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1. Introduction

It is well known that the convex analysis is closely linked with the development of optimization
theory. Meanwhile, there is often uncertainty of parameters or dates in the process of the mathematical
modeling of the specific optimization problems. In order to describe these uncertain parameters
or dates in a mathematical modeling, a straightforward and effective way to think about whether it
can be represented as fuzzy number in some sense. Therefore, fuzzy convex analysis theory and its
corresponding fuzzy optimization problems have been studied by many researchers. In 1992, Nanda
and Kar [14] set up a mapping from a vector space to the space of fuzzy numbers, and they introduced
the definitions of convex fuzzy mapping, strictly convex fuzzy mapping, quasiconvex fuzzy mapping,
strictly quasiconvex fuzzy mapping and logarithmic convex fuzzy mapping, and then applied their
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results to the problems of fuzzy convex optimization. Moreover, Furukawa [5] proposed the concepts
of convex fuzzy mapping and local Lischitz continuous fuzzy mapping by using “fuzzy-max” order,
and the basis theorem of fuzzy mapping local Lischitz continuity is given. In 1999, based on the
partial order relation of interval number, Syau [17, 18] introduced the definitions of the convex fuzzy
mapping and quasiconvex fuzzy mapping, and established characterization for convex fuzzy mapping.
In 2000, Yang and Teo [27] investigated pseudoconvexity, invexity, pseudoinvexity for fuzzy mappings
by considering the concept of ordering proposed by Goetsschel and Voxman [6], and discussed their
interrelations. Meanwhile, based on the same order relation, Yan and Xu [28] introduced another
concept of convex fuzzy mapping, and studied a kind of fuzzy convex optimization problems. In
2006, the operation of convex fuzzy mapping proposed by Nanda and Kar were investigated by Zhang
and Yuan, and the important concepts of positive homogeneous fuzzy mapping, infimal convolution,
convex hull were given, and the corresponding characterization theorem was presented by using the
parameter of fuzzy number [31]. In 2008, based on the concept of differentiability of fuzzy mapping,
Panigrahi and panda [16] gave the concepts of convexity, quasiconvexity, strictly quasiconvexity, strong
quasiconvexity and pseudoconvexity of fuzzy mappings from Rn to the set of fuzzy numbers, and
derived the Karush-Kuhn-Tucker optimization condition for a constrained fuzzy optimization problem.
In 2013, Li and Noor [9] discussed the properties of the convex fuzzy mappings based on a linear
ordering of fuzzy numbers proposed by Goestschel and Voxman. Furthermore, they obtained the
judgement theorems of convex, strictly convex and semi-strictly convex fuzzy mapping under lower
and upper semicontinuity condition, respectively. In addition, convexity and other related problems
of the fuzzy mapping have been studied extensively [4, 10, 23, 25]. As a generalization of convex
fuzzy mapping, in 1994, Noor [15]introduced the concepts of preinvex fuzzy mapping and invex set,
and the minimization problem of preinvex fuzzy number-valued functions was described by using
variational inequality. In 1999, Syau in [19] showed that the preinvexity given by Noor is too
restrictive, redefined the preinvexity of η vector-valued functions, established two characterizations
for the preinvex fuzzy mappings, and applied their results to the optimization theory. After that
several investigators [1–3, 11, 12, 20, 21, 24, 30] also proposed and studied different types of the
preinvexity and the generalized preinvexity for fuzzy mappings. However, all of the above works
are discussed for 1-dimensional fuzzy number-valued functions. The main reason is that the partial
ordered relation in n-dimensional fuzzy number space, the difference between n-dimensional fuzzy
numbers, and convex analysis of high-dimensional fuzzy mapping have not been discussed. Until 2016,
Gong Zengtai et al. [7] first introduced the partially ordered relation on n-dimensional fuzzy number
space, the convexity of the n-dimensional fuzzy mapping, the differentiability, and the corresponding
optimization theory. Based on the partially ordered relation in n-dimensional fuzzy number space,
considering the convexity of vector-valued function, and combining with the characteristics of n-
dimensional fuzzy mappings, they proposed and investigated the convexity of n-dimensional fuzzy
number-valued functions, generalized convexity, upper semicontinuity, lower semicontinuity, and
discussed their interrelations, and pointed out the local minimum point of convex fuzzy mapping is
its global minimum point [8] . As a continuous research of [7, 8], in this paper, we introduce the
preinvexity of n-dimensional fuzzy number-valued functions based on the partial order relation in
n-dimensional fuzzy number space and some properties of them are discussed. In addition, some
counterexamples are given. Then we present criteria for n-dimensional preinvex fuzzy number-
valued functions under upper or lower semicontinuity conditions, respectively. Furthermore, the
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two-parameter optimization problem, n-dimensional fuzzy variational-like inequality problem and the
optimal conditions related to n-dimensional preinvex fuzzy number-valued function are discussed.

2. Preliminaries

Let Rn denote the n-dimensional Euclidean space and F(Rn) denote the set of all fuzzy subset on Rn.
Fuzzy set u ∈ F(Rn) is called a fuzzy number if u is a normal, convex fuzzy set, upper semi-continuous
and [u]0 = {x ∈ Rn, u(x) > 0} is compact. We denote En as n-dimensional fuzzy number space [22,26].

Let u ∈ F(Rn). For r ∈ (0, 1], we denote [u]r = {x ∈ Rn, u(x) ≥ r}. The addition and non-negative
scalar multiplication are defined as follows for fuzzy number u, v ∈ En, α ∈ R, k, k1, k2 ∈ R, according
to the Zadeh’s extension principle:

(1) k(u + v) = ku + kv;
(2) k1(k2u) = (k1k2)u;
(3)(k1 + k2)u = k1u + k2u when k1 ≥ 0 and k2 ≥ 0.
Given u, v ∈ En, the distance D : En × En → [0,+∞) between u and v is defined by the equation

D(u, v) = sup
r∈[0,1]

d([u]r, [v]r),

where d is the Hausdorff metric

d([u]r, [v]r) = inf{ε : [u]r ⊂ N([v]r, ε), [v]r ⊂ N([u]r, ε)}
= max{ sup

a∈[u]r
inf

b∈[v]r
‖a − b‖, sup

b∈[v]r
inf

a∈[u]r
‖a − b‖}.

For u ∈ En, we denote the centroid of [u]r, r ∈ [0, 1] as

(

∫
· · ·
∫

[u]r x1dx1dx2 · · · dxn∫
· · ·
∫

[u]r 1dx1dx2 · · · dxn
,

∫
· · ·
∫

[u]r x2dx1dx2 · · · dxn∫
· · ·
∫

[u]r 1dx1dx2 · · · dxn
, · · · ,

∫
· · ·
∫

[u]r xndx1dx2 · · · dxn∫
· · ·
∫

[u]r 1dx1dx2 · · · dxn
)

where
∫
· · ·
∫

[u]r 1dx1dx2 · · · dxn is the solidity of [u]r, r ∈ [0, 1] and
∫
· · ·
∫

[u]r xidx1dx2 · · · dxn (i =

1, 2, · · · , n) is the multiple integral of xi on measurable sets [u]r, r ∈ [0, 1], refer to [7].
Let u ∈ En, n-dimensional vector-valued function τ denote the centroid of the fuzzy number,

τ(u) = (2
∫ 1

0
r
∫
···
∫

[u]r x1dx1dx2···dxn∫
···
∫

[u]r 1dx1dx2···dxn
dr, 2
∫ 1

0
r
∫
···
∫

[u]r x2dx1dx2···dxn∫
···
∫

[u]r 1dx1dx2···dxn
dr, · · · , 2

∫ 1

0
r
∫
···
∫

[u]r xndx1dx2···dxn∫
···
∫

[u]r 1dx1dx2···dxn
dr)

where
∫ 1

0
r
∫
···
∫

[u]r xidx1dx2···dxn∫
···
∫

[u]r 1dx1dx2···dxn
dr (i = 1, 2, · · · , n) is the Lebesgue integral of r

∫
···
∫

[u]r xidx1dx2···dxn∫
···
∫

[u]r 1dx1dx2···dxn
(i =

1, 2, · · · , n) on [0, 1], refer to [7].

Definition 2.1. (see [7]) Let u, v ∈ En,C ⊆ Rn be a closed convex cone with 0 ∈ C and C , Rn. We say
that u �c v (u precedes v) if

τ(v) ∈ τ(u) + C.

The order relation �c is reflexive and transitive, and �c is a partially ordered relation on En. For
u, v ∈ En, if either u �c v, or v �c u, then we say u and v are comparable; otherwise, they are non-
comparable. If u, v ∈ E1, C = [0,+∞) ⊆ R, then Definition 2.1 coincides with Definition 2.5 from [6].
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Remark 2.1. (see [7].) Let u, v ∈ E1. If we write τ(u) = 1
2

∫ 1

0
r(u+(r) + u−(r))dr, then u �c v in the

sense of Goetschel [6] if and only if τ(u) ≤ τ(v), i.e., τ(v) ∈ τ(u) + [0,+∞). Furthermore,

τ(λ1u + λ2v) = λ1τ(u) + λ1τ(v).

for λ1, λ2 > 0, where [u]r = [u−(r), u+(r)].
Based on Definition 2.1 and the vector-valued function τ, we say u ≺c v if u �c v and τ(u) , τ(v).

Sometimes we may write v �c u(resp. v �c u) instead of u �c v(resp. u ≺c v).
Set-valued mappings Fr : K → Pk(Rn) are defined by Fr(t) = [F̃(t)]r,r ∈ [0, 1], where Pk(Rn)

denotes the power set of Rn.

Definition 2.2. (see [7].) Let F̃ : K → En, τF : K → Rn is defined by τF(t) = τ(F̃(t))

= (2
∫ 1

0
r
∫
···
∫

Fr (t) x1dx1dx2··· dxn∫
···
∫

Fr (t) 1dx1dx2··· dxn
dr, 2
∫ 1

0
r
∫
···
∫

Fr (t) x2dx1dx2··· dxn∫
···
∫

Fr (t) 1dx1dx2··· dxn
dr · · · , 2

∫ 1

0
r
∫
···
∫

Fr (t) xndx1dx2··· dxn∫
···
∫

Fr (t) 1dx1dx2··· dxn
dr).

Obviously, the fuzzy number-valued function F̃ : Em → En is said to be increasing if F̃(u) �c F̃(v),
whenever u, v ∈ Em, and u �c v.

In this article, the epigraph of F̃, which is denoted by epi(F̃), is defined as

epi(F̃) = {(t, u) : t ∈ K, u ∈ En, F̃(t) �c u}.

The generalized difference (gH-difference for short, and refer to [8]) of two fuzzy numbers ũ, ṽ ∈ En

is given by its level sets as

[̃u �g ṽ]r = cl(conv
⋃
β≥r

([̃u]β �gH [̃v]β)), ∀r ∈ [0, 1],

where the gH-difference �gH is with interval operands [̃u]β and [̃v]β.

Definition 2.3. Let F̃ : K → En be a fuzzy number-valued function on an invex set K ⊂ Rn, K , ∅,
with respect to (w.r.t.) a function η : K ×K → Rn. If for any x, y ∈ K, there exists a δ > 0, such that the
H-difference F̃(y + hη(x, y)) − F̃(y) exists for any real number h ∈ (0, δ), and ui

η ∈ En, i = 1, 2, · · · n,
such that

∇̃F̃η(y)η(x, y) = lim
h→0+

F̃(y + hη(x, y)) − F̃(y)
h

,

then F̃ is called fuzzy η-extended directionally differentiable at y. ∇̃F̃η(y)η(x, y) is called the fuzzy
η-extended directional derivative at y in the direction η(x, y)(denoted ∇̃F̃η(y) = (u1

η, u
2
η, · · · u

n
η)).

The example 4.4 illustrates the notion of fuzzy η-extended directional differentiability.

3. n-dimensional preinvex fuzzy number-valued functions

Since the space of the n-dimensional fuzzy numbers is a partially ordered set, two n-dimensional
fuzzy numbers might not be comparable. For a fuzzy number-valued function F̃ : K → En, F̃ is said to
be a comparable fuzzy number-valued function if for each pair x, y ∈ K and x , y, F̃(x) and F̃(y) could
be compared. In this paper, we assume that a fuzzy number-valued function F̃ : K → En involved is
comparable.

Refer to the definition of [29], a set K ⊆ Rn is said to be an invex set w.r.t. a function η : Rn×Rn → Rn

if x, y ∈ K implies that y + λη(x, y) ∈ K for λ ∈ [0, 1].
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Definition 3.1. Let K be an invex set of Rn w.r.t. η, and F̃ : K → En be a fuzzy number-valued function.
(1) F̃ is said to be preinvex (p.) on K if

F̃(y + λη(x, y)) �c λF̃(x) + (1 − λ)F̃(y),

for any x, y ∈ K and λ ∈ [0, 1].
(2) F̃ is said to be weakly preinvex (w.p.) on K if there exists a λ ∈ (0, 1) such that

F̃(y + λη(x, y)) �c λF̃(x) + (1 − λ)F̃(y),

for any x, y ∈ K.
(3) F̃ is said to be strictly preinvex (s.p.) on K if

F̃(y + λη(x, y)) ≺c λF̃(x) + (1 − λ)F̃(y),

for any x, y ∈ K with x , y and λ ∈ (0, 1).
(4) F̃ is said to be weakly strictly preinvex (w.s.p.) on K if there exists a λ ∈ (0, 1) such that

F̃(y + λη(x, y)) ≺c λF̃(x) + (1 − λ)F̃(y),

for any x, y ∈ K with x , y.
(5) F̃ is said to be prequasiinvex (q.p.) on K if

F̃(y + λη(x, y)) �c max{F̃(x), F̃(y)},

for any x, y ∈ K and λ ∈ [0, 1].
(6) F̃ is said to be weakly prequasiinvex (w.q.p.) on K if there exists a λ ∈ (0, 1) such that

F̃(y + λη(x, y)) �c max{F̃(x), F̃(y)},

for any x, y ∈ K.
(7) F̃ is said to be strictly prequasiinvex (s.q.p.) on K if

F̃(y + λη(x, y)) ≺c max{F̃(x), F̃(y)},

for any x, y ∈ K with x , y and λ ∈ (0, 1).
(8) F̃ is said to be weakly strictly prequasiinvex (w.s.q.p.) on K if there exists a λ ∈ (0, 1) such that

F̃(y + λη(x, y)) ≺c max{F̃(x), F̃(y)},

for any x, y ∈ K with x , y.

Remark 3.1. Let F̃ : K → En be a preinvex fuzzy number-valued function, then −F̃ is preincave on K.

Remark 3.2. Let F̃ : K → En be a strictly preinvex fuzzy number-valued function, then −F̃ is strictly
preincave on K.

Remark 3.3. In Definition 3.1, taking η(x, y) = x − y, F̃ is said to be convex, weakly convex, strictly
convex, weakly strictly convex, quasiconvex, weakly quasiconvex, strictly quasiconvex, and weakly
strictly quasiconvex on K, respectively [7].
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4. The relationships of n-dimensional preinvex fuzzy number-valued functions

Theorem 4.1. If F̃ : K → En is a preinvex fuzzy number-valued function, then F̃ is prequasiinvex on
K.

Proo f . If F̃ is preinvex on K, then we obtain

F̃(y + λη(x, y)) �c λF̃(x) + (1 − λ)F̃(y) �c max{F̃(x)F̃(y)},

for any x, y ∈ K and λ ∈ [0, 1], This completes the proof.

Theorem 4.2. If F̃ : K → En is a strictly preinvex fuzzy number-valued function, then F̃ is strictly
prequasiinvex on K.

The proof is similar to the proof of Theorem 4.1.

Example 4.1. Let K = [1, 2] ∪ [3, 4]. It is easy to prove that K is invex w.r.t. η : R2 × R2 → R2 defined
by

η(x, y) =


x − y, (x, y) ∈ [1, 2]2 ∪ [3, 4]2,

1 − y, (x, y) ∈ [3, 4] × [1, 2],
3 − y, (x, y) ∈ [1, 2] × [3, 4].

In fact, if (x, y) ∈ [1, 2]2 ∪ [3, 4]2, from the convexity of [1,2] and [3,4], we have

y + λη(x, y) = y + λ(x − y) ∈ [1, 2] ∪ [3, 4].

If (x, y) ∈ [3, 4] × [1, 2], y + λη(x, y) = y + λ(1 − y) = (1 − λ)y + λ, we can choose λ = 1 and λ = 0, it
follows that 1 ≤ (1 − λ)y + λ ≤ 2, i.e., y + λη(x, y) ∈ [1, 2] ⊂ K. Similarly, if (x, y) ∈ [1, 2] × [3, 4], we
have y + λη(x, y) ∈ [3, 4] ⊂ K.

Let the fuzzy number-valued function F̃ : K → E2 be defined by

F̃(ξ)(x1, x2) =



2x1+3ξ
6ξ , −3

2ξ ≤ x1 ≤
3
2ξ, 0 ≤ x2 ≤ 2ξ,

1, 3
2ξ ≤ x1 ≤ 0, 0 ≤ x2 ≤ 2ξ,

√
9ξ2−3ξx1

3ξ , 0 ≤ x1 ≤ 3ξ, 0 ≤ x2 ≤ 2ξ,

0, otherwise.

and C = R2+ ⊆ R2, where R2+ = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0}. Then

Fr(ξ) = {(x1, x2) : 3ξr −
3
2
ξ ≤ x1 ≤ 3ξ(1 − r2), 0 ≤ x2 ≤ 2ξ}, r ∈ [0, 1].

For any ξ ∈ [1, 2] ∪ [3, 4], from Definition 2.2, it follows that

τ(F̃(ξ)) = (ξ, ξ).

Therefore, for any ξ1, ξ2 ∈ [1, 2] ∪ [3, 4] and (ξ1, ξ2) ∈ [1, 2]2 ∪ [3, 4]2, and for any λ ∈ [0, 1], we have
ξ2 + λη(ξ1, ξ2) = ξ2 + λ(ξ1 − ξ2). Thus,

τ(F̃(ξ2 + λη(ξ1, ξ2))) = (ξ2 + λη(ξ1, ξ2), ξ2 + λη(ξ1, ξ2)) = (ξ2 + λ(ξ1 − ξ2), ξ2 + λ(ξ1 − ξ2))
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= (λξ1 + (1 − λ)ξ2, λξ1 + (1 − λ)ξ2) = λ(ξ1, ξ1) + (1 − λ)(ξ2, ξ2) = λτ(F̃(ξ1)) + (1 − λ)τ(F̃(ξ2)).

In particular, from [7], we get λτ(F̃(ξ1)) + (1− λ)τ(F̃(ξ2)) = τ(λF̃(ξ1) + (1− λ)F̃(ξ2)). We find that, for
any ξ1, ξ2 ∈ [1, 2] ∪ [3, 4] and (ξ1, ξ2) ∈ [1, 2]2 ∪ [3, 4]2, λ ∈ [0, 1],

τ(λF̃(ξ1) + (1 − λ)F̃(ξ2))) = τ(F̃(ξ2 + λη(ξ1, ξ2))) ∈ τ(F̃(ξ2 + λη(ξ1, ξ2))) + C,

i.e., F̃(ξ2 + λη(ξ1, ξ2)) �c λF̃(ξ1) + (1 − λ)F̃(ξ2).
For any ξ1, ξ2 ∈ [1, 2] ∪ [3, 4] and (ξ1, ξ2) ∈ [3, 4] × [1, 2],

ξ2 + λη(ξ1, ξ2) = ξ2 + λη(ξ1, ξ2) = ξ2 + λ(1 − ξ2),

and (ξ1, ξ1) ∈ (1, 1) + C, it follows that

τ(F̃(ξ2 + λη(ξ1, ξ2))) = (ξ2 + λ(1 − ξ2), ξ2 + λ(1 − ξ2)) = λ(1, 1) + (1 − λ)(ξ2, ξ2)

�c λτ(F̃(ξ1)) + (1 − λ)τ(F̃(ξ2)) = τ(λF̃(ξ1) + (1 − λ)F̃(ξ2)))

i.e., F̃(t2 + λη(t1, t2)) �c λF̃(t1) + (1 − λ)F̃(t2).
For any ξ1, ξ2 ∈ [1, 2] ∪ [3, 4], and(ξ1, ξ2) ∈ [1, 2] × [3, 4],

ξ2 + λη(ξ1, ξ2) = ξ2 + λ(3 − ξ2) = 3λ + (1 − λ)ξ2

and (3, 3) ∈ (ξ1, ξ1) + C, it follows that

τ(F̃(ξ2 + λη(ξ1, ξ2))) = (ξ2 + λ(3 − ξ2), ξ2 + λ(3 − ξ2)) = λ(3, 3) + (1 − λ)(ξ2, ξ2)

�c λτ(F̃(ξ1)) + (1 − λ)τ(F̃(ξ2)) = τ(λF̃(ξ1) + (1 − λ)F̃(ξ2))

i.e., F̃(ξ2 + λη(ξ1, ξ2)) �c λF̃(ξ1) + (1 − λ)F̃(ξ2). Above all, we denote K1 = [1, 2],K2 = [3, 4],K =

K1 ∪ K2, then
(1) F̃ is preinvex on K1 w.r.t. η, but it is not strictly preinvex.
(2) F̃ is preinvex on K2 w.r.t. η, but it is not strictly preinvex.
(3) F̃ is not preinvex on K w.r.t. η. Since F̃(ξ2 + λη(ξ1, ξ2)) �c λF̃(ξ1) + (1− λ)F̃(ξ2), for ξ1, ξ2 ∈ K1,

or ξ1, ξ2 ∈ K2, or ξ1 ∈ K2, ξ2 ∈ K1. However, F̃(ξ2 + λη(ξ1, ξ2)) �c λF̃(ξ1) + (1 − λ)F̃(ξ2), for
ξ1 ∈ K1, ξ2 ∈ K2. Also, it is not strictly preinvex.

Example 4.2. Let K = [1, 2] ∪ [3, 4]. It is an invex set w.r.t. η : R2 × R2 → R2, η(x, y) is the same as
Example 4.1. Let the fuzzy number-valued function F̃ : K → E2 be defined by

F̃(ξ)(x1, x2) =


√

1 − ( x1
ln 2ξ )

2, 0 ≤ x1 ≤ ln(2ξ), 0 ≤ x2 ≤ 3,

0, otherwise,

and C = R2+ ⊆ R2. Then, Fr(ξ) = {(x1, x2) : 0 ≤ x1 ≤ ln 2ξ
√

1 − r2, 0 ≤ x2 ≤ 3}, r ∈ [0, 1]. It is not
difficult to calculate, for any ξ ∈ [1, 2] ∪ [3, 4],

τ(F̃(ξ)) = (
ln 2ξ

3
,

3
2

).
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Thus, if for any ξ1, ξ2 ∈ [1, 2]∪[3, 4] and (ξ1, ξ2) ∈ [1, 2]2∪[3, 4]2, we have ξ2+λη(ξ1, ξ2) = ξ2+λ(ξ1−ξ2),
In addition, for any λ ∈ [0, 1],

ln(2ξ2 + λ(2ξ1 − 2ξ2)) ≤ max{ln 2ξ1, ln 2ξ2}.

Without loss of generality, we assume that ln(2ξ2 + λ(2ξ1 − 2ξ2)) ≤ max{ln 2ξ1, ln 2ξ2} = ln 2ξ2, Thus

max{τ(F̃(ξ1)), τ(F̃(ξ2))} = max{(
ln 2ξ1

3
,

3
2

), (
ln 2ξ2

3
,

3
2

)} = (
ln 2ξ2

3
,

3
2

)

∈ (
ln(2ξ2 + λ(2ξ1 − 2ξ2))

3
,

3
2

) + C = τ(F̃(ξ2 + λη(ξ1, ξ2))) + C.

i.e., F̃(ξ2 + λη(ξ1, ξ2)) �c max{F̃(ξ1), F̃(ξ2)}. However, for any ξ1, ξ2 ∈ [1, 2] ∪ [3, 4] and (ξ1, ξ2) ∈
[1, 2]2 ∪ [3, 4]2, λ ∈ [0, 1], we have ln(2ξ2 + λ(2ξ1 − 2ξ2)) ≥ λ ln 2ξ1 + (1 − λ) ln 2ξ2. Taking 2ξ1 =

2, 2ξ2 = e, λ = 1
2 , then

τ(F̃(ξ2 + λη(ξ1, ξ2))) = (
ln(1 + e

2 )
3

,
3
2

) ∈
1
2

(
ln 2
3
,

3
2

) +
1
2

(
ln e

3
,

3
2

) + C = λτ(F̃(ξ1)) + (1− λ)τ(F̃(ξ2)) + C.

i.e., F̃(ξ2 + λη(ξ1, ξ2)) �c λ F̃(ξ1) + (1 − λ)F̃(ξ2).
If ξ1, ξ2 ∈ [1, 2]∪[3, 4] and (ξ1, ξ2) ∈ [3, 4]×[1, 2], then ξ2+λη(ξ1, ξ2) = ξ2+λ(1−ξ2) ≤ ξ2+λ(ξ1−ξ2).

In addition, for any λ ∈ [0, 1],

ln(2ξ2 + λ(2ξ1 − 2ξ2)) ≤ max{ln 2ξ1, ln 2ξ2} = ln 2ξ1

Thus, max{τ(F̃(ξ1)), τ(F̃(ξ2))} ∈ τ(F̃(ξ2 + λη(ξ1, ξ2)) + C. i.e., F̃(ξ2 + λη(ξ1, ξ2)) �c max{F̃(ξ1), F̃(ξ2)}.
For any ξ1, ξ2 ∈ [1, 2] ∪ [3, 4] and (ξ1, ξ2) ∈ [3, 4] × [1, 2], for any λ ∈ [0, 1], ln(2ξ2 + λ(2 − 2ξ2)) ≤
λ ln 2ξ1 + (1 − λ) ln 2ξ2, it follows that,

λτ(F̃(ξ1)) + (1 − λ)τ(F̃(ξ2)) = λ(
ln 2ξ1

3
,

3
2

) + (1 − λ)(
ln 2ξ2

3
,

3
2

)

∈ (
ln(2ξ2 + λ(2 − 2ξ2))

3
,

3
2

) + C = τ(F̃(ξ2 + λη(ξ1, ξ2)) + C,

i.e., F̃(ξ2 + λη(ξ1, ξ2)) �c λF̃(ξ1) + (1 − λ)F̃(ξ2).
If ξ1, ξ2 ∈ [1, 2]∪ [3, 4] and (ξ1, ξ2) ∈ [1, 2]× [3, 4], then ξ2 + λη(ξ1, ξ2) = ξ2 + λ(3− ξ2). It is easy to

verify that F̃(ξ2 + λη(ξ1, ξ2)) �c max{F̃(ξ1), F̃(ξ2)}. However, when 2ξ1 = 2, 2ξ2 = 7, λ = 4
5 , we obtain

τ(F̃(ξ2 + λη(ξ1, ξ2))) = (
ln 31

5

3
,

3
2

) ∈
1
5

(
ln 6
3
,

3
2

) +
4
5

(
ln 2
3
,

3
2

) + C = λτ(F̃(ξ1)) + (1 − λ)τ(F̃(ξ2)) + C.

i.e. F̃(ξ2 + λη(ξ1, ξ2)) �c λ F̃(ξ1) + (1 − λ)F̃(ξ2).
Above all, we denote K1 = [1, 2],K2 = [3, 4],K = K1 ∪ K2, then F̃ is prequasiinvex on K w.r.t. η,

but F̃ is not preinvex on K w.r.t. η. Since we have F̃(ξ2 + λη(ξ1, ξ2)) �c λF̃(ξ1) + (1 − λ)F̃(ξ2), for
ξ1 ∈ K2, ξ2 ∈ K1 and F̃(ξ2 + λη(ξ1, ξ2)) �c λF̃(ξ1) + (1 − λ)F̃(ξ2), for ξ1, ξ2 ∈ K1, or ξ1, ξ2 ∈ K2, or
ξ1 ∈ K1, ξ2 ∈ K2.
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Example 4.3. Let K = [−2,−1]∪ [1, 3]. It is easy to prove that K is an invex set w.r.t. η : R2×R2 → R2

defined by

η(x, y) =


x − y, (x, y) ∈ [−2,−1]2 ∪ [1, 3]2,

−2 − y, (x, y) ∈ [1, 3] × [−2,−1],
1 − y, (x, y) ∈ [−2,−1] × [1, 3]

Let a fuzzy number-valued function F̃ : K → E2 be defined by

F̃(ξ)(x1, x2) =


1
eξ

√
e2ξ − x1

2 − x2
2, 1 ≤ ξ ≤ 3, x1

2 + x2
2 ≤ e2ξ, x1 ≥ 0, x2 ≥ 0

1, −2 ≤ ξ ≤ −1,−1 ≤ x1 ≤ 0,−2 ≤ x2 ≤ 0
0, otherwise.

and C = R2+ ⊆ R2. Then,
Fr(ξ) = {(x1, x2) : −1 ≤ x1 ≤ 0,−2 ≤ x2 ≤ 0}, when −2 ≤ ξ ≤ −1;
Fr(ξ) = {(x1, x2) : x1

2 + x2
2 ≤ e2ξ(1 − r2), x1 ≥ 0, x2 ≥ 0}, when 1 ≤ ξ ≤ 3.

According to Definition 2.2, we obtain
τ(F̃(ξ)) = (−1

2 ,−1), when −2 ≤ ξ ≤ −1;
τ(F̃(ξ)) = ( 8eξ

9π ,
8eξ
9π ), when 1 ≤ ξ ≤ 3.

Then, we have
max{τ(F̃(ξ1)), τ(F̃(ξ2))} ∈ τ(F̃(ξ2 + λη(ξ1, ξ2))) + C,

for any ξ1, ξ2 ∈ [−2,−1] ∪ [1, 3] and for any λ ∈ [0, 1]. i.e., F̃(ξ2 + λη(ξ1, ξ2)) �c max{F̃(ξ1), F̃(ξ2)}.
Above all, we denote K1 = [−2,−1],K2 = [1, 3],K = K1 ∪ K2, then F̃ is prequasiinvex on K

w.r.t. η, but F̃ is not strictly prequasiinvex on K w.r.t. η. In fact, since we have F̃(ξ2 + λη(ξ1, ξ2)) ≺c

max{F̃(ξ1), F̃(ξ2)}, for any ξ1 ∈ K2, ξ2 ∈ K1, ξ2 + λη(ξ1, ξ2) ∈ K1 or ξ1, ξ2 ∈ K2, ξ2 + λη(ξ1, ξ2) ∈ K2

or ξ1 ∈ K1, ξ2 ∈ K2, ξ2 + λη(ξ1, ξ2) ∈ K2, with ξ1 , ξ2 and for any λ ∈ (0, 1). However, τ(F̃(ξ2 +

λη(ξ1, ξ2))) = max{τ(F̃(ξ1)), τ(F̃(ξ2))}, for ξ1, ξ2 ∈ K1, ξ2 + λη(ξ1, ξ2) ∈ K1 with ξ1 , ξ2.
In order to discuss the relationships of preinvex and prequasiinvex fuzzy number-valued functions,

we get the following special function η and the fuzzy number-valued functions according to the
discussion of [13].

Let η : Rn × Rn → Rn, we say that a function η satisfies the condition C if

C1 : η(y, y + λη(x, y)) = −λη(x, y),

C2 : η(x, y + λη(x, y)) = (1 − λ)η(x, y),

for any x, y ∈ Rn, λ ∈ [0, 1] (refer to [13]).
A fuzzy number-valued function F̃ : K → En satisfies Condition D, if K ⊂ Rn is an invex set w.r.t.

η : Rn × Rn → Rn, for any x, y ∈ K, we have

F̃(y + η(x, y)) �c F̃(x).

In order to include singletons in Rn as an invex sets, we assume that for all x ∈ Rn,

η(x, x) = O,

where O being the origin of Rn.
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Example 4.4. Let K = [−1, 1
2 ]∪ [1

4 , 1]. It is easy to prove that K is invex w.r.t. η : R2×R2 → R2 defined
by

η(x, y) =


x − y, (x, y) ∈ [−1, 1

2 ]2 ∪ [ 1
4 , 1]2,

−1 − y, (x, y) ∈ [1
4 , 1] × [−1, 1

2 ],
1
4 − y, (x, y) ∈ [−1, 1

2 ] × [ 1
4 , 1].

In fact, if (x, y) ∈ [−1, 1
2 ]2 ∪ [ 1

4 , 1]2, from the convexity of [−1, 1
2 ] and [ 1

4 , 1], we have

y + λη(x, y) = y + λ(x − y) ∈ [−1,
1
2

] ∪ [
1
4
, 1].

If (x, y) ∈ [ 1
4 , 1]× [−1, 1

2 ], y + λη(x, y) = y + λ(1− y) = (1− λ)y + λ, we can choose λ = 1 and λ = 0), it
follows that −1 ≤ (1 − λ)y + λ ≤ 1

2 , i.e., y + λη(x, y) ∈ [−1, 1
2 ] ⊂ K. Similarly, if (x, y) ∈ [−1, 1

2 ] × [1
4 , 1],

we have y + λη(x, y) ∈ [ 1
4 , 1] ⊂ K.

Let the fuzzy-number-valued function F̃ : K → E2 be defined as

F̃(ξ)(x1, x2) =


x1+1+|ξ|

1+|ξ|
, −1 − |ξ| ≤ x1 ≤ 0, −|ξ| ≤ x2 ≤ |ξ|,

−x1+1+|ξ|

1+|ξ|
, 0 ≤ x1 ≤ 1 + |ξ|, −|t| ≤ x2 ≤ |ξ|,

0, otherwise.

Then, for any r ∈ [0, 1],

Fr(ξ) = {(x1, x2) : (−1 + r)(1 + |ξ|) ≤ x1 ≤ (1 − r)(1 + |ξ|), −|ξ| ≤ x2 ≤ |ξ|}

= [(−1 + r)(1 + |ξ|), (1 − r)(1 + |ξ|)] × [−|ξ|, |ξ|].

Since

[F̃(hη(x, y)) 	g F̃(0)]r

= [infβ≥r min{(−1 + β)|hη(x, y)|, (1 − β)|hη(x, y)|}, supβ≥r max{(−1 + β)|hη(x, y)|, (1 − β)|hη(x, y)|}]
×[infβ≥r min{−|hη(x, y)|, |hη(x, y)|}, supβ≥r max{−|hη(x, y)|, |hη(x, y)|}]
= [(−1 + r)|hη(x, y)|, (1 − r)|hη(x, y)|] × [−|hη(x, y)|, |hη(x, y)|].

Thus, [ F̃(0+hη(x,y))	gF̃(0)
h ]r =

[F̃(hη(x,y))	gF̃(0)]r

h = [−1 + r, 1 − r]|η(x, y)| × [−1, 1]|η(x, y)| for any r ∈ [0, 1].
Assume that

ũ(x1, x2) =


x1 + 1, −1 ≤ x1 ≤ 0, −1 ≤ x2 ≤ 1,
−x1 + 1, 0 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1,
0, otherwise,

we have [̃u]r = [−1 + r, 1 − r] × [−1, 1] for any r ∈ [0, 1]. Then,

∇̃F̃η(0)η(x, y) = lim
h→0+

F̃(0 + hη(x, y)) − F̃(0)
h

= |η(x, y)|̃u

F̃ is fuzzy η-extended directionally differentiable at 0, and ∇̃F̃η(0) is the fuzzy η-extended directional
derivative at 0 in the direction η(x, y)(denoted ∇̃F̃η(0) = (−1)̃u.
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Theorem 4.3. Let K ⊂ Rn be an invex set w.r.t. η, η satisfy Condition C, and F̃ : K → En be a preinvex
fuzzy number-valued function. If F̃ is weakly strictly preinvex on K, i.e., there exists a λ0 ∈ (0, 1) such
that

F̃(y + λ0η(x, y)) ≺c λ0F̃(x) + (1 − λ0)F̃(y), (4.1)

for any x, y ∈ K, with x , y, then F̃ is strictly preinvex on K.

Proo f . Assume that F̃ is not strictly preinvex on K, then x, y ∈ K with x , y and for any λ ∈ (0, 1)
such that

F̃(y + λη(x, y)) �c λF̃(x) + (1 − λ)F̃(y). (4.2)

Choose λ1, λ2 ∈ (0, 1) such that λ = λ0λ1 + (1 − λ0)λ2 and by taking x = y + λ1η(x, y),y = y + λ2η(x, y),
from Condition C, we have

y + λ0η(x, y) = y + λ2η(x, y) + λ0η(y + λ1η(x, y), y + λ2η(x, y))
= y + λ2η(x, y) + λ0(λ1 − λ2)η(x, y)
= y + (λ0λ1 + (1 − λ0)λ2)η(x, y) = y + λη(x, y).

From the preinvexity of F̃, we find that

F̃(x) �c λ1F̃(x) + (1 − λ1)F̃(y), F̃(y) �c λ2F̃(x) + (1 − λ2)F̃(y).

From (4.1), it follows that

F̃(y + λη(x, y)) = F̃(y + λ0η(x, y)) ≺c λ0F̃(x) + (1 − λ0)F̃(y)

�c λ0[λ1F̃(x) + (1 − λ1)F̃(y)] + (1 − λ0)[λ2F̃(x) + (1 − λ2)F̃(y)]

= [λ0λ1 + (1 − λ0)λ2]F̃(x) + [1 − λ0λ1 − (1 − λ0)λ2]F̃(y)

= λF̃(x) + (1 − λ)F̃(y).

It is a contradiction to (4.2), i.e., F̃ is strictly preinvex on K.

Lemma 4.1. Let K ⊂ Rn be an invex set w.r.t. η, η satisfy Condition C, and F̃ : K → En satisfy
Condition D. If there exists a α ∈ (0, 1) such that

F̃(y + αη(x, y)) �c αF̃(x) + (1 − α)F̃(y),

for any x, y ∈ K, then the set

A = {λ ∈ [0, 1] : F̃(y + λη(x, y)) �c λF̃(x) + (1 − λ)F̃(y)}

is dense in [0, 1].

Proo f . It is obvious that 0 ∈ A, from Condition D, it follows that 1 ∈ A, i.e., A , ∅ and A is not a
single point set. Suppose that A is not dense in [0, 1], then there exists a λ0 ∈ (0, 1) such that U∩A = ∅,

and where U is a δ-neighborhood Nδ(λ0) of λ0. Now, we denote

λ1 = inf{λ ∈ A : λ ≥ λ0}, λ2 = sup{λ ∈ A : λ ≤ λ0},
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then, we have 0 ≤ λ2 ≤ λ1 ≤ 1. Due to α, (1 − α) ∈ (0, 1), we can choose u1, u2 ∈ A such that

max{α(u1 − u2), (1 − α)(u1 − u2)} < λ1 − λ2,

and take u1 ≥ λ1, u2 ≤ λ2. Let λ = α u1 + (1 − α)u2, from Condition C, for any x, y ∈ K, we have

y + u2η(x, y) + αη(y + u1η(x, y), y + u2η(x, y)) = y + (u2 + α(u1 − u2))η(x, y) = y + λη(x, y).

According to the fact that u1, u2 ∈ A, we find that

f (y + λη(x, y)) = f (y + u2η(x, y) + αη(y + u1η(x, y), y + u2η(x, y)))
�c α f (y + u1η(x, y)) + (1 − α) f (y + u2η(x, y))
�c α(u1 f (x) + (1 − u1) f (y)) + (1 − α)(u2 f (x) + (1 − u2) f (y))

= λ f (x) + (1 − λ) f (y).

Then, it follows that λ ∈ A. If λ ≥ λ0, from the definition of λ1, we get λ1 ≤ λ. In addition, we have

λ − u2 = α(u1 − u2) < λ1 − λ2,

moreover,
λ1 > λ − u2 + λ2 ≥ λ − λ2 + λ2 = λ.

It is a contradiction. Similar to that λ ≤ λ0. Thus, A is dense in [0, 1].

Theorem 4.4. Let K ⊂ Rn be an invex set w.r.t. η, η satisfy Condition C, F̃ : K → En satisfy Condition
D, and F̃ be a prequasiinvex fuzzy number-valued function. If F̃ is weakly preinvex on K, i.e., there
exists a λ0 ∈ (0, 1) such that

F̃(y + λ0η(x, y)) ≺c λ0F̃(x) + (1 − λ0)F̃(y) (4.3)

for any x, y ∈ K, then F̃ is preinvex on K.

Proo f . Assume that F̃ is not preinvex on K, then for x, y ∈ K, there exists a λ ∈ [0, 1] such that

F̃(y + λη(x, y)) �c λF̃(x) + (1 − λ)F̃(y) (4.4)

If F̃(x) = F̃(y), then we have F̃(y + λη(x, y)) �c F̃(x). Choose λ1, λ2 ∈ [0, 1], such that λ =

λ0λ1+(1−λ0)λ2 and by taking x = y+λ1η(x, y), y = y+λ2η(x, y), from Condition C, we get y+λη(x, y) =

y + λ0η(x, y). From the prequasiinvexity of F̃, it follows that

F̃(x) �c max{F̃(x), F̃(y)}, F̃(y) �c max{F̃(x), F̃(y)}.

From (4.3), we find that

F̃(y + λη(x, y)) = F̃(y + λ0η(x, y)) ≺c λ0F̃(x) + (1 − λ0)F̃(y) �c max{F̃(x), F̃(y)} = F̃(x),

which is a contradiction to (4.4), i.e., F̃ is preinvex on K.
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Otherwise, let F̃(x) ≺c F̃(y). Since F̃ is weakly preinvex on K, then, according to Lemma 4.1, there
exists a λ1 ∈ A with λ1 < λ, such that

λ1F̃(x) + (1 − λ1)F̃(y) ≺c F̃(y + λη(x, y)).

Thus,
F̃(y + λ1η(x, y)) �c λ1F̃(x) + (1 − λ1)F̃(y) ≺c F̃(y + λη(x, y)). (4.5)

Choose λ2 = λ−λ1
1−λ1

and by taking x = x, y = y + λ1η(x, y), then from Condition C, we have

y + λ2η(x, y) = y + λ1η(x, y) + λ2η(x, y + λ1η(x, y))
= y + λ1η(x, y) + λ2(1 − λ1)η(x, y) = y + λη(x, y).

If F̃(x) �c F̃(y), then from the prequasiinvexity of F̃, we obtain

F̃(y + λη(x, y)) = F̃(y + λ2η(x, y)) �c max{F̃(x), F̃(y)} = F̃(y) = F̃(y + λ1η(x, y)),

which is a contradiction to (4.5), i.e., F̃ is preinvex on K.
If F̃(x) �c F̃(y), then from the prequasiinvexity of F̃, we obtain

F̃(y + λη(x, y)) = F̃(y + λ2η(x, y)) �c max{F̃(x), F̃(y)} = F̃(x) = F̃(x) ≺c λF̃(x) + (1 − λ)F̃(y).

which is a contradiction to (4.4), i.e., F̃ is preinvex on K.
According to Theorem 4.3 and Theorem 4.4, we have the following conclusion.

Theorem 4.5. Let K ⊂ Rn be an invex set w.r.t. η, η satisfy Condition C, F̃ : K → En satisfy Condition
D, and F̃ be a prequasiinvex fuzzy number-valued function. If F̃ is weakly strictly preinvex on K, i.e.,
there exists a λ0 ∈ (0, 1) such that

F̃(y + λ0η(x, y)) ≺c λ0F̃(x) + (1 − λ0)F̃(y)

for any x, y ∈ K with x , y, then F̃ is strictly preinvex on K.

Theorem 4.6. Let K ⊂ Rn be an invex set w.r.t. η, η satisfy Condition C, and F̃ : K → En be a
prequasiinvex fuzzy number-valued function. If F̃ is weakly strictly prequasiinvex on K, i.e., there
exists a λ0 ∈ (0, 1) such that

F̃(y + λ0η(x, y)) ≺c max{F̃(x), F̃(y)} (4.6)

for any x, y ∈ K with x , y, then F̃ is strictly prequasiinvex on K.

Proo f . Assume that F̃ is not strictly prequasiinvex on K. Then for x, y ∈ K with x , y, there exists a
λ ∈ (0, 1) such that

F̃(y + λη(x, y)) �c max{F̃(x), F̃(y)}. (4.7)

Choose λ1, λ2 ∈ (0, 1), such that λ = λ0λ1 + (1−λ0)λ2 and by taking x = y +λ1η(x, y), y = y +λ2η(x, y),
then, using Condition C, we have y + λ0η(x, y) = y + λη(x, y). According to the prequasiinvex of F̃, it
follows that

F̃(x) �c max{F̃(x), F̃(y)}, F̃(y) �c max{F̃(x), F̃(y)}.
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From (4.6), we get

F̃(y + λη(x, y)) = F̃(y + λ0η(x, y)) ≺c max{F̃(x), F̃(y)} �c max{F̃(x), F̃(y)},

which is a contradiction to (4.7). i.e., F̃ is strictly prequasiinvex on K.
It is similar to Theorem 4.5, we have the following result.

Theorem 4.7. Let K ⊂ Rn be an invex set w.r.t. η, η satisfy Condition C, F̃ : K → En satisfy Condition
D, and F̃ be a strictly prequasiinvex fuzzy number-valued function. If F̃ is weakly strictly preinvex on
K, i.e., there exists a λ0 ∈ (0, 1) such that

F̃(y + λ0η(x, y)) ≺c λ0F̃(x) + (1 − λ0)F̃(y)

for any x, y ∈ K with x , y, then F̃ is strictly preinvex on K.
The above relationships of preinvexity, weak preinvexity, strict preinvexity, weakly strict preinvexity,

prequasiinvexity, weak prequasiinvexity, strict prequasiinvexity, weakly strict prequasiinvexity can be
summarized in the following diagram (D refers to Condition D, C refers to Condition C).

5. Properties of n-dimensional preinvex, prequasiinvex fuzzy number-valued functions

In this section, we introduce the properties of n-dimensional preinvex, prequasiinvex fuzzy number-
valued functions, and their applications in the fuzzy optimization problems.

Theorem 5.1. Let K be an invex set of Rn w.r.t. η, and F̃ : K → En be a preinvex fuzzy number-valued
function. Then the epigraph

epi(F̃) = {(x, u) : x ∈ K, u ∈ En, F̃(x) �c u} (5.1)

of F̃ is an invex set of K × En w.r.t. the function

η′ : epi(F̃) × epi(F̃)→ K × En,

defined by
η′((x, u), (y, v)) = (η(x, y), u + (−1)v) (5.2)

for (x, u), (y, v) ∈ epi(F̃) with x, y ∈ K and u, v ∈ En. Here epi(F̃) is an invex set of K × En means that
(y, v) + λη′((x, u), (y, v)) ∈ epi(F̃) for any (x, u), (y, v) ∈ epi(F̃) with x, y ∈ K.

Proo f . If epi(F̃) is the empty set or a singleton, then it is obvious that it is an invex set w.r.t. η′. Let
(x, u), (y, v) ∈ epi(F̃), where x, y ∈ K and u, v ∈ En. Then, from (5.1), we have

F̃(x) �c u and F̃(y) �c v.

From the preinvexity of F̃, for any λ ∈ [0, 1], we have

F̃(y + λη(x, y)) �c λF̃(x) + (1 − λ)F̃(y) �c λu + (1 − λ)v,

which implies that for any λ ∈ [0, 1],

(y, v) + λη′((x, u), (y, v)) = (y, v) + λ(η(x, y), u + (−1)v) = (y + λη(x, y), λu + (1 − λ)v) ∈ epi(F̃).

This proves that epi(F̃) is an invex set of K × En w.r.t. the function η′ defined by (5.2).
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Theorem 5.2. Let F̃ : K → El be a preinvex fuzzy number-valued function.
(1) If G̃ : El → En is convex and increasing, then G̃◦ F̃ : K → En is a preinvex fuzzy number-valued

function;
(2) If G̃ : El → En is a positively homogeneous, increasing and sub-addition, then G̃ ◦ F̃ : K → En

is a preinvex fuzzy number-valued function.

Proo f . Let x, y ∈ K, λ ∈ [0, 1], since F̃ : K → El is a preinvex, we have

F̃(y + λη(x, y)) �c λF̃(x) + (1 − λ)F̃(y).

(1) Since G̃ : El → En is an increasing, it follows that

G̃(F̃(y + λη(x, y))) �c G̃(λF̃(x) + (1 − λ)F̃(y)).

In addition, since G̃ is a convex fuzzy mapping, it follows that

G̃(λF̃(x) + (1 − λ)F̃(y)) �c λG̃(F̃(x)) + (1 − λ)G̃(F̃(y)).

From the above arguments, we have for x, y ∈ K and λ ∈ [0, 1],

G̃(F̃(y + λη(x, y))) �c λG̃(F̃(x)) + (1 − λ)G̃(F̃(y)),

which proves that G̃ ◦ F̃ : K → En is a preinvex mapping on K.
(2) Since G̃ : El → En is a positively homogeneous, increasing and sub-addition fuzzy mapping, it

follows that

G̃(F̃(y + λη(x, y))) �c G̃(λF̃(x) + (1 − λ)F̃(y))

�c G̃(λF̃(x)) + G̃((1 − λ)F̃(y))

= λG̃(F̃(x)) + (1 − λ)G̃(F̃(y)).

Theorem 5.3. Let F̃ j : K → En, j = 1, 2 · · · l be preinvex fuzzy number-valued functions. For
k1, k2, · · · , kl > 0, The fuzzy mapping F̃ : K → En defined by

F̃(x) =

l∑
j=1

k jF̃ j(x), f or each x ∈ K (5.3)

is a preinvex fuzzy number-valued function.

Proo f . Since F̃ j : K → En, j = 1, 2 · · · l is preinvex for each j = 1, 2 · · · l, we have for x, y ∈ K and
λ ∈ [0, 1],

F̃ j(y + λη(x, y)) �c λF̃ j(x) + (1 − λ)F̃ j(y).

From (5.3), it follows that for x, y ∈ K and λ ∈ [0, 1],

F̃(y + λη(x, y)) = (
l∑

j=1

k jF̃ j)(y + λη(x, y))
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=

l∑
j=1

k jF̃ j(y + λη(x, y))

�c

l∑
j=1

k j(λF̃ j(x) + (1 − λ)F̃ j(y))

= λ

l∑
j=1

k jF̃ j(x) + (1 − λ)
l∑

j=1

k jF̃ j(y)

= λ(
l∑

j=1

k jF̃ j)(x) + (1 − λ)(
l∑

j=1

k jF̃ j)(y)

= λF̃(x) + (1 − λ)F̃(y),

which proves that F̃ : K → En is a preinvex fuzzy number-valued function.

Theorem 5.4. Let F̃ : K → En be a fuzzy number-valued function. Then F̃ is preinvex w.r.t. η if and
only if F̃(y + λη(x, y)) ≺c λu + (1 − λ)v for any x, y ∈ K satisfying F̃(x) ≺c u, F̃(y) ≺c v and λ ∈ [0, 1].

Proo f . Necessity is easy to prove.
Conversely, let for any ε̃ �c 0̃, we have F̃(x) ≺c F̃(x) + ε̃, F̃(y) ≺c F̃(y) + ε̃, such that

F̃(y + λη(x, y)) ≺c λ(F̃(x) + ε̃) + (1 − λ)(F̃(y) + ε̃)

= λF̃(x) + (1 − λ)F̃(y) + ε̃.

Since ε̃ is an arbitrary positive fuzzy number, then for any λ ∈ [0, 1], we obtain

F̃(y + λη(x, y)) �c λF̃(x) + (1 − λ)F̃(y),

This completes the proof.

Theorem 5.5. Let F̃ : K → En be a preinvex fuzzy number-valued function w.r.t. η. Then for u ∈ En,
the lower u-level set

Ku(F̃) = {x|x ∈ K, F̃(x) �c u}

of F̃ is an invex set.

Proo f . For any x, y ∈ Ku(F̃), we have F̃(x) �c u and F̃(y) �c u. Then, by the preinvexity of F̃, it
follows that, for any λ ∈ [0, 1],

F̃(y + λη(x, y)) �c λF̃(x) + (1 − λ)F̃(y) � u,

which implies that
y + λη(x, y) ∈ Ku(F̃).

Definition 5.1. Let S ⊂ Rn × En, S is said to be G-invex set, if there exists a function η : Rn ×Rn → Rn,
for any (x, u), (y, v) ∈ S , (y + λη(x, y), λu + (1 − λ)v) ∈ S , 0 ≤ λ ≤ 1.

Theorem 5.6. Assume K is an invex set, then F̃ : K → En is a preinvex fuzzy number-valued function
on K if and only if epi(F̃) is G-invex set of Rn × En.
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Proo f . Assume that F̃ is a preinvex fuzzy number-valued function on K. For (x, u), (y, v) ∈ epi(F̃),
λ ∈ [0, 1], it follows that y + λη(x, y) ∈ K and

F̃(y + λη(x, y)) �c λF̃(x) + (1 − λ)F̃(y) �c λu + (1 − λ)v.

Thus,
(y + λη(x, y), λu + (1 − λ)v) ∈ epi(F̃),

which implies that epi(F̃) is G-invex set of Rn×En w.r.t. a given function η× ηo, where ηo : En×En →

En, (u, v)→ u − v.
Conversely, since epi(F̃) is a G-invex set of Rn × En, (x, F̃(x)) ∈ epi(F̃) and (y, F̃(y)) ∈ epi(F̃) for

any x, y ∈ K, λ ∈ [0, 1]. Thus we have

(y + λη(x, y), F̃(y) + λη0(F̃(x), F̃(y)) = (y + λη(x, y), λF̃(x) + (1 − λ)F̃(y)) ∈ epi(F̃),

which implies that
F̃(y + λη(x, y)) �c λF̃(x) + (1 − λ)F̃(y).

This shows that F̃ is preinvex fuzzy number-valued function on K.

Theorem 5.7. Let {S i}i∈I be a finite or infinite collection of G-invex sets of Rn × En, where I is index
set. Then S =

⋂
i∈I S i is a G-invex set.

Proo f . Let for any (x, u), (y, v) ∈ S , we have, for any i ∈ I, (x, u), (y, v) ∈ S i, then

(y + λη(x, y), λu + (1 − λ)v) ∈ S i, ∀λ ∈ [0, 1].

Therefore, we obtain

(y + λη(x, y), λu + (1 − λ)v) ∈
⋂

i∈I
S i = S , ∀λ ∈ [0, 1].

That is, S =
⋂

i∈I S i is a G-invex set.

Theorem 5.8. Let K ⊆ Rn be an invex set w.r.t. η, {F̃i}i∈I be a set of n-dimensional preinvex fuzzy
number-valued functions on K. If sup{F̃i(x)|i ∈ I} exists in En for any x ∈ K, then F̃(x) = sup{F̃i(x)|i ∈
I} is a n-dimensional preinvex fuzzy number-valued function on K.

Proo f . Since each F̃i(i ∈ I) is n-dimensional preinvex fuzzy number-valued function on K, then by
Theorem 5.6, we know that

epi(F̃i) = {(x, u) ∈ k × En : F̃i(x) �c u}

is a G-invex set of Rn × En. By Theorem 5.7, we have⋂
i∈I

epi(F̃i) = {(x, u) ∈ k × En : F̃i(x) �c u,∀i ∈ I}

is a G-invex set of Rn × En. It is an easy matter to verify that⋂
i∈I

epi(F̃i) = {(x, u) ∈ k × En : F̃i(x) �c u,∀i ∈ I}
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= {(x, u) ∈ k × En : F̃(x) �c u}

= epi(F̃).

Thus, epi(F̃) is a G-invex set of Rn × En. By Theorem 5.6, we find that F̃ is a n-dimensional preinvex
fuzzy number-valued function on K.

Theorem 5.9. Let K ⊆ Rn be an invex set w.r.t. η. Then F̃ : K → En is a prequasiinvex fuzzy
number-valued function on K if and only if the lower u-level set

Lu(F̃) = {x|x ∈ K, F̃(x) �c u}

of F̃ is an invex set w.r.t. η for each u ∈ En.

Proo f . Necessity is easy to prove.
Conversely, assume that Lu(F̃) is an invex set for each u ∈ En. Let x, y ∈ K, without loss of

generality, we may assume that F̃(x) �c F̃(y). Let u = F̃(y), since �c is reflexive and transitive, we
have

F̃(x) �c u and F̃(y) �c u,

which implies that
x, y ∈ Lu(F̃).

We have y + λη(x, y) ∈ Lu(F̃), which implies that

F̃(y + λη(x, y)) �c u = max{F̃(x), F̃(u)},

which completes the proof.

Theorem 5.10. Let F̃ : K → En be a prequasiinvex fuzzy number-valued function. Then tF̃ is
prequasiinvex fuzzy number-valued function on K for any t > 0.

Proo f .

kF̃(y + λη(x, y)) = k(F̃(y + λη(x, y)))

�c k max{F̃(x), F̃(y)}

= max{kF̃(x), kF̃(y)}.

Theorem 5.11. Let F̃ : K → En be prequasiinvex fuzzy number-valued function w.r.t. η, and x ∈ K be
the global minimizer of F̃ on K. Then, the set

Ω = {x ∈ K : F̃(x) = F̃(x)}

is an invex set w.r.t. η.

Proo f . If Ω is the empty set or singleton, then it is obvious an invex set. Assume that x, y ∈ Ω, then

F̃(x) = F̃(x) and F̃(y) = F̃(x).
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Since F̃ : K → En is a prequasiinvex fuzzy number-valued function w.r.t. η, we have

F̃(y + λη(x, y)) �c max{F̃(x), F̃(y)} = F̃(x)

for any λ ∈ [0, 1]. Consider x ∈ K is a global minimizer of F̃, it follows that

F̃(y + λη(x, y)) = F̃(x)

for λ ∈ [0, 1]. It implies that y + λη(x, y) ∈ Ω for λ ∈ [0, 1]. Thus, Ω is an invex set w.r.t. η. This
completes the proof.

Theorem 5.12. Let F̃ : K → En be preinvex fuzzy number-valued function w.r.t. η, and x ∈ K satisfying
F̃(x) = minx∈K F̃(x). If u = minx∈K F̃(x), then the set

Ω = {x ∈ K : F̃(x) = u}

is an invex set w.r.t. η.

6. Semicontinuity and preinvexity of fuzzy number-valued functions

In this section, we present several practical criteria for preinvex fuzzy number-valued functions
under the lower or upper semicontinuity conditions.

Definition 6.1. (see [7].) Let F̃ : K → En be a fuzzy number-valued function
(1) F̃ is said to be lower semicontinuous(l.c.) at x0 ∈ K if for any ε̃ �c 0, a neighborhood U of x0

exists when x ∈ K, and we have
F̃(x0) ≺c F̃(x) + ε̃.

(2) F̃ is said to be upper semicontinuous(u.c.) at x0 ∈ K if for any ε̃ �c 0, a neighborhood U of x0

exists when x ∈ K, and we have
F̃(x) ≺c F̃(x0) + ε̃.

A fuzzy number-valued function F̃ : K → En is continuous at x0 ∈ K if it is both l.c. and u.c. at x0,
and that it is continuous at every point of K.

Theorem 6.1. Let K ⊂ Rn be an invex set w.r.t. η, η satisfy Condition C, F̃ : K → En be a lower
semicontinuous fuzzy number-valued function, and F̃ satisfy Condition D. If F̃ is weakly preinvex on
K, i.e., there exists a λ0 ∈ (0, 1) such that

F̃(y + λ0η(x, y)) �c λ0F̃(x) + (1 − λ0)F̃(y)

for any x, y ∈ K, then F̃ is preinvex on K.

Proo f . Assume that F̃ is not preinvex on K, then, x, y ∈ K and there exists a λ ∈ [0, 1] such that

F̃(y + λη(x, y)) �c λF̃(x) + (1 − λ)F̃(y). (6.1)

By the weak preinvexity of F̃ and Lemma 4.1, we can choose a sequence λn ∈ A(n = 1, 2, · · · ) with
λn → λ(n→ ∞) and

F̃(y + λnη(x, y)) �c λnF̃(x) + (1 − λn)F̃(y). (6.2)
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From the lower semicontinuity of F̃, for any ε̃ �c 0̃, an N > 0 exists when n > N and we have

F̃(y + λη(x, y)) ≺c F̃(y + λnη(x, y)) + ε̃. (6.3)

Since ε̃ is an arbitrary positive fuzzy number, by taking the limit as n → ∞, and by combining with
(6.2) and (6.3), we have

F̃(y + λη(x, y)) �c λF̃(x) + (1 − λ)F̃(y).

This contradicts the fact that (6.1), i.e., F̃ is preinvex on K.

Theorem 6.2. Let K ⊂ Rn be an invex set w.r.t. η, η satisfy Condition C, F̃ : K → En be a upper
semicontinuous fuzzy number-valued function, and F̃ satisfy Condition D. If F̃ is weakly preinvex on
K, i.e., there exists a λ0 ∈ (0, 1) such that

F̃(y + λ0η(x, y)) �c λ0F̃(x) + (1 − λ0)F̃(y)

for any x, y ∈ K, then F̃ is preinvex on K.

Proo f . Assume that F̃ is not preinvex on K, then, x, y ∈ K and there exists a λ ∈ [0, 1] such that

F̃(y + λη(x, y)) �c λF̃(x) + (1 − λ)F̃(y). (6.4)

By the weak preinvexity of F̃ and Lemma 4.1, we can choose a sequence λn ∈ A(n = 1, 2, · · · ) with
λn → λ(n→ ∞) and

F̃(y + λnη(x, y)) �c λnF̃(x) + (1 − λn)F̃(y). (6.5)

for any x, y ∈ K, by taking x = x ∈ K, and y = y + λ−λn
1−λn

η(x, y) ∈ K, using Condition C

y + λnη(x, y) = y +
λ − λn

1 − λn
η(x, y) + λnη(x, y +

λ − λn

1 − λn
η(x, y))

= y +
λ − λn

1 − λn
η(x, y) + λn(1 −

λ − λn

1 − λn
)η(x, y)

= y + λη(x, y).

and y→ y(n→ ∞). According to the upper semicontinuity of F̃, for any ε̃ �c 0̃, there exists an N > 0
when n > N and we get

F̃(y) ≺c F̃(y) + ε̃. (6.6)

Since ε̃ is an arbitrary positive fuzzy number, and by combining with (6.5) and (6.6), we have

F̃(y + λη(x, y)) = F̃(y + λnη(x, y))

�c λnF̃(x) + (1 − λn)F̃(y)

�c λnF̃(x) + (1 − λn)F̃(y).

By taking the limit as n→ ∞, we have

F̃(y + λη(x, y)) �c λF̃(x) + (1 − λ)F̃(y).

This contradicts the fact that (6.4), i.e., F̃ is preinvex on K.
By combining Theorem 6.1 and Theorem 6.2, we have the following result.
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Corollary 6.1. Let K ⊂ Rn be an invex set w.r.t. η, η satisfy Condition C, F̃ : K → En satisfy Condition
D, and F̃ be a lower semicontinuous or upper semicontinuous fuzzy number-valued function. Then F̃
is preinvex on K if and only if F̃ is weakly preinvex on K.

Theorem 6.3. Let K ⊂ Rn be an invex set w.r.t. η, η satisfy Condition C, F̃ : K → En satisfy Condition
D, and F̃ be a lower (resp. an upper) semicontinuous fuzzy number-valued function. If F̃ is weakly
strictly preinvex on K, i.e., there exists a λ0 ∈ (0, 1) such that

F̃(y + λ0η(x, y)) ≺c λ0F̃(x) + (1 − λ0)F̃(y)

for any x, y ∈ K with x , y, then F̃ is strictly preinvex on K.
By combining Definition 3.1 and Theorem 6.3, we have the following result.

Corollary 6.2. Let K ⊂ Rn be an invex set w.r.t. η, η satisfy Condition C, F̃ : K → En satisfy Condition
D, and F̃ be a lower semicontinuous or upper semicontinuous fuzzy number-valued function. Then F̃
is strictly preinvex on K if and only if F̃ is weakly strictly preinvex on K.

Lemma 6.1. Let K ⊂ Rn be an invex set w.r.t. η, η satisfy Condition C, and F̃ : K → En satisfy
Condition D. If there exists a α ∈ (0, 1) such that

F̃(y + αη(x, y)) �c max{F̃(x), F̃(y)}

for any x, y ∈ K, then the set

A = {λ ∈ [0, 1] : F̃(y + αη(x, y)) �c max{F̃(x), F̃(y)}}

is dense in [0, 1].
This proof is similar to the proof of Lemma 4.1.

Theorem 6.4. Let K ⊂ Rn be an invex set w.r.t. η, and η satisfy Condition C, F̃ : K → En

satisfy Condition D, and F̃ be an upper semicontinuous fuzzy number-valued function. If F̃ is weakly
prequasiinvex on K, i.e., there exists a λ0 ∈ (0, 1) such that

F̃(y + α0η(x, y)) �c max{F̃(x), F̃(y)

for any x, y ∈ K, then F̃ is prequasiinvex on K.

Proo f . Assume that F̃ is not prequasiinvex on K. Then, for any x, y ∈ K and there exists a λ ∈ [0, 1]
such that

F̃(y + λη(x, y)) �c max{F̃(x), F̃(y)}. (6.7)

By the weak prequasiinvexity of F̃ and Lemma 6.1, we can choose a sequence λn ∈ A(n = 1, 2, · · · )
with λn → λ(n→ ∞) and

F̃(y + λnη(x, y)) �c max{F̃(x), F̃(y)}. (6.8)

for any x, y ∈ K, by taking x = x ∈ K, and y = y + λ−λn
1−λn

η(x, y) ∈ K, using Condition C, we have
y + λη(x, y) = y + λnη(x, y), and y → y(n → ∞). From the upper semicontinuity of F̃, for any ε̃ �c 0̃,
there exists an N > 0 when n > N and we obtain

F̃(y) ≺c F̃(y) + ε̃. (6.9)
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Since ε̃ is an arbitrary positive fuzzy number, and by combining with (6.8) and (6.9), it follows that

F̃(y + λη(x, y)) = F̃(y + λnη(x, y))

�c max{F̃(x), F̃(y)}

�c max{F̃(x), F̃(y)}.

This contradicts to the fact that (6.7), i.e., F̃ is prequasiinvex on K.
According to Theorem 4.6 and Theorem 6.4, we have the following result.

Theorem 6.5. Let K ⊂ Rn be an invex set w.r.t. η, and η satisfy Condition C, F̃ : K → En satisfy
Condition D, and F̃ be an upper semicontinuous fuzzy number-valued function. If F̃ is weakly strictly
prequasiinvex on K, i.e., there exists a λ0 ∈ (0, 1) such that

F̃(y + α0η(x, y)) ≺c max{F̃(x), F̃(y)

for any x, y ∈ K with x , y, then F̃ is strictly prequasiinvex on K.

7. Two-parameter optimization problem

In this section, two types of the parameter optimization problems are investigated. They are widely
applied in the optimization theory of consumers and producers. In which the optimal value of objective
function depends on the values of the parameters. Therefore, the optimal solution and optimal values
are all functions of parameters. The central task of economic analysis is to clarify the character of these
functions. Two-parameters optimization problems is shown as follows.

P(α) : max F̃(x), x ∈ S = {x ∈ X ⊂ Rn : G̃(x, α) �c 0̃} α ∈ A ⊂ Rn;

P(β) : min F̃(x, β), x ∈ S = {x ∈ X ⊂ Rn : G̃(x) �c 0̃} β ∈ B ⊂ Rn.

where X, A, B ⊂ Rn are invex sets w.r.t. η : Rn × Rn → Rn, F̃ : X → En, G̃ : X → En. In the
problem P(α), the parameter appear in the fuzzy constraint function, and the parameter appear in the
fuzzy objective function in the problem P(β). We always assume that the problems P(α) and P(β) have
the optimal solution for any fixed parameters α, β respectively, and write Z̃(α) and ψ̃(β) as the optimal
objective values for P(α) and P(β) respectively.

Theorem 7.1. Consider the problem P(α), if G̃(x, α) is a n-dimensional preincave fuzzy number-valued
function on A w.r.t. η : Rn ×Rn → Rn, then Z̃(α) is a n-dimensional prequasiinvex fuzzy number-valued
function on A w.r.t. the same function η.

Proo f . For α1, α2 ∈ A and for any λ ∈ [0, 1], let xλ be a optimal solution for P(α2 + λη(α1, α2)). From
the preincavity of G̃ w.r.t. α, we obtain

0̃ �c G̃(xλ, α2 + λη(α1, α2)) �c λG̃(xλ, α1) + (1 − λ)G̃(xλ, α2).

Since λ and (1−λ) are all non-negative, it follows that, G̃(xλ, α1) and G̃(xλ, α2) at least one non-positive.
Without loss of generality, we assume that

G̃(xλ, α1) �c 0̃,
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it follows that xλ is a feasible solution for P(α1) and Z̃(α1) �c F̃(xλ). Then, we have, for any λ ∈ [0, 1],

max{Z̃(α1), Z̃(α2)} �c Z̃(α1) �c F̃(xλ) = Z̃(α2 + λη(α1, α2))

i.e., Z̃(α) is a n-dimensional prequasiinvex fuzzy number-valued function on A w.r.t. the same function
η.

Theorem 7.2. Consider P(β), if F̃(x, β) is a n-dimensional preincave fuzzy number-valued function on
B w.r.t. parameter β and η : Rn×Rn → Rn, then ψ̃(β) is a n-dimensional preincave fuzzy number-valued
function on B w.r.t. the same function η.

Proo f . For α1, α2 ∈ B and for any λ ∈ [0, 1], let xλ be a optimal solution for P(β2 + λη(β1, β2)). Since
G̃(xλ) �c 0̃, it follows that, xλ is the feasible solution to P(β1) and P(β2), which implies

F̃(xλ, β1) �c ψ̃(β1) and F̃(xλ, β2) �c ψ̃(β2).

From the preincavity of F̃ w.r.t. β, we obtain

ψ̃(β2 + λη(β1, β2)) = F̃(xλ, β2 + λη(β1, β2))

�C λF̃(xλ, β1) + (1 − λ)F̃(xλ, β2)

�C λψ̃(β1) + (1 − λ)ψ̃(β2),

i.e., ψ̃(β) is a n-dimensional preincave fuzzy number-valued function on B w.r.t. the same function η.

Example 7.1. The optimization problem in consumer theory. A consumer is an economic entity that
uses available resources (income) to purchase goods and obtains satisfaction from the consumption
of goods. The problem of the consumer is how to select the consumption bundle so that the consumer
can get the maximum satisfaction from his consumption under the constraint that the total expenditure
is not greater than the income of the consumer. Let p̃ = (p̃1, · · · , p̃n)T be the price vector, where
p̃i �c 0(i = 1, · · · , n) is the price of the good i, and let x = (x1, · · · , xn)T be the consumption bundle,
where xi > 0(i = 1, · · · , n) is the quantity of the good i consumed. If the total expenditure pT x is not
greater than the consumer’s income m, there must be a constraint pT x 6 m, which is the consumer’s
budget constraint. The set S = {x ∈ Rn

+ : p̃T x �c m} of all feasible consumption bundles is called
the budget set. The consumer has different satisfaction for different consumption bundles, which is
called consumer preference. We use utility functions to describe this preference. The quantity is only
an estimated quantity, then using a fuzzy-valued function to express the quantity is more appropriate
than using a crisp quantity. Specifically, a utility function Ũ : Rn

+ → En
+ is a nonnegative fuzzy-valued

function satisfying the following specification: Ũ(x) �c Ũ(y) means that consumption bundle x is
better than consumption bundle y; Ũ(x) = Ũ(y) means that consumption bundle x equals consumption
bundle y; Ũ(x) �c Ũ(y) means that consumption bundle x is not worse than consumption bundle y.

The utility maximization problem of consumers can be formalized into the following optimization
model:

(M)

 max Ũ(x),
s.t. x ∈ S = {x ∈ Rn

+ : p̃T x �c m},

where p̃ �c 0, m > 0. Obviously, this is a P(α) type optimization problem, where the parameters
( p̃,m) appear in the fuzzy constraint function. Let v( p̃,m) = Ũ(x( p̃,m)) for every p̃ � +c0 and m > 0,
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and v( p̃,m) is said to be an indirect utility function. Notice that the function g(x; p̃,m) = p̃T x − m
is a preincave fuzzy number-valued function w.r.t. (p̃,m) and η = x − y. According to Theorem 7.1,
v( p̃,m) = Ũ(x( p̃,m)) a n-dimensional prequasiinvex fuzzy number-valued function on Rn

+ w.r.t. the
same function η.

8. n-dimensional fuzzy variational-like inequality

Here, we present the fuzzy variational-like inequality and discuss the relationships between the
fuzzy variational-like inequality problem and the unconstrained fuzzy vector optimization problem.

Let K ⊆ Rn, η(x, x) : K × K → Rn, F̃ : K → En be a n-dimensional fuzzy number-valued function.
Then the fuzzy variational-like inequality problem is to be found x ∈ K, u ∈ En, such that

(FVLI) uη(x, x) �c 0̃, ∀x ∈ K.

Consider the unconstrained fuzzy vector optimization problem

(P) min
x∈K

F̃(x)

where K ⊆ Rn is an invex set w.r.t. η, F̃ : K → En is a n-dimensional fuzzy number-valued function.
A point x0 ∈ K is called a local minimum of F̃, if x0 ∈ K and there exists a δ-neighborhood Nδ(x0)

around x0, such that for any x ∈ K ∩ Nδ(x0), F̃(x0) �c F̃(x). Similarly, if x0 ∈ K and there exists a
δ-neighborhood Nδ(x0) around x0, such that for any x ∈ K ∩ Nδ(x0), with x , x0, F̃(x0) ≺c F̃(x), then
x0 is called a strict local minimum point of F̃.

Theorems 8.1-8.3 show the relationship between the fuzzy variational-like inequality problem and
the preinvexity of n-dimensional fuzzy number-valued function.

Theorem 8.1. Let K be an invex set of Rn w.r.t. η, x ∈ K, F̃ : K → En a preinvex fuzzy number-valued
function w.r.t. η and F̃ fuzzy η-extended directionally differentiable on K. If (x, ∇̃F̃η(x)) is a solution of
(FVLI), then x is a strict local optimal solution of (P).

Proo f . Let (x, ∇̃F̃η(x)) be a solution of (FVLI). Suppose that there exists an x∗ ∈ K ∩ Nδ(x), such that

F̃(x∗) �c F̃(x). (8.1)

Since F̃ is a preinvex fuzzy number-valued function, it follows that

F̃(x + λη(x∗, x)) − F̃(x)
λ

�c F̃(x∗) − F̃(x) ∀λ ∈ [0, 1].

From the η-extended directionally differentiability of F̃, and taking the limit as λ→ 0+, we find that

∇̃F̃η(x)η(x∗, x) �c F̃(x∗) − F̃(x). (8.2)

According to (8.1) and (8.2), we obtain

∇̃F̃η(x)η(x∗, x) �c 0̃.

This contradicts the fact that (x, ∇̃F̃η(x)) is a solution of (FVLI).
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Theorem 8.2. Let K be an invex set of Rn w.r.t. η, x ∈ K, F̃ : K → En a preincave fuzzy number-valued
function w.r.t. η and F̃ fuzzy η-extended directionally differentiable on K. If x be a strict local optimal
solution of (P), then (x, ∇̃F̃η(x)) is a solution of (FVLI).

Proo f . Let x be a strict local optimal solution of (P). Suppose that there exists an x∗ ∈ K, such that

∇̃F̃η(x)η(x∗, x) �c 0̃.

Since F̃ is a preincave fuzzy number-valued function, it follows that

F̃(x∗) − F̃(x) �c
F̃(x + λη(x∗, x)) − F̃(x)

λ
∀λ ∈ [0, 1].

By the η-extended directionally differentiability of F̃, and taking the limit as λ→ 0+, we obtain

F̃(x∗) − F̃η(x) �c ∇̃F̃η(x)η(x∗, x).

Therefore, we have
F̃(x∗) �c F̃(x).

This contradicts the fact that x is a strict local optimal solution of (P).

Theorem 8.3. Let K be an invex set of Rn w.r.t. η, x ∈ K, F̃ : K → En be a strictly preincave fuzzy
number-valued function w.r.t. η and F̃ be fuzzy η-extended directionally differentiable on K. If x be an
optimal solution of (P), then (x, ∇̃F̃η(x)) is a solution of (FVLI).

Proo f . Let x be an optimal solution of (P). Suppose that there exists an x∗ ∈ K, such that

∇̃F̃η(x)η(x∗, x) �c 0̃.

Since F̃ is a strictly preincave fuzzy number-valued function, it follows that

F̃(x∗) − F̃(x) ≺c
F̃(x + λη(x∗, x)) − F̃(x)

λ
∀λ ∈ [0, 1].

From the η-extended directionally differentiability of F̃. Taking the limit as λ→ 0+, we obtain

F̃(x∗) − F̃η(x) ≺c ∇̃F̃(x)η(x∗, x).

Therefore, we have
F̃(x∗) ≺c F̃(x).

This contradicts the fact that x is a optimal solution of (P).

9. Kuhn-Tucker conditions for a multiobjective fuzzy programming problem

Consider a multiobjective fuzzy programming problem,

(P)

 min F̃(x)
x ∈ S = {x ∈ X : G̃i(x) �c 0̃, i = 1, 2, · · ·m}
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where F̃ : K → En, G̃i : K → En, (i = 1, 2, · · ·m), X ⊂ Rn is an invex set w.r.t. η.
Let S be the set of the feasible solution for (P), x0 is a feasible point for (P). For a feasible point x0,

we denote
I(x0) = {i ∈ {1, 2, · · ·m} : G̃i(x0) = 0̃},

I′(x0) = {i ∈ {1, 2, · · ·m} : G̃i(x0) ≺c 0̃}.

Then,
I(x0) ∪ I′(x0) = {1, 2, · · ·m}.

Let F̃ be a n-dimensional fuzzy number-valued function defined on X and G̃ be a m-dimensional
fuzzy number-valued function defined on X, X ⊂ Rn is an invex set w.r.t. η. (G̃ = (G̃i)m

i=1, means G̃i is
a n-dimensional fuzzy number-valued function, for each i = 1, 2, · · ·m).

Define the n-dimensional lagrangian fuzzy function as

L̃(x, λ) = F̃(x) + λtG̃(x).

The Kuhn-Tucker stationary point of a n-dimensional fuzzy optimal problem is to find a x ∈ X, λ =

(λ1, λ2, · · · , λm) ∈ Rm, if they exists, such that

∇̃xL̃(x, λ) = ∇̃F̃η(x) + λt∇̃G̃η(x) = 0̃,

G̃(x) �c 0̃,

λtG̃(x) = Σm
i=1λiG̃i(x) = 0̃,

λ ≥ 0.

In what follows, we show the connection between the Kuhn-Tucker stationary point for a n-
dimensional fuzzy optimal problem and the optimal solution of (P).

Theorem 9.1. Let x0 be a feasible solution of (P), and let F̃ : K → En be a preinvex fuzzy number-
valued function at x0 w.r.t. η and F̃ be fuzzy η-extended directionally differentiable at x0 on K. Let
G̃i : K → En(1, 2, · · ·m) be a prequasiinvex fuzzy number-valued function at x0 w.r.t. the same function
η and G̃i(1, 2, · · ·m) be fuzzy η-extended directionally differentiable at x0 on K. Moreover, if there exist
λi ≥ 0(1, 2, · · ·m), such that ∇̃F̃η(x0) + Σm

i=1λi∇̃G̃iη(x0) = 0̃
λiG̃i(x0) = 0̃ 1, 2, · · ·m

Then, x0 is the global minimum point of (P).

Proo f . Assume that x0 is not a global minimum point of (P). Then, there exists x ∈ S such that

F̃(x) ≺c F̃(x0).

Since F̃ is a preinvex fuzzy number- valued function at x0, and F̃ is η-extended directionally
differentiable at x0, we have

∇̃F̃η(x0)η(x, x0) �c F̃(x) − F̃(x0) ≺c 0̃.
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Also, since G̃i(x) �c 0̃ = G̃i(x0), i ∈ I(x0) and the η-extended directionally differentiability of G̃i at x0,
for any λ ∈ [0, 1], we get

∇̃G̃iη(x0)η(x, x0) = lim
λ→0+

G̃i(x0 + λη(x, x0)) − G̃i(x0)
λ

. (9.1)

G̃i is a prequasiinvex fuzzy number-valued function at x0 w.r.t. the same function η, then

G̃i(x0 + λη(x, x0)) �c max{G̃i(x0), G̃i(x)} �c G̃i(x0) i ∈ I(x0). (9.2)

By combining (9.1) and (9.2), we find that

∇̃G̃iη(x0)η(x, x0) �c 0̃ i ∈ I(x0).

According to λiG̃i(x0) = 0̃, it follows that, ∀i ∈ I′(x0), λi = 0.
From above discussion, we have

∇̃F̃η(x0)η(x, x0) + Σm
i=1λi∇̃G̃iη(x0)η(x, x0) ≺c 0̃,

which is a contradiction to the condition

∇̃F̃η(x0) + Σm
i=1λi∇̃G̃iη(x0) = 0̃.

It completes the proof.

10. Conclusions

In this paper, we first introduce the concept of the preinvexity of n-dimensional fuzzy number-
valued functions based on the partial order relation in n-dimensional fuzzy number space and
their properties are discussed. In addition, some counterexamples are given to show the proposed
concepts and their relationships. Then we present the criteria theorems for n-dimensional preinvex
fuzzy number-valued functions under the upper or lower semicontinuity conditions, respectively.
Furthermore, the two-parameter optimization problem, n-dimensional fuzzy variational-like inequality
problem, and the optimality conditions related to n-dimensional preinvex fuzzy number-valued
function are discussed. These results can be applied in many fields, such as fuzzy optimization, fuzzy
control, engineering science, fuzzy-making problems and so on.
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