, we have for x, y\in{K} and \lambda\in[0, 1],

    \widetilde{G}(\widetilde{F}(y+\lambda\eta(x, y)))\preceq_c\lambda{\widetilde{G}}(\widetilde{F}(x))+(1-\lambda)\widetilde{G}(\widetilde{F}(y)),

    which proves that \widetilde{G}\circ{\widetilde{F}}:K\rightarrow {E^{n}} is a preinvex mapping on K .

    (2) Since \widetilde{G}:E^{l}\rightarrow {E^n} is a positively homogeneous, increasing and sub-addition fuzzy mapping, it follows that

    \begin{align} \; \; \; \; \; \; \; \; \; \; \; \; \widetilde{G}(\widetilde{F}(y+\lambda\eta(x, y)))&\preceq_c{\widetilde{G}(\lambda{\widetilde{F}(x)}+(1-\lambda)\widetilde{F}(y))}\\ &\preceq_c{\widetilde{G}(\lambda{\widetilde{F}(x))}}+\widetilde{G}((1-\lambda)\widetilde{F}(y))\\ & = \lambda{\widetilde{G}(\widetilde{F}(x))}+(1-\lambda)\widetilde{G}(\widetilde{F}(y)). \end{align}

    Theorem 5.3. Let \widetilde{F}_j:K\rightarrow {E^{n}}, j = 1, 2\cdots{l} be preinvex fuzzy number-valued functions. For k_1, k_2, \cdots, k_l > 0 , The fuzzy mapping \widetilde{F}:K\rightarrow {E^{n}} defined by

    \begin{equation} \widetilde{F}(x) = \sum \limits_{j = 1}^{l}k_j{\widetilde{F}_j(x)}, \; \; \; \; for\; \; each\; \; {x}\in{K} \end{equation} (5.3)

    is a preinvex fuzzy number-valued function.

    Proof . Since \widetilde{F}_j:K\rightarrow {E^{n}}, j = 1, 2\cdots{l} is preinvex for each j = 1, 2\cdots{l} , we have for x, y\in{K} and \lambda\in[0, 1],

    \widetilde{F}_j(y+\lambda\eta(x, y))\preceq_c{\lambda}\widetilde{F}_j(x)+(1-\lambda)\widetilde{F}_j(y).

    From (5.3), it follows that for x, y\in{K} and \lambda\in[0, 1],

    \begin{align} \; \; \; \; \; \; \; \; \; \; \; \; \widetilde{F}(y+\lambda\eta(x, y))& = (\sum \limits_{j = 1}^{l}k_j{\widetilde{F}_j})(y+\lambda\eta(x, y))\\ & = \sum \limits_{j = 1}^{l}k_j{\widetilde{F}_j}(y+\lambda\eta(x, y))\\ &\preceq_c\sum \limits_{j = 1}^{l}k_j(\lambda{\widetilde{F}_j}(x)+(1-\lambda)\widetilde{F}_j(y))\\ & = \lambda\sum \limits_{j = 1}^{l}k_j{\widetilde{F}_j}(x)+(1-\lambda)\sum \limits_{j = 1}^{l}k_j{\widetilde{F}_j}(y)\\ & = \lambda(\sum \limits_{j = 1}^{l}k_j{\widetilde{F}_j})(x)+(1-\lambda)(\sum \limits_{j = 1}^{l}k_j{\widetilde{F}_j})(y)\\ & = \lambda{\widetilde{F}(x)}+(1-\lambda)\widetilde{F}(y), \end{align}

    which proves that \widetilde{F}:K\rightarrow {E^{n}} is a preinvex fuzzy number-valued function.

    Theorem 5.4. Let \widetilde{F}:K\rightarrow {E^{n}} be a fuzzy number-valued function. Then \widetilde{F} is preinvex w.r.t. \eta if and only if \widetilde{F}(y+\lambda\eta(x, y))\prec_{c}\lambda{u}+(1-\lambda)v for any x, y\in{K} satisfying \widetilde{F}(x)\prec_{c}u , \widetilde{F}(y)\prec_{c}v and \lambda\in [0, 1].

    Proof . Necessity is easy to prove.

    Conversely, let for any \widetilde{\varepsilon}\succ_c\widetilde{0} , we have \widetilde{F}(x)\prec_c{\widetilde{F}(x)}+\widetilde{\varepsilon} , \widetilde{F}(y)\prec_c{\widetilde{F}(y)}+\widetilde{\varepsilon} , such that

    \begin{align} \; \; \; \; \; \; \; \; \; \; \; \; \widetilde{F}(y+\lambda\eta(x, y))&\prec_c\lambda(\widetilde{F}(x)+\widetilde{\varepsilon})+(1-\lambda)(\widetilde{F}(y)+\widetilde{\varepsilon})\\ & = \lambda{\widetilde{F}(x)}+(1-\lambda)\widetilde{F}(y)+\widetilde{\varepsilon}. \end{align}

    Since \widetilde{\varepsilon} is an arbitrary positive fuzzy number, then for any \lambda\in[0, 1], we obtain

    \widetilde{F}(y+\lambda\eta(x, y))\preceq_c{\lambda}{\widetilde{F}(x)}+(1-\lambda)\widetilde{F}(y),

    This completes the proof.

    Theorem 5.5. Let \widetilde{F}:K\rightarrow {E^{n}} be a preinvex fuzzy number-valued function w.r.t. \eta. Then for u\in{E}^{n} , the lower u -level set

    K_u(\widetilde{F}) = \{x|x\in{K}, \; \; \widetilde{F}(x)\preceq_c{u}\}

    of \widetilde{F} is an invex set.

    Proof . For any x, y\in{K_u(\widetilde{F})} , we have \widetilde{F}(x)\preceq_c{u} and \widetilde{F}(y)\preceq_c{u} . Then, by the preinvexity of \widetilde{F} , it follows that, for any \lambda\in[0, 1],

    \widetilde{F}(y+\lambda\eta(x, y))\preceq_c{\lambda{\widetilde{F}(x)}}+(1-\lambda)\widetilde{F}(y)\preceq{u},

    which implies that

    y+\lambda\eta(x, y)\in{K_u(\widetilde{F})}.

    Definition 5.1. Let S\subset{R}^{n}\times{E}^{n} , S is said to be G -invex set, if there exists a function \eta:{R}^{n}\times{R}^{n}\rightarrow {R}^{n} , for any (x, u) , (y, v)\in{S} , (y+\lambda\eta(x, y), \lambda{u}+(1-\lambda)v)\in{S}, \; \; \; 0\leq\lambda\leq1.

    Theorem 5.6. Assume K is an invex set, then \widetilde{F}:K\rightarrow {E^{n}} is a preinvex fuzzy number-valued functionon K if and only if {epi(\widetilde{F})} is G -invex set of {R}^{n}\times{E}^{n} .

    Proof . Assume that \widetilde{F} is a preinvex fuzzy number-valued function on K. For (x, u), (y, v)\in{epi(\widetilde{F})}, \lambda\in[0, 1], it follows that y+\lambda\eta(x, y)\in{K} and

    \widetilde{F}(y+\lambda\eta(x, y))\preceq_c{\lambda}{\widetilde{F}(x)}+(1-\lambda)\widetilde{F}(y)\preceq_c\lambda{u}+(1-\lambda)v.

    Thus,

    (y+\lambda\eta(x, y), \lambda{u}+(1-\lambda)v)\in epi(\widetilde{F}),

    which implies that epi(\widetilde{F}) is G -invex set of {R}^{n}\times{E}^{n} w.r.t. a given function \eta\times\eta_{o} , where \eta_{o}:{E}^{n}\times{E}^{n}\rightarrow {E}^{n} , (u, v)\rightarrow {u}-v .

    Conversely, since {epi(\widetilde{F})} is a G -invex set of {R}^{n}\times{E}^{n} , (x, \widetilde{F}(x))\in epi(\widetilde{F}) and (y, \widetilde{F}(y))\in epi(\widetilde{F}) for any x, y\in{K}, \lambda\in[0, 1]. Thus we have

    (y+\lambda\eta(x, y), \widetilde{F}(y)+\lambda\eta_{0}(\widetilde{F}(x), \widetilde{F}(y)) = (y+\lambda\eta(x, y), \lambda{\widetilde{F}(x)}+(1-\lambda)\widetilde{F}(y))\in epi(\widetilde{F}),

    which implies that

    \widetilde{F}(y+\lambda\eta(x, y))\preceq_c{\lambda{\widetilde{F}(x)}}+(1-\lambda)\widetilde{F}(y).

    This shows that \widetilde{F} is preinvex fuzzy number-valued function on K .

    Theorem 5.7. Let \{S_i\}_{i\in{I}} be a finite or infinite collection of G -invex sets of {R}^{n}\times{E}^{n} , where I is index set. Then S = \bigcap_{i\in{I}}S_i is a G -invex set.

    Proof . Let for any (x, u) , (y, v)\in{S} , we have, for any i\in{I} , (x, u), (y, v)\in{S_i} , then

    (y+\lambda\eta(x, y), \lambda{u}+(1-\lambda)v)\in{S_i}, \; \; \; \; \forall\lambda\in[0, 1].

    Therefore, we obtain

    (y+\lambda\eta(x, y), \lambda{u}+(1-\lambda)v)\in{\bigcap}_{i\in{I}}S_i = S, \; \; \; \; \forall\lambda\in[0, 1].

    That is, S = \bigcap_{i\in{I}}S_i is a G -invex set.

    Theorem 5.8. Let K\subseteq{R^n} be an invex set w.r.t. \eta , \{\widetilde{F}_i\}_{i\in{I}} be a set of n -dimensional preinvex fuzzy number-valued functions on K. If \sup\{\widetilde{F}_i(x)|i\in{I}\} exists in {E}^{n} for any x\in{K} , then \widetilde{F}(x) = \sup\{\widetilde{F}_i(x)|i\in{I}\} is a n -dimensional preinvex fuzzy number-valued function on K .

    Proof . Since each \widetilde{F}_i(i\in{I}) is n -dimensional preinvex fuzzy number-valued function on K , then by Theorem 5.6, we know that

    epi(\widetilde{F}_i) = \{(x, u)\in{k}\times{E^n}:\widetilde{F}_i(x)\preceq_c{u}\}

    is a G -invex set of {R}^{n}\times{E}^{n} . By Theorem 5.7, we have

    \bigcap\limits_{i\in{I}}epi(\widetilde{F}_i) = \{(x, u)\in{k}\times{E^n}:\widetilde{F}_i(x)\preceq_c{u}, \forall{i}\in{I}\}

    is a G -invex set of {R}^{n}\times{E}^{n} . It is an easy matter to verify that

    \begin{align} \; \; \; \; \; \; \; \; \; \; \; \; \bigcap\limits_{i\in{I}}epi(\widetilde{F}_i)& = \{(x, u)\in{k}\times{E^n}:\widetilde{F}_i(x)\preceq_c{u}, \forall{i}\in{I}\}\\ & = \{(x, u)\in{k}\times{E^n}:\widetilde{F}(x)\preceq_c{u}\}\\ & = epi(\widetilde{F}). \end{align}

    Thus, epi(\widetilde{F}) is a G -invex set of {R}^{n}\times{E}^{n} . By Theorem 5.6, we find that \widetilde{F} is a n -dimensional preinvex fuzzy number-valued function on K .

    Theorem 5.9. Let K\subseteq{R^n} be an invex set w.r.t. \eta . Then \widetilde{F}:K\rightarrow {E^{n}} is a prequasiinvex fuzzy number-valued function on K if and only if the lower u -level set

    L_u(\widetilde{F}) = \{x|x\in{K}, \; \widetilde{F}(x)\preceq_c{u}\}

    of \widetilde{F} is an invex set w.r.t. \eta for each u\in{E^n} .

    Proof . Necessity is easy to prove.

    Conversely, assume that L_u(\widetilde{F}) is an invex set for each u\in{E}^{n} . Let x, y\in{K} , without loss of generality, we may assume that \widetilde{F}(x)\preceq_c{\widetilde{F}(y)} . Let u = \widetilde{F}(y) , since \preceq_c is reflexive and transitive, we have

    \widetilde{F}(x)\preceq_c{u}\; \; \; and\; \; \; \widetilde{F}(y)\preceq_c{u},

    which implies that

    x, y\in{L_u(\widetilde{F})}.

    We have y+\lambda\eta(x, y)\in{L}_u(\widetilde{F}) , which implies that

    \widetilde{F}(y+\lambda\eta(x, y))\preceq_c{u} = \max\{\widetilde{F}(x), \widetilde{F}(u)\},

    which completes the proof.

    Theorem 5.10. Let \widetilde{F}:K\rightarrow {E^{n}} be a prequasiinvex fuzzy number-valued function. Then t\widetilde{F} is prequasiinvex fuzzy number-valued function on K for any t > 0 .

    Proof .

    \begin{align} \; \; \; \; \; \; \; \; \; \; \; \; k\widetilde{F}(y+\lambda\eta(x, y))& = k(\widetilde{F}(y+\lambda\eta(x, y)))\\ &\preceq_c{k}\max\{\widetilde{F}(x), \widetilde{F}(y)\}\\ & = \max\{k\widetilde{F}(x), k\widetilde{F}(y)\}. \end{align}

    Theorem 5.11. Let \widetilde{F}:K\rightarrow {E^{n}} be prequasiinvex fuzzy number-valued function w.r.t. \eta , and \overline{x}\in{K} be the global minimizer of \widetilde{F} on K. Then, the set

    \Omega = \{x\in{K}:\widetilde{F}(x) = \widetilde{F}(\overline{x})\}

    is an invex set w.r.t. \eta .

    Proof . If \Omega is the empty set or singleton, then it is obvious an invex set. Assume that x, y\in{\Omega} , then

    \widetilde{F}(x) = \widetilde{F}(\overline{x})\; \; \; and\; \; \; \widetilde{F}(y) = \widetilde{F}(\overline{x}).

    Since \widetilde{F}:K\rightarrow {E^{n}} is a prequasiinvex fuzzy number-valued function w.r.t. \eta , we have

    \widetilde{F}(y+\lambda\eta(x, y))\preceq_{c}\max\{\widetilde{F}(x), \widetilde{F}(y)\} = \widetilde{F}(\overline{x})

    for any \lambda\in[0, 1]. Consider \overline{x}\in{K} is a global minimizer of \widetilde{F} , it follows that

    \widetilde{F}(y+\lambda\eta(x, y)) = \widetilde{F}(\overline{x})

    for \lambda\in[0, 1]. It implies that y+\lambda\eta(x, y)\in\Omega for \lambda\in[0, 1] . Thus, \Omega is an invex set w.r.t. \eta . This completes the proof.

    Theorem 5.12. Let \widetilde{F}:K\rightarrow {E^{n}} be preinvex fuzzy number-valued function w.r.t. \eta, and \overline{x}\in{K} satisfying \widetilde{F}(\overline{x}) = \min_{x\in{K}}\widetilde{F}(x). If u = \min_{x\in{K}}\widetilde{F}(x) , then the set

    \Omega = \{x\in{K}:\widetilde{F}(x) = u\}

    is an invex set w.r.t. \eta .

    In this section, we present several practical criteria for preinvex fuzzy number-valued functions under the lower or upper semicontinuity conditions.

    Definition 6.1. (see [7].) Let \widetilde{F}:K\rightarrow {E^{n}} be a fuzzy number-valued function

    (1) \widetilde{F} is said to be lower semicontinuous(l.c.) at x_{0}\in{K} if for any \widetilde{\epsilon}\succ_c0 , a neighborhood U of x_{0} exists when x\in{K} , and we have

    \widetilde{F}(x_{0})\prec_{c}\widetilde{F}(x)+\widetilde{\epsilon}.

    (2) \widetilde{F} is said to be upper semicontinuous(u.c.) at x_{0}\in{K} if for any \widetilde{\epsilon}\succ_c0 , a neighborhood U of x_{0} exists when x\in{K} , and we have

    \widetilde{F}(x)\prec_{c}\widetilde{F}(x_{0})+\widetilde{\epsilon}.

    A fuzzy number-valued function \widetilde{F}:K\rightarrow {E^{n}} is continuous at x_{0}\in{K} if it is both l.c. and u.c. at x_{0} , and that it is continuous at every point of K .

    Theorem 6.1. Let K\subset{R}^{n} be an invex set w.r.t. \eta , \eta satisfy Condition \textrm{C}, \widetilde{F}:K\rightarrow {E^{n}} be a lower semicontinuous fuzzy number-valued function, and \widetilde{F} satisfy Condition \textrm{D}. If \widetilde{F} is weakly preinvex on K , i.e., there exists a \lambda_{0}\in(0, 1) such that

    \widetilde{F}(y+\lambda_{0}\eta(x, y))\preceq_{c}\lambda_{0}\widetilde{F}(x)+(1-\lambda_{0})\widetilde{F}(y)

    for any x, y\in{K} , then \widetilde{F} is preinvex on K .

    Proof . Assume that \widetilde{F} is not preinvex on K , then, x, y\in{K} and there exists a \lambda\in[0, 1] such that

    \begin{equation} \widetilde{F}(y+\lambda\eta(x, y))\succ_c\lambda{\widetilde{F}(x)}+(1-\lambda)\widetilde{F}(y). \end{equation} (6.1)

    By the weak preinvexity of \widetilde{F} and Lemma 4.1, we can choose a sequence \lambda_{n}\in{A}(n = 1, 2, \cdots) with \lambda_n\rightarrow \lambda(n\rightarrow \infty) and

    \begin{equation} \widetilde{F}(y+\lambda_n\eta(x, y))\preceq_c\lambda_n{\widetilde{F}(x)}+(1-\lambda_n)\widetilde{F}(y). \end{equation} (6.2)

    From the lower semicontinuity of \widetilde{F} , for any \widetilde{\varepsilon}\succ_{c}\widetilde{0} , an N > 0 exists when n > N and we have

    \begin{equation} \widetilde{F}(y+\lambda\eta(x, y))\prec_c{\widetilde{F}}(y+\lambda_n\eta(x, y))+\widetilde{\varepsilon}. \end{equation} (6.3)

    Since \widetilde{\varepsilon} is an arbitrary positive fuzzy number, by taking the limit as n\rightarrow \infty , and by combining with (6.2) and (6.3), we have

    \widetilde{F}(y+\lambda\eta(x, y))\preceq_c\lambda{\widetilde{F}}(x)+(1-\lambda)\widetilde{F}(y).

    This contradicts the fact that (6.1), i.e., \widetilde{F} is preinvex on K .

    Theorem 6.2. Let K\subset{R}^{n} be an invex set w.r.t. \eta , \eta satisfy Condition \textrm{C}, \widetilde{F}:K\rightarrow {E^{n}} be a upper semicontinuous fuzzy number-valued function, and \widetilde{F} satisfy Condition \textrm{D}. If \widetilde{F} is weakly preinvex on K , i.e., there exists a \lambda_{0}\in(0, 1) such that

    \widetilde{F}(y+\lambda_{0}\eta(x, y))\preceq_{c}\lambda_{0}\widetilde{F}(x)+(1-\lambda_{0})\widetilde{F}(y)

    for any x, y\in{K} , then \widetilde{F} is preinvex on K .

    Proof . Assume that \widetilde{F} is not preinvex on K , then, x, y\in{K} and there exists a \lambda\in[0, 1] such that

    \begin{equation} \widetilde{F}(y+\lambda\eta(x, y))\succ_c\lambda{\widetilde{F}(x)}+(1-\lambda)\widetilde{F}(y). \end{equation} (6.4)

    By the weak preinvexity of \widetilde{F} and Lemma 4.1, we can choose a sequence \lambda_{n}\in{A}(n = 1, 2, \cdots) with \lambda_n\rightarrow \lambda(n\rightarrow \infty) and

    \begin{equation} \widetilde{F}(\overline{y}+\lambda_n\eta(\overline{x}, \overline{y}))\preceq_c\lambda_n{\widetilde{F}(\overline{x})}+(1-\lambda_n)\widetilde{F}(\overline{y}). \end{equation} (6.5)

    for any \overline{x}, \overline{y}\in{K} , by taking \overline{x} = x\in{K} , and \overline{y} = y+\frac{\lambda-\lambda_n}{1-\lambda_n}\eta(x, y)\in{K} , using Condition C

    \begin{align} \; \; \; \; \; \; \; \; \; \; \; \; \overline{y}+\lambda_n\eta(\overline{x}, \overline{y})& = y+\frac{\lambda-\lambda_n}{1-\lambda_n}\eta(x, y)+\lambda_n\eta(x, y+\frac{\lambda-\lambda_n}{1-\lambda_n}\eta(x, y))\\ & = y+\frac{\lambda-\lambda_n}{1-\lambda_n}\eta(x, y)+\lambda_n(1-\frac{\lambda-\lambda_n}{1-\lambda_n})\eta(x, y)\\ & = y+\lambda\eta(x, y). \end{align}

    and \overline{y}\rightarrow {y}(n\rightarrow \infty) . According to the upper semicontinuity of \widetilde{F} , for any \widetilde{\varepsilon}\succ_{c}\widetilde{0} , there exists an N > 0 when n > N and we get

    \begin{equation} \widetilde{F}(\overline{y})\prec_c{\widetilde{F}}(y)+\widetilde{\varepsilon}. \end{equation} (6.6)

    Since \widetilde{\varepsilon} is an arbitrary positive fuzzy number, and by combining with (6.5) and (6.6), we have

    \begin{align} \; \; \; \; \; \; \; \; \; \; \; \; \widetilde{F}(y+\lambda\eta(x, y))& = \widetilde{F}(\overline{y}+\lambda_n\eta(\overline{x}, \overline{y}))\\ &\preceq_c\lambda_n\widetilde{F}(\overline{x})+(1-\lambda_n)\widetilde{F}(\overline{y})\\ &\preceq_c\lambda_n\widetilde{F}(x)+(1-\lambda_n)\widetilde{F}(y). \end{align}

    By taking the limit as n\rightarrow \infty , we have

    \widetilde{F}(y+\lambda\eta(x, y))\preceq_c\lambda{\widetilde{F}(x)}+(1-\lambda)\widetilde{F}(y).

    This contradicts the fact that (6.4), i.e., \widetilde{F} is preinvex on K .

    By combining Theorem 6.1 and Theorem 6.2, we have the following result.

    Corollary 6.1. Let K\subset{R}^{n} be an invex set w.r.t. \eta , \eta satisfy Condition \textrm{C}, \widetilde{F}:K\rightarrow {E^{n}} satisfy Condition \textrm{D}, and \widetilde{F} be a lower semicontinuous or upper semicontinuous fuzzy number-valued function. Then \widetilde{F} is preinvex on K if and only if \widetilde{F} is weakly preinvex on K .

    Theorem 6.3. Let K\subset{R}^{n} be an invex set w.r.t. \eta , \eta satisfy Condition \textrm{C}, \widetilde{F}:K\rightarrow {E^{n}} satisfy Condition \textrm{D}, and \widetilde{F} be a lower (resp. an upper) semicontinuous fuzzy number-valued function. If \widetilde{F} is weakly strictly preinvex on K , i.e., there exists a \lambda_{0}\in(0, 1) such that

    \widetilde{F}(y+\lambda_{0}\eta(x, y))\prec_{c}\lambda_{0}\widetilde{F}(x)+(1-\lambda_{0})\widetilde{F}(y)

    for any x, y\in{K} with x\neq{y} , then \widetilde{F} is strictly preinvex on K .

    By combining Definition 3.1 and Theorem 6.3, we have the following result.

    Corollary 6.2. Let K\subset{R}^{n} be an invex set w.r.t. \eta , \eta satisfy Condition \textrm{C}, \widetilde{F}:K\rightarrow {E^{n}} satisfy Condition \textrm{D}, and \widetilde{F} be a lower semicontinuous or upper semicontinuous fuzzy number-valued function. Then \widetilde{F} is strictly preinvex on K if and only if \widetilde{F} is weakly strictly preinvex on K .

    Lemma 6.1. Let K\subset{R}^{n} be an invex set w.r.t. \eta , \eta satisfy Condition \textrm{C}, and \widetilde{F}:K\rightarrow {E^{n}} satisfy Condition \textrm{D}. If there exists a \alpha\in(0, 1) such that

    \widetilde{F}(y+\alpha\eta(x, y))\preceq_c{\max}\{\widetilde{F}(x), \widetilde{F}(y)\}

    for any x, y\in{K} , then the set

    A = \{\lambda\in[0, 1]:\widetilde{F}(y+\alpha\eta(x, y))\preceq_c{\max}\{\widetilde{F}(x), \widetilde{F}(y)\}\}

    is dense in [0, 1] .

    This proof is similar to the proof of Lemma 4.1.

    Theorem 6.4. Let K\subset{R}^{n} be an invex set w.r.t. \eta , and \eta satisfy Condition \textrm{C}, \widetilde{F}:K\rightarrow {E^{n}} satisfy Condition \textrm{D}, and \widetilde{F} be an upper semicontinuous fuzzy number-valued function. If \widetilde{F} is weakly prequasiinvex on K , i.e., thereexists a \lambda_{0}\in(0, 1) such that

    \widetilde{F}(y+\alpha_{0}\eta(x, y))\preceq_c{\max}\{\widetilde{F}(x), \widetilde{F}(y)

    for any x, y\in{K} , then \widetilde{F} is prequasiinvex on K .

    Proof . Assume that \widetilde{F} is not prequasiinvex on K. Then, for any x, y\in{K} and there exists a \lambda\in[0, 1] such that

    \begin{equation} \widetilde{F}(y+\lambda\eta(x, y))\succ_c\max\{\widetilde{F}(x), \widetilde{F}(y)\}. \end{equation} (6.7)

    By the weak prequasiinvexity of \widetilde{F} and Lemma 6.1, we can choose a sequence \lambda_{n}\in{A}(n = 1, 2, \cdots) with \lambda_n\rightarrow \lambda(n\rightarrow \infty) and

    \begin{equation} \widetilde{F}(\overline{y}+\lambda_n\eta(\overline{x}, \overline{y}))\preceq_c\max\{\widetilde{F}(\overline{x}), \widetilde{F}(\overline{y})\}. \end{equation} (6.8)

    for any \overline{x}, \overline{y}\in{K} , by taking \overline{x} = x\in{K} , and \overline{y} = y+\frac{\lambda-\lambda_n}{1-\lambda_n}\eta(x, y)\in{K} , using Condition C, we have y+\lambda\eta(x, y) = \overline{y}+\lambda_n\eta(\overline{x}, \overline{y}) , and \overline{y}\rightarrow {y}(n\rightarrow \infty) . From the upper semicontinuity of \widetilde{F} , for any \widetilde{\varepsilon}\succ_{c}\widetilde{0} , there exists an N > 0 when n > N and we obtain

    \begin{equation} \widetilde{F}(\overline{y})\prec_c{\widetilde{F}}(y)+\widetilde{\varepsilon}. \end{equation} (6.9)

    Since \widetilde{\varepsilon} is an arbitrary positive fuzzy number, and by combining with (6.8) and (6.9), it follows that

    \begin{align} \; \; \; \; \; \; \; \; \; \; \; \; \widetilde{F}(y+\lambda\eta(x, y))& = \widetilde{F}(\overline{y}+\lambda_n\eta(\overline{x}, \overline{y}))\\ &\preceq_c{\max}\{\widetilde{F}(\overline{x}), \widetilde{F}(\overline{y})\}\\ &\preceq_c{\max}\{\widetilde{F}(x), \widetilde{F}(y)\}. \end{align}

    This contradicts to the fact that (6.7), i.e., \widetilde{F} is prequasiinvex on K .

    According to Theorem 4.6 and Theorem 6.4, we have the following result.

    Theorem 6.5. Let K\subset{R}^{n} be an invex set w.r.t. \eta , and \eta satisfy Condition \textrm{C}, \widetilde{F}:K\rightarrow {E^{n}} satisfy Condition \textrm{D}, and \widetilde{F} be an upper semicontinuous fuzzy number-valued function. If \widetilde{F} is weakly strictly prequasiinvex on K , i.e., there exists a \lambda_{0}\in(0, 1) such that

    \widetilde{F}(y+\alpha_{0}\eta(x, y))\prec_c{\max}\{\widetilde{F}(x), \widetilde{F}(y)

    for any x, y\in{K} with x\neq{y} , then \widetilde{F} is strictly prequasiinvex on K .

    In this section, two types of the parameter optimization problems are investigated. They are widely applied in the optimization theory of consumers and producers. In which the optimal value of objective function depends on the values of the parameters. Therefore, the optimal solution and optimal values are all functions of parameters. The central task of economic analysis is to clarify the character of these functions. Two-parameters optimization problems is shown as follows.

    P(\alpha):\; \; \max\widetilde{F}(x), \; \; \; \; x\in{S} = \{x\in{X}\subset{R^n}:\widetilde{G}(x, \alpha)\preceq_{c}\widetilde{0} \} \; \; \; \; \alpha\in{A}\subset{R^n};
    P(\beta):\; \; \min\widetilde{F}(x, \beta), \; \; \; \; x\in{S} = \{x\in{X}\subset{R^n}:\widetilde{G}(x)\preceq_{c}\widetilde{0} \} \; \; \; \; \beta\in{B}\subset{R^n}.

    where X, A, B \subset{R^n} are invex sets w.r.t. \eta:{R^n}\times{R^n}\rightarrow {R^n} , \widetilde{F}:X\rightarrow {E^{n}} , \widetilde{G}:X\rightarrow {E^{n}} . In the problem P(\alpha) , the parameter appear in the fuzzy constraint function, and the parameter appear in the fuzzy objective function in the problem P(\beta) . We always assume that the problems P(\alpha) and P(\beta) have the optimal solution for any fixed parameters \alpha , \beta respectively, and write \widetilde{Z}(\alpha) and \widetilde{\psi}(\beta) as the optimal objective values for P(\alpha) and P(\beta) respectively.

    Theorem 7.1. Consider the problem P(\alpha) , if \widetilde{G}(x, \alpha) is a n -dimensional preincave fuzzy number-valued function on A w.r.t. \eta:{R^n}\times{R^n}\rightarrow {R^n} , then \widetilde{Z}(\alpha) is a n -dimensional prequasiinvex fuzzy number-valued function on A w.r.t. the same function \eta .

    Proof . For \alpha_{1}, \alpha_{2}\in{A} and for any \lambda\in[0, 1] , let x_{\lambda} be a optimal solution for P(\alpha_{2}+\lambda\eta(\alpha_{1}, \alpha_{2})) . From the preincavity of \widetilde{G} w.r.t. \alpha , we obtain

    \widetilde{0}\succeq_{c}\widetilde{G}(x_{\lambda}, \alpha_{2}+\lambda\eta(\alpha_{1}, \alpha_{2}))\succeq_{c}\lambda\widetilde{G}(x_{\lambda}, \alpha_{1})+(1-\lambda) \widetilde{G}(x_{\lambda}, \alpha_{2}).

    Since \lambda and (1-\lambda) are all non-negative, it follows that, \widetilde{G}(x_{\lambda}, \alpha_{1}) and \widetilde{G}(x_{\lambda}, \alpha_{2}) at least one non-positive. Without loss of generality, we assume that

    \widetilde{G}(x_{\lambda}, \alpha_{1})\preceq_{c}\widetilde{0},

    it follows that x_{\lambda} is a feasible solution for P(\alpha_{1}) and \widetilde{Z}(\alpha_{1})\succeq_{c}\widetilde{F}(x_{\lambda}) . Then, we have, for any \lambda\in[0, 1] ,

    \max\{\widetilde{Z}(\alpha_{1}), \widetilde{Z}(\alpha_{2})\}\succeq_{c}\widetilde{Z}(\alpha_{1})\succeq_{c}\widetilde{F}(x_{\lambda}) = \widetilde{Z}(\alpha_{2}+\lambda\eta(\alpha_{1}, \alpha_{2}))

    i.e., \widetilde{Z}(\alpha) is a n -dimensional prequasiinvex fuzzy number-valued function on A w.r.t. the same function \eta .

    Theorem 7.2. Consider P(\beta) , if \widetilde{F}(x, \beta) is a n -dimensional preincave fuzzy number-valued function on B w.r.t. parameter \beta and \eta:{R^n}\times{R^n}\rightarrow {R^n} , then \widetilde{\psi}(\beta) is a n -dimensional preincave fuzzy number-valued function on B w.r.t. the same function \eta .

    Proof . For \alpha_{1}, \alpha_{2}\in{B} and for any \lambda\in[0, 1] , let x_{\lambda} be a optimal solution for P(\beta_{2}+\lambda\eta(\beta_{1}, \beta_{2})) . Since \widetilde{G}(x_{\lambda})\preceq_{c}\widetilde{0} , it follows that, x_{\lambda} is the feasible solution to P(\beta_{1}) and P(\beta_{2}) , which implies

    \widetilde{F}(x_{\lambda}, \beta_{1})\succeq_{c}\widetilde{\psi}(\beta_{1})\; \; \; \; and \; \; \; \; \widetilde{F}(x_{\lambda}, \beta_{2})\succeq_{c}\widetilde{\psi}(\beta_{2}).

    From the preincavity of \widetilde{F} w.r.t. \beta , we obtain

    \begin{align} \; \; \; \; \; \; \; \; \; \; \; \; \widetilde{\psi}(\beta_{2}+\lambda\eta(\beta_{1}, \beta_{2}))& = \widetilde{F}(x_{\lambda}, \beta_{2}+\lambda\eta(\beta_{1}, \beta_{2}))\\ &\succeq_{C}\lambda\widetilde{F}(x_{\lambda}, \beta_{1})+(1-\lambda)\widetilde{F}(x_{\lambda}, \beta_{2})\\ &\succeq_{C}\lambda\widetilde{\psi}(\beta_{1})+(1-\lambda)\widetilde{\psi}(\beta_{2}), \end{align}

    i.e., \widetilde{\psi}(\beta) is a n -dimensional preincave fuzzy number-valued function on B w.r.t. the same function \eta .

    Example 7.1. The optimization problem in consumer theory. A consumer is an economic entity that uses available resources (income) to purchase goods and obtains satisfaction from the consumption of goods. The problem of the consumer is how to select the consumption bundle so that the consumer can get the maximum satisfaction from his consumption under the constraint that the total expenditure is not greater than the income of the consumer. Let \widetilde{p} = (\widetilde{p}_{1}, \cdots, \widetilde{p}_{n})^{T} be the price vector, where \widetilde{p}_{i}\succ_{c}0 (i = 1, \cdots, n) is the price of the good i , and let x = (x_{1}, \cdots, x_{n})^{T} be the consumption bundle, where x_{i}\geqslant0 (i = 1, \cdots, n) is the quantity of the good i consumed. If the total expenditure p^{T}x is not greater than the consumer's income m , there must be a constraint p^{T}x\leqslant m , which is the consumer's budget constraint. The set S = \{x\in R_{+}^{n}: \widetilde{p}^{T}x\preceq_{c} m\} of all feasible consumption bundles is called the budget set. The consumer has different satisfaction for different consumption bundles, which is called consumer preference. We use utility functions to describe this preference. The quantity is only an estimated quantity, then using a fuzzy-valued function to express the quantity is more appropriate than using a crisp quantity. Specifically, a utility function \widetilde{U}:R_{+}^{n}\rightarrow E_{+}^{n} is a nonnegative fuzzy-valued function satisfying the following specification: \widetilde{U}(x)\succ_{c}\widetilde{U}(y) means that consumption bundle x is better than consumption bundle y ; \widetilde{U}(x) = \widetilde{U}(y) means that consumption bundle x equals consumption bundle y ; \widetilde{U}(x)\succeq_{c}\widetilde{U}(y) means that consumption bundle x is not worse than consumption bundle y .

    The utility maximization problem of consumers can be formalized into the following optimization model:

    (M)\begin{cases} \; \; \max\; \; \widetilde{U}(x), \\ \; \; s.t.\; \; \; x\in S = \{x\in R_{+}^{n}: \widetilde{p}^{T}x\preceq_{c} m\}, \\ \end{cases}

    where \widetilde{p}\succ_{c}0 , m > 0 . Obviously, this is a P(\alpha) type optimization problem, where the parameters (\widetilde{p}, m) appear in the fuzzy constraint function. Let v(\widetilde{p}, m) = \widetilde{U}(x(\widetilde{p}, m)) for every \widetilde{p}\succ+{c}0 and m > 0 , and v(\widetilde{p}, m) is said to be an indirect utility function. Notice that the function g(x; \widetilde{p}, m) = \widetilde{p}^{T}x-m is a preincave fuzzy number-valued function w.r.t. (\widetilde{p}, m) and \eta = x-y . According to Theorem 7.1, v(\widetilde{p}, m) = \widetilde{U}(x(\widetilde{p}, m)) a n -dimensional prequasiinvex fuzzy number-valued function on R_{+}^{n} w.r.t. the same function \eta .

    Here, we present the fuzzy variational-like inequality and discuss the relationships between the fuzzy variational-like inequality problem and the unconstrained fuzzy vector optimization problem.

    Let K\subseteq{R^n} , \eta(x, \overline{x}):K\times{K}\rightarrow {R^n} , \widetilde{F}:K\rightarrow {E^{n}} be a n -dimensional fuzzy number-valued function. Then the fuzzy variational-like inequality problem is to be found \overline{x}\in{K} , u\in{E^n} , such that

    (FVLI)\; \; \; \; \; \; u\eta(x, \overline{x})\succ_{c}\widetilde{0}, \; \; \; \; \; \forall{x}\in{K}.

    Consider the unconstrained fuzzy vector optimization problem

    (P)\; \; \; \; \; \min\limits_{{x}\in{K}}\widetilde{F}(x)

    where K\subseteq{R^n} is an invex set w.r.t. \eta , \widetilde{F}:K\rightarrow {E^{n}} is a n -dimensional fuzzy number-valued function.

    A point x_{0}\in{K} is called a local minimum of \widetilde{F} , if x_{0}\in{K} and there exists a \delta -neighborhood N_{\delta}(x_{0}) around x_{0} , such that for any x\in{K}\cap{N}_{\delta}(x_{0}) , \widetilde{F}(x_{0})\preceq_{c}\widetilde{F}(x) . Similarly, if x_{0}\in{K} and there exists a \delta -neighborhood N_{\delta}(x_{0}) around x_{0} , such that for any x\in{K}\cap{N}_{\delta}(x_{0}) , with x\neq{x}_{0} , \widetilde{F}(x_{0})\prec_{c}\widetilde{F}(x) , then x_{0} is called a strict local minimum point of \widetilde{F} .

    Theorems 8.1-8.3 show the relationship between the fuzzy variational-like inequality problem and the preinvexity of n -dimensional fuzzy number-valued function.

    Theorem 8.1. Let K be an invex set of R^n w.r.t. \eta , \overline{x}\in{K} , \widetilde{F}:K\rightarrow {E^{n}} a preinvex fuzzy number-valued function w.r.t. \eta and \widetilde{F} fuzzy \eta -extended directionally differentiable on K . If (\overline{x}, \widetilde{\nabla}\widetilde{F}_{\eta}(\overline{x})) is a solution of (FVLI) , then \overline{x} is a strict local optimal solution of (P) .

    Proof . Let (\overline{x}, \widetilde{\nabla}\widetilde{F}_{\eta}(\overline{x})) be a solution of (FVLI) . Suppose that there exists an x^{*}\in{K}\cap{N}_{\delta}(\overline{x}) , such that

    \begin{equation} \widetilde{F}(x^{*})\preceq_{c}\widetilde{F}(\overline{x}). \end{equation} (8.1)

    Since \widetilde{F} is a preinvex fuzzy number-valued function, it follows that

    \frac{\widetilde{F}(\overline{x}+\lambda\eta(x^{*}, \overline{x}))-\widetilde{F}(\overline{x})}{\lambda}\preceq_{c}\widetilde{F}(x^{*})-\widetilde{F}(\overline{x})\; \; \; \; \forall\lambda\in[0, 1].

    From the \eta -extended directionally differentiability of \widetilde{F} , and taking the limit as \lambda\rightarrow {0}^{+} , we find that

    \begin{equation} \widetilde{\nabla}\widetilde{F}_{\eta}(\overline{x})\eta(x^{*}, \overline{x})\preceq_{c}\widetilde{F}(x^{*})-\widetilde{F}(\overline{x}). \end{equation} (8.2)

    According to (8.1) and (8.2), we obtain

    \widetilde{\nabla}\widetilde{F}_{\eta}(\overline{x})\eta(x^{*}, \overline{x})\preceq_{c}\widetilde{0}.

    This contradicts the fact that (\overline{x}, \widetilde{\nabla}\widetilde{F}_{\eta}(\overline{x})) is a solution of (FVLI) .

    Theorem 8.2. Let K be an invex set of R^n w.r.t. \eta , \overline{x}\in{K} , \widetilde{F}:K\rightarrow {E^{n}} a preincave fuzzy number-valued function w.r.t. \eta and \widetilde{F} fuzzy \eta -extended directionally differentiable on K . If \overline{x} be a strict local optimal solution of (P) , then (\overline{x}, \widetilde{\nabla}\widetilde{F}_{\eta}(\overline{x})) is a solution of (FVLI) .

    Proof . Let \overline{x} be a strict local optimal solution of (P) . Suppose that there exists an x^{*}\in{K} , such that

    \widetilde{\nabla}\widetilde{F}_{\eta}(\overline{x})\eta(x^{*}, \overline{x})\preceq_{c}\widetilde{0}.

    Since \widetilde{F} is a preincave fuzzy number-valued function, it follows that

    \widetilde{F}(x^{*})-\widetilde{F}(\overline{x})\preceq_{c}\frac{\widetilde{F}(\overline{x}+\lambda\eta(x^{*}, \overline{x}))-\widetilde{F}(\overline{x})}{\lambda}\; \; \; \; \forall\lambda\in[0, 1].

    By the \eta -extended directionally differentiability of \widetilde{F} , and taking the limit as \lambda\rightarrow {0}^{+} , we obtain

    \widetilde{F}(x^{*})-\widetilde{F}_{\eta}(\overline{x})\preceq_{c}\widetilde{\nabla}\widetilde{F}_{\eta}(\overline{x})\eta(x^{*}, \overline{x}).

    Therefore, we have

    \widetilde{F}(x^{*})\preceq_{c}\widetilde{F}(\overline{x}).

    This contradicts the fact that \overline{x} is a strict local optimal solution of (P) .

    Theorem 8.3. Let K be an invex set of R^n w.r.t. \eta , \overline{x}\in{K} , \widetilde{F}:K\rightarrow {E^{n}} be a strictly preincave fuzzy number-valued function w.r.t. \eta and \widetilde{F} be fuzzy \eta -extended directionally differentiable on K . If \overline{x} be an optimal solution of (P) , then (\overline{x}, \widetilde{\nabla}\widetilde{F}_{\eta}(\overline{x})) is a solution of (FVLI) .

    Proof . Let \overline{x} be an optimal solution of (P) . Suppose that there exists an x^{*}\in{K} , such that

    \widetilde{\nabla}\widetilde{F}_{\eta}(\overline{x})\eta(x^{*}, \overline{x})\preceq_{c}\widetilde{0}.

    Since \widetilde{F} is a strictly preincave fuzzy number-valued function, it follows that

    \widetilde{F}(x^{*})-\widetilde{F}(\overline{x})\prec_{c}\frac{\widetilde{F}(\overline{x}+\lambda\eta(x^{*}, \overline{x}))-\widetilde{F}(\overline{x})}{\lambda}\; \; \; \; \forall\lambda\in[0, 1].

    From the \eta -extended directionally differentiability of \widetilde{F} . Taking the limit as \lambda\rightarrow {0}^{+} , we obtain

    \widetilde{F}(x^{*})-\widetilde{F}_{\eta}(\overline{x})\prec_{c}\widetilde{\nabla}\widetilde{F}(\overline{x})\eta(x^{*}, \overline{x}).

    Therefore, we have

    \widetilde{F}(x^{*})\prec_{c}\widetilde{F}(\overline{x}).

    This contradicts the fact that \overline{x} is a optimal solution of (P) .

    Consider a multiobjective fuzzy programming problem,

    (P)\begin{cases} \; \; \min\widetilde{F}(x) \\ \; \; x\in{S} = \{x\in{X}: \; \; \; \widetilde{G}_{i}(x)\preceq_{c}\widetilde{0}, \; \; \; i = 1, 2, \cdots{m}\}\\ \end{cases}

    where \widetilde{F}:K\rightarrow {E^{n}} , \widetilde{G}_{i}:K\rightarrow {E^{n}} , (i = 1, 2, \cdots{m}) , X\subset{R^{n}} is an invex set w.r.t. \eta .

    Let S be the set of the feasible solution for (P) , x_{0} is a feasible point for (P) . For a feasible point x_{0} , we denote

    I(x_{0}) = \{i\in\{1, 2, \cdots{m}\}:\; \widetilde{G}_{i}(x_{0}) = \widetilde{0}\},
    I'(x_{0}) = \{i\in\{1, 2, \cdots{m}\}:\; \widetilde{G}_{i}(x_{0})\prec_{c}\widetilde{0}\}.

    Then,

    I(x_{0})\cup{I}'(x_{0}) = \{1, 2, \cdots{m}\}.

    Let \widetilde{F} be a n -dimensional fuzzy number-valued function defined on X and \widetilde{G} be a m -dimensional fuzzy number-valued function defined on X , X\subset{R^{n}} is an invex set w.r.t. \eta . ( \widetilde{G} = ({\widetilde{G_{i}}})_{i = 1}^{m} , means \widetilde{G_{i}} is a n -dimensional fuzzy number-valued function, for each i = 1, 2, \cdots{m} ).

    Define the n -dimensional lagrangian fuzzy function as

    \widetilde{L}(x, \lambda) = \widetilde{F}(x)+\lambda^{t}\widetilde{G}(x).

    The Kuhn-Tucker stationary point of a n -dimensional fuzzy optimal problem is to find a x\in{X} , \lambda = (\lambda_{1}, \lambda_{2}, \cdots, {\lambda_{m}})\in{R}^{m} , if they exists, such that

    {\widetilde{\nabla}}_{x}\widetilde{L}(x, \lambda) = \widetilde{\nabla}\widetilde{F}_{\eta}(x)+\lambda^{t}\widetilde{\nabla}\widetilde{G}_{\eta}(x) = \widetilde{0},
    \widetilde{G}(x)\preceq_{c}\widetilde{0}, \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;
    \lambda^{t}\widetilde{G}(x) = \Sigma_{i = 1}^{m}\lambda_{i}\widetilde{G}_{i}(x) = \widetilde{0}, \; \; \; \; \; \; \; \; \; \; \;
    \lambda\geq{0}.\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \;

    In what follows, we show the connection between the Kuhn-Tucker stationary point for a n -dimensional fuzzy optimal problem and the optimal solution of (P) .

    Theorem 9.1. Let x_{0} be a feasible solution of (P) , and let \widetilde{F}:K\rightarrow {E^{n}} be a preinvex fuzzy number-valued function at x_{0} w.r.t. \eta and \widetilde{F} be fuzzy \eta -extended directionally differentiable at x_{0} on K . Let \widetilde{G}_{i}:K\rightarrow {E^{n}}(1, 2, \cdots{m}) be aprequasiinvex fuzzy number-valued function at x_{0} w.r.t. the same function \eta and \widetilde{G}_{i}(1, 2, \cdots{m}) be fuzzy \eta -extended directionally differentiable at x_{0} on K . Moreover, if there exist \lambda_{i}\geq{0}(1, 2, \cdots{m}) , such that

    \begin{cases} \widetilde{\nabla}\widetilde{F}_{\eta}(x_{0})+\Sigma_{i = 1}^{m}\lambda_{i}\widetilde{\nabla}\widetilde{G}_{i\eta}(x_{0}) = \widetilde{0} \\ \lambda_{i}\widetilde{G}_{i}(x_{0}) = \widetilde{0}\; \; \; \; \; \; 1, 2, \cdots{m}\\ \end{cases}

    Then, x_{0} is the global minimum point of (P) .

    Proof . Assume that x_{0} is not a global minimum point of (P) . Then, there exists \overline{x}\in{S} such that

    \widetilde{F}(\overline{x})\prec_{c}\widetilde{F}(x_{0}).

    Since \widetilde{F} is a preinvex fuzzy number- valued function at x_{0} , and \widetilde{F} is \eta -extended directionally differentiable at x_{0} , we have

    {\widetilde{\nabla}\widetilde{F}_{\eta}(x_{0})}\eta(\overline{x}, x_{0})\preceq_{c}\widetilde{F}(\overline{x})-\widetilde{F}(x_{0})\prec_{c}\widetilde{0}.

    Also, since \widetilde{G}_{i}(\overline{x})\preceq_{c}\widetilde{0} = \widetilde{G}_{i}(x_{0}), i\in{I}(x_{0}) and the \eta -extended directionally differentiability of \widetilde{G}_{i} at x_{0} , for any \lambda\in[0, 1] , we get

    \begin{equation} {\widetilde{\nabla}\widetilde{G}_{i\eta}(x_{0})}\eta(\overline{x}, x_{0}) = \lim\limits_{\lambda\rightarrow {0}^{+}}\frac{\widetilde{G}_{i}(x_{0}+\lambda\eta(\overline{x}, x_{0}))-\widetilde{G}_{i}(x_{0})}{\lambda}. \end{equation} (9.1)

    \widetilde{G}_{i} is a prequasiinvex fuzzy number-valued function at x_{0} w.r.t. the same function \eta , then

    \begin{equation} \widetilde{G}_{i}(x_{0}+\lambda\eta(\overline{x}, x_{0}))\preceq_{c}\max\{\widetilde{G}_{i}(x_{0}), \widetilde{G}_{i}(\overline{x})\}\preceq_{c}\widetilde{G}_{i}(x_{0}) \; \; \; \; i\in{I}(x_{0}). \end{equation} (9.2)

    By combining (9.1) and (9.2), we find that

    {\widetilde{\nabla}\widetilde{G}_{i\eta}(x_{0})}\eta(\overline{x}, x_{0})\preceq_{c}\widetilde{0} \; \; \; \; i\in{I}(x_{0}).

    According to \lambda_{i}\widetilde{G}_{i}(x_{0}) = \widetilde{0} , it follows that, \forall{i}\in{I}'(x_{0}), \lambda_{i} = 0.

    From above discussion, we have

    {\widetilde{\nabla}\widetilde{F}_{\eta}(x_{0})}\eta(\overline{x}, x_{0})+\Sigma_{i = 1}^{m}\lambda_{i}{\widetilde{\nabla}\widetilde{G}_{i\eta}(x_{0})}\eta(\overline{x}, x_{0})\prec_{c}\widetilde{0},

    which is a contradiction to the condition

    \widetilde{\nabla}\widetilde{F}_{\eta}(x_{0})+\Sigma_{i = 1}^{m}\lambda_{i}\widetilde{\nabla}\widetilde{G}_{i\eta}(x_{0}) = \widetilde{0}.

    It completes the proof.

    In this paper, we first introduce the concept of the preinvexity of n -dimensional fuzzy number-valued functions based on the partial order relation in n -dimensional fuzzy number space and their properties are discussed. In addition, some counterexamples are given to show the proposed concepts and their relationships. Then we present the criteria theorems for n -dimensional preinvex fuzzy number-valued functions under the upper or lower semicontinuity conditions, respectively. Furthermore, the two-parameter optimization problem, n -dimensional fuzzy variational-like inequality problem, and the optimality conditions related to n -dimensional preinvex fuzzy number-valued function are discussed. These results can be applied in many fields, such as fuzzy optimization, fuzzy control, engineering science, fuzzy-making problems and so on.

    The authors would like to thank the anonymous referees and the editor. This work is supported by the National Natural Science Foundation of China (12061067, 11901265).

    The authors declare that they have no conflict of interest.



    [1] T. Antczak, G-Pre-invex functions in mathematical programming, Comput. Math. Appl., 217 (2008), 212–226. DOI: 10.1016/j.cam.2007.06.026 doi: 10.1016/j.cam.2007.06.026
    [2] T. Antczak, Relationships between pre-invex concepts, Nonlinear Anal., 60 (2005), 349–367. DOI: 10.1016/S0362-546X(04)00351-7 doi: 10.1016/S0362-546X(04)00351-7
    [3] T. Antczak, Multiobjective programming under d-invexity, Eur. J. Oper. Res., 137 (2002), 28–36. DOI: 10.1016/S0377-2217(01)00092-3 doi: 10.1016/S0377-2217(01)00092-3
    [4] Y. Chalco-Cano, A. Rufián-Lizana, H. Román-Flores, R. Osuna-Gómez, A note on generalized convexity for fuzzy mappings through a linear ordering, Fuzzy Set. Syst., 231 (2013), 70–83. DOI: 10.1016/j.fss.2013.07.001 doi: 10.1016/j.fss.2013.07.001
    [5] N. Furukawa, Convexity and local Lipschitz continuity of fuzzy-valued mappings, Fuzzy Set. Syst., 93 (1998), 113–119. DOI: 10.1016/S0165-0114(96)00192-3 doi: 10.1016/S0165-0114(96)00192-3
    [6] R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Set. Syst., 18 (1986), 31–43. DOI: 10.1016/0165-0114(86)90026-6 doi: 10.1016/0165-0114(86)90026-6
    [7] Z. T. Gong, S. X. Hai, Convexity of n-dimensional fuzzy number-valued functions and its applications, Fuzzy Set. Syst., 295 (2016), 19–36. DOI: 10.1016/j.fss.2015.10.010 doi: 10.1016/j.fss.2015.10.010
    [8] S. X. Hai, Z. T. Gong, H. X. Li, Generalized differentiability for n-dimensional fuzzy number-valued functions and fuzzy optimization, Inform. Sciences, 374 (2016), 151–163. DOI: 10.1016/j.ins.2016.09.028 doi: 10.1016/j.ins.2016.09.028
    [9] J. Y. Li, M. A. Noor, On properties of convex fuzzy mappings, Fuzzy Set. Syst., 219 (2013), 113–125. DOI: 10.1016/j.fss.2012.11.006 doi: 10.1016/j.fss.2012.11.006
    [10] L. F. Li, S. Y. Liu, J. K. Zhang, On fuzzy generalized convex mapping and optimality conditions for fuzzy weakly univex mappings, Fuzzy Set. Syst., 280 (2015), 107–132. DOI: 10.1016/j.fss.2015.02.007 doi: 10.1016/j.fss.2015.02.007
    [11] Z. M. Luo, J. B. Jian, Some properties of Semi-E-Preinvex maps in Banach spaces, Nonlinear Anal., 12 (2011), 1243–1249. DOI: 10.1016/j.nonrwa.2010.09.019 doi: 10.1016/j.nonrwa.2010.09.019
    [12] H. Z. Luo, H. X. Wu, On the relationships between G-Preinvex functions and semistrictly G-Preinvex functions, J. Comput. Appl. Math., 222 (2008), 372–380. DOI: 10.1016/j.cam.2007.11.006 doi: 10.1016/j.cam.2007.11.006
    [13] S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. DOI: 10.1006/jmaa.1995.1057 doi: 10.1006/jmaa.1995.1057
    [14] S. Nanda, K. Kar, Convex fuzzy mappings, Fuzzy Set. Syst., 32 (1989), 359–367. DOI: 10.1016/0165-0114(89)90268-6 doi: 10.1016/0165-0114(89)90268-6
    [15] M. A. Noor, Fuzzy preinvex functions, Fuzzy Set. Syst., 64 (1994), 95–104. DOI: 10.1016/0165-0114(94)90011-6 doi: 10.1016/0165-0114(94)90011-6
    [16] M. Panigrahi, G. Panda, S. Nanda, Convex fuzzy mapping with differentiability and its application in fuzzy optimization, Eur. J. Oper. Res., 185 (2008), 47–62. DOI: 10.1016/j.ejor.2006.12.053 doi: 10.1016/j.ejor.2006.12.053
    [17] Y. R. Syau, On convex and concave fuzzy mappings, Fuzzy Set. Syst., 103 (1999), 163–168. DOI: 10.1016/S0165-0114(97)00210-8 doi: 10.1016/S0165-0114(97)00210-8
    [18] Y. R. Syau, Some properties of convex fuzzy mappings, Journal of Fuzzy Mathematics, 7 (1999), 151–160.
    [19] Y. R. Syau, Preinvex fuzzy mappings, Comput. Math. Appl., 37 (1999), 31–39. https://doi.org/10.1016/S0898-1221(99)00044-9 doi: 10.1016/S0898-1221(99)00044-9
    [20] Y. R. Syau, E. S. Lee, Preincavity and fuzzy decision making, Fuzzy Set. Syst., 155 (2005), 408–424. https://doi.org/10.1016/j.fss.2005.01.015 doi: 10.1016/j.fss.2005.01.015
    [21] Y. R. Syau, E. S. Lee, Preinvexity and \Phi-convexity of fuzzy mappings through a linear ordering, Comput. Math. Appl., 51 (2006), 405–418. https://doi.org/10.1016/j.camwa.2005.10.010 doi: 10.1016/j.camwa.2005.10.010
    [22] C. X. Wu, M. Ma, Fuzzy Analysis Fundamation, Beijing: Defense Industry Press, 1991 (in Chinese).
    [23] Z. Z. Wu, J. P. Xu, Generalized convex fuzzy mappings and fuzzy variational-like inequality, Fuzzy Set. Syst., 160 (2009), 1590–1619. https://doi.org/10.1016/j.fss.2008.11.031 doi: 10.1016/j.fss.2008.11.031
    [24] T. Weir, B. Mond, Preinvex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. https://doi.org/10.1016/0022-247X(88)90113-8 doi: 10.1016/0022-247X(88)90113-8
    [25] G. X. Wang, C. X. Wu, Directional derivatives and subdifferential of convex fuzzy mappings and application in convex fuzzy programming, Fuzzy Set. Syst., 138 (2003), 559–591. https://doi.org/10.1016/S0165-0114(02)00440-2 doi: 10.1016/S0165-0114(02)00440-2
    [26] C. X. Wu, M. Ma, Embedding problem of fuzzy number space: Part I, Fuzzy Set. Syst., 44 (1991), 33–38. https://doi.org/10.1016/0165-0114(91)90030-T doi: 10.1016/0165-0114(91)90030-T
    [27] X. M. Yang, K. L. Teo, X.Q. Yang, A characterization of convex function, Appl. Math. Lett., 13 (2000), 27–30. https://doi.org/10.1016/S0893-9659(99)00140-8 doi: 10.1016/S0893-9659(99)00140-8
    [28] H. Yan, J. P. Xu, A class of convex fuzzy mappings, Fuzzy Set. Syst., 129 (2002), 47–56. https://doi.org/10.1016/S0165-0114(01)00157-9 doi: 10.1016/S0165-0114(01)00157-9
    [29] X. M. Yang, W. D. Rong, Generalized Convexity and Application, Beijing: Science Press, 2015 (in Chinese).
    [30] X. M. Yang, X. Q. Yang, K. L. Teo, Explicitly B-preinvex functions, J. Comput. Appl. Math., 146 (2002), 25–36. https://doi.org/10.1016/S0377-0427(02)00415-6 doi: 10.1016/S0377-0427(02)00415-6
    [31] C. Zhang, X. H. Yuan, E. S. Lee, Convex fuzzy mapping and operations of convex fuzzy mappings, Comput. Math. Appl., 51 (2006), 143–152. https://doi.org/10.1016/j.camwa.2004.12.019 doi: 10.1016/j.camwa.2004.12.019
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1868) PDF downloads(49) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog