
Increasing rural income is the common requirement of poverty alleviation and a rural revitalization strategy. As a financial system arrangement, inclusive finance plays an important role in rural income. This paper analyzes the influence of inclusive finance development affecting rural income. Taking 13 regions in Xinjiang as samples, we used a fixed-effects and mediating-effect model to conduct empirical tests. We found that inclusive finance development can significantly promote rural income in Xinjiang. The role of inclusive financial development in the rural income in deep poverty areas is weaker than that in non-deep poverty areas. Meanwhile, with the proposal of the Belt and Road Initiative, the role of inclusive financial development in rural income has been significantly enhanced. Taking the per capita economic output as the mechanism variable, we found that it is a vital channel for inclusive finance to improve rural income.
Citation: Zhiyi Li, Mayila Tuerxun, Jianhong Cao, Min Fan, Cunyi Yang. Does inclusive finance improve income: A study in rural areas[J]. AIMS Mathematics, 2022, 7(12): 20909-20929. doi: 10.3934/math.20221146
[1] | Fatima M. Azmi . New fixed point results in double controlled metric type spaces with applications. AIMS Mathematics, 2023, 8(1): 1592-1609. doi: 10.3934/math.2023080 |
[2] | Hanadi Zahed, Zhenhua Ma, Jamshaid Ahmad . On fixed point results in F-metric spaces with applications. AIMS Mathematics, 2023, 8(7): 16887-16905. doi: 10.3934/math.2023863 |
[3] | Aftab Hussain . Fractional convex type contraction with solution of fractional differential equation. AIMS Mathematics, 2020, 5(5): 5364-5380. doi: 10.3934/math.2020344 |
[4] | Mohammed H. Alharbi, Jamshaid Ahmad . Solution of fractional differential equation by fixed point results in orthogonal F-metric spaces. AIMS Mathematics, 2023, 8(11): 27347-27362. doi: 10.3934/math.20231399 |
[5] | Abdullah Eqal Al-Mazrooei, Jamshaid Ahmad . Fixed point approach to solve nonlinear fractional differential equations in orthogonal F-metric spaces. AIMS Mathematics, 2023, 8(3): 5080-5098. doi: 10.3934/math.2023255 |
[6] | Nehad Abduallah Alhajaji, Afrah Ahmad Noman Abdou, Jamshaid Ahmad . Application of fixed point theory to synaptic delay differential equations in neural networks. AIMS Mathematics, 2024, 9(11): 30989-31009. doi: 10.3934/math.20241495 |
[7] | Haitham Qawaqneh, Mohd Salmi Md Noorani, Hassen Aydi . Some new characterizations and results for fuzzy contractions in fuzzy b-metric spaces and applications. AIMS Mathematics, 2023, 8(3): 6682-6696. doi: 10.3934/math.2023338 |
[8] | Ying Chang, Hongyan Guan . Generalized (αs,ξ,ℏ,τ)-Geraghty contractive mappings and common fixed point results in partial b-metric spaces. AIMS Mathematics, 2024, 9(7): 19299-19331. doi: 10.3934/math.2024940 |
[9] | Hanadi Zahed, Ahmed Al-Rawashdeh, Jamshaid Ahmad . Common fixed point results in F-metric spaces with application to nonlinear neutral differential equation. AIMS Mathematics, 2023, 8(2): 4786-4805. doi: 10.3934/math.2023237 |
[10] | Gunaseelan Mani, Rajagopalan Ramaswamy, Arul Joseph Gnanaprakasam, Vuk Stojiljković, Zaid. M. Fadail, Stojan Radenović . Application of fixed point results in the setting of F-contraction and simulation function in the setting of bipolar metric space. AIMS Mathematics, 2023, 8(2): 3269-3285. doi: 10.3934/math.2023168 |
Increasing rural income is the common requirement of poverty alleviation and a rural revitalization strategy. As a financial system arrangement, inclusive finance plays an important role in rural income. This paper analyzes the influence of inclusive finance development affecting rural income. Taking 13 regions in Xinjiang as samples, we used a fixed-effects and mediating-effect model to conduct empirical tests. We found that inclusive finance development can significantly promote rural income in Xinjiang. The role of inclusive financial development in the rural income in deep poverty areas is weaker than that in non-deep poverty areas. Meanwhile, with the proposal of the Belt and Road Initiative, the role of inclusive financial development in rural income has been significantly enhanced. Taking the per capita economic output as the mechanism variable, we found that it is a vital channel for inclusive finance to improve rural income.
Cryptology has two basic areas, cryptography and cryptanalysis, in which one sees the sketch and cracking of cryptosystems. While re-arranging a cryptosystem, the inspection of its security plays a vital role. In cryptosystems, the key role features are confidentiality, authentication and integrity of data [1]. Earlier in [2], cryptosystems have been handled by armed forces. In this century, now-a-days everyone wants a fully controlled security by means of cryptographic skills.
The day-by-day advancements in growing industries, particularly the communication sector, have facilitated the flow of huge data over vast areas within a short period of time. It has been a hot topic to discuss how modern security systems can be improved to allow for reliable data communication. The cryptographic roots are adopted to understand secure contact between credible parties for giving hidden data in a protected way [3]. The block ciphering method has been widely used for protected communication and storage in the last era. Cryptographers constructed advanced block ciphers to go with the pace of the modern era [4]. Shanon in 1949 gave the idea to deal with confusion and diffusion occurring in block ciphers via substitution boxes [5]. Well known block ciphers are AES, DES, RC4, Blowfish, IDEA, RC5, RC6, and many more. These ciphers actuate the nonlinearity for secure information. S-boxes play a vital role in communicating the information/data more securely. Nonlinear components are an integral part of encryption algorithms and play a crucial role in achieving confusion and nonlinearity, which are necessary for thwarting attacks and protecting sensitive data. The motivation for studying nonlinear components also includes the field of image encryption [6] owing to the growing reliance on digital images for storage, transmission, and communication of sensitive information. Overall, the motivation behind nonlinear component is to improve cryptographic systems and address the particular difficulties associated with image encryption, ultimately advancing secure communication, data security, and privacy preservation.
Mathematically, an n×m S-box does not follow a linear mapping. This indicates that confusion component has a nonlinear mapping S from Galois field GF(2n)→GF(2m), where n≥m. It works as a Boolean function, which is comprised of bits. The effectiveness of an 8×8 S-box in encrypting data is so high that it catches the attention of cryptographers as a strong encryption method [7,8]. Numerous design patterns are examined and they came with an 8×8 S-box with best cryptographic features. The methods involved in the construction process are: Mobius transformation, linear trigonometric transformation, complete latin square, Bent function and logistic chaotic system, affine transformation, and symmetric group composition. S-boxes are also playing vital role in image encryption algorithms. Liu et al. [9] introduced a color image encryption scheme based on chaos, emphasizing the utilization of a randomly sampled noise signal. In [10], the encryption scheme involves creating six pseudo-random arrays to cyclically shift the red, green- and blue components both horizontally and vertically, followed by using the exclusive OR (XOR) operation to diffuse three color components. Liu et al. [11] proposed an image encryption scheme based on GF and chaotic systems to transmit pathological images over the network.
Currently, there is a lot of focus on robust S-box construction methods, and significant research has been proposed in [12,13,14,15,16,17,18,19,20]. This paper [21] introduces a new system model with improved chaotic characteristics by suggesting a piece-wise quadratic polynomial chaotic map that operates in one dimension (1D). In [12], a projective general linear group is used as a method of construction for the S-box for block ciphers. Islam et al. [13] explores the construction of an S-box with four dimensions and four wings hyperchaotic system. Husain et al. [14] designed cryptographically a strong nonlinear component based on a particular class of linear fractional transformation. Ahmad et al. [15] presents a technique, which involves utilizing chaotic maps and artificial intelligence based methodology. Attaullah et al. [16] employed algebraic techniques to create the S-box. Özkaynak et al. [17] derived the S-box from a fractional order chaotic Chen system. In [22] a new S-box for encryption that utilizes the Lorenz equation was presented. In [23], a combination of chaotic maps is used to develop the S-box by improving chaotic range. Zheng et. al [24] outlines a dynamic S-box dependent image encryption method, comprising of four stages: creating encryption keys, S-box construction, image permutation, and image diffusion. In [25], the authors introduced a technique for constructing an S-box that fulfills the strict avalanche criterion. This paper [26] puts forth a three-layer optimization technique for producing high-performance S-boxes using a novel chaotic map and artificial jellyfish optimization algorithm.
A new method for creating S-boxes using coset diagrams and a one-to-one mapping was developed by Razaq et al. [18] in their study. Si et. al [27] created a chaotic map with an exponential quadratic function in two dimensions that has the capability to function as a generator of pseudo-random numbers. The article [19] describes the design of a confusion component using tangent delay chaotic sequence and a special kind of permutation from a symmetric group. Liu [20] et al. presented a technique in which S-box elements are shuffled randomly using a permutation operation performed between independent chaotic sequences. Liu et al. [28] gave an image encryption algorithm for the new dynamic S-box. In [29], confusion component is constructed based on linear fractional transformation using Galois field GF(28). Farah et al. [30] used a teaching-learning based optimization to the design S-box. Jamal et al. [31] S-box construction method is controlled by a linear group over the finite commutative ring. In [32], Lambić demonstrated an efficient technique of designing a confusion component by composition method. Azam et al. [33] introduced a nonlinear component that is both cryptographically robust and injective specifically for elliptic curves. The paper [34] introduces the Q-learning naked mole rat algorithm, a new variant of the metaheuristic algorithm based on the naked mole rat, for building and optimizing substitution boxes. As opposed to the majority of competing works, which frequently include five chaotic maps (Singer, Chebyshev, logistic, circle, and sinusoidal) as a part of the algorithm itself. The key innovation and distinctive features of this paper are outlined below:
1) Our proposal presents a method for constructing S-boxes in a way that is highly efficient, by utilizing coset graph for the action of PSL(2,Z) over the Galois field GF(210).
2) The proposed nonlinear components undergo a comprehensive analysis and are compared to other commonly used nonlinear components, which are generated through various algebraic structures. The purpose of this comparison is to evaluate the performance and potency of the proposed S-boxes in terms of their capacity to add nonlinearity to cryptographic systems. The findings demonstrate that the proposed nonlinear components are more efficient and resistant to algebraic attacks.
The rest of this article is structured as follows: coset diagrams for modular group background knowledge is introduced in Section 2. Use of coset diagram in the construction of the proposed nonlinear component is presented in Section 3. In Section 4, we propose a novel nonlinear enhancement algorithm for increasing the nonlinearity of any confusion component of the block cipher. Section 5 presents statistical analysis and simulation results. The results of the proposed S-box and performance analysis criteria are evaluated in the same section. Moreover, the proposed S-box construction scheme is compared with well-known S-boxes according to good S-box criteria and is also examined in the same section. In conclusion, this article presents a summary of a coset based S-box generation scheme.
The modular group PSL(2,Z) is comprised of a set of linear fractional mappings, which include by l:s→−1/sandm:s→s−1/s. The finite display of PSL(2,Z) is <l,m:l2=m3=1>. The modular group is the most significant infinite discrete group due to its extensive utilization in number theory, advanced group theory, geometry, and topology. There is a rich history of studying the actions of the modular group, particularly on finite sets, dating back to the late 19th century. G. Higman for the very first time used coset diagrams for this group in 1978. The coset diagrams [35,36,37] are derived from the way PSL(2,Z) operates on the projective line over the finite field GF(pn), which is represented as PL(Fpn)=GF(pn)∪{∞}. Here, p represents a prime number. We use triangles to represents cycles of m because of order three. The elements of GF(pn)∪{∞} that form the nodes of the triangles undergo an anti-clockwise permutation by m. We utilize an edge in the coset diagram to connect a pair of nodes belonging to the triangles due to the presence of order two. The term "order two" indicates that these elements/nodes have a specific property where, when combined with themselves, they return to their original state after two repetitions. This property may be relevant or significant in the context of the coset diagram, influencing the decision to connect the corresponding nodes with an edge. Fixed points are denoted by thick dots, if they exist. Consider the action of a modular group on GF(23)∪{∞}={0,1,2,3,…,22,∞}. The permutation representations of l and m can be calculated by l:s→−1/sandm:s→s−1/s.
l:(0∞)(122)(211)(315)(417)(59)(619)(713)(820)(1016)(1221)(1418) |
m:(0∞1)(21222)(31611)(41815)(51017)(6209)(71419)(82113). |
It is evident that the permutation of results in 8 cycles, thus implying the existence of 8 triangles in the coset diagrams. The vertices 2, 12 and 22 of a triangle corresponds to a cycle. So 8 triangles can be drawn. Subsequently, we connect these triangles by permuting. For example, the cycle (1 22) in mean the nodes 1 and 22 are connected by an edge. The following coset diagram appears as a result of permutations of and. Since the image of under does not exist in, it is essential to consider alternative mappings or transformations to ensure a comprehensive coverage of the desired range. Thus, it is not feasible for to act in this scenario. For this, we add for the action of The utilization of coset diagrams has led to the resolution of numerous problems in group theory. This paper explores the implementation of these coset diagrams in the field of cryptography. Here, we formulate the coset diagram that we utilized in the designing of the proposed S-boxes.
In Figure 1, coset diagram illustrates the action of the modular group on GF(23)∪{∞}. Aslo, Figure 1 gives a clear understanding of how modular group operates on GF(23)∪{∞} and distinguish the resulting cosets.
Let's examine a primitive polynomial p(x)=x10+x3+1 that cannot be factored into lower-degree polynomials over Z2, then GF(210)=Z2[x]<x10+x3+1>. In Table 1, the components of GF(210) are represented as certain exponents of α, where α corresponds to the root of p(x). Let's examine how PSL(2,Z) operates on PL(F210)=GF(210)∪∞. The permutation representations of l and m can be computed using the operation of (s)l=−1sand(s)m=s−1s. So,
l:(0∞)(1)(α1α1022)(α2α1021)(α3α1020)(α4α1019)(α5α1018)(α6α1017)(α7α1016)(α8α1015) |
(α9α1014)(α10α1013)(α11α1012)(α12α1011)(α13α1010)(α14α1009)(α15α1008)(α16α1007)... |
...(α497α526)(α498α525)(α499α524)(α500α523)(α501α522)(α502α521)(α503α520)(α504α519) |
(α505α518)(α506α517)(α507α516)(α508α515)(α509α514)(α510α513)(α511α512), |
m:(∞10)(α341)(α682)(α1α76α946)(α2α152α869)(α3α7α1013)(α4α304α715)(α5α508α510) |
(α6α14α1003)(α8α608α407)(α9α315α699)(α10α1016α1020)(α11α189α823)(α12α28α983)... |
...(α599α668α779)(α604α833α609)(α614α807α625)(α617α636α793)(α620α680α746) |
(α633α760α653)(α635α658α753)(α641α677α728)(α650α683α713) |
(α652α738α656)(α654α697α695). |
GF(210) | Binary values | GF(210) | Binary values | GF(210) | Binary values | GF(210) | |
0000000000 | 0 | 0000000001 | 1 | 0000000010 | α1 | 0000000100 | α2 |
0000001000 | α3 | 0000010000 | α4 | 0000100000 | α5 | 0001000000 | α6 |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
0100100110 | α1015 | 1001001100 | α1016 | 0010010001 | α1017 | 0100100010 | α1018 |
1001000100 | α1019 | 0010000001 | α1020 | 0100000010 | α1021 | 1000000100 | α1022 |
The action's coset diagram comprises a sole instance of both π and Δ, alongside 170 iterations of γ, constituting a total of 172 orbits.
By refereeing to Figure 2, for the depiction of the orbit, labeled as γ, in the coset diagram. The operation of modular group on the set of GF(210)∪{∞} is shown in this figure. By examining Figure 2, we can see interaction between the elements of modular group and the resulting orbit. From Figure 3, a deeper understanding can be obtained regarding the orbit labeled as γj in the coset diagram. By referencing the Figure 4, there is distinct replica of γj within which the vertex a1 is located. A specific element or state within the mathematical structure is indicated by the presence of a1 in the coset diagram.
Algebraic approaches have been employed in the study of Galois fields in various publications. According to this novel methodology, the nodes of the coset diagram are used to disrupt the initial sequence of the Galois field. GF∗(210) represents the subset of GF(210) consisting of elements that can be expressed as even powers of α. Our initial objective is to compose a 16×16 matrix of the coset diagram nodes. To accomplish this, we exclusively choose nodes that are a part of GF∗(210). The following is the procedure for constructing an S-box using a coset graph.
Table 1 provides an illustrative display showcasing the elements in binary form that are part of GF(210). This table enables a comprehensive examination of each element, making it possible to examine each of its elements thoroughly. Table 2 consists of 256 elements between 0 to 255 for GF(28), each element is represented by an 8-bit binary sequence. Table 3 displays the results obtained after completing the second step of the procedure. This table present data into matrix of size 16×16, when each item in the matrix, as a result of the proposed calculations, has a remainder of zero. In Table 4, the proposed S-boxes (S-box-1) is presented in a manner where each of its elements displays a remainder of zero. Table 5 presented matrix of size 16×16, where element in the matrix has reminder of one. Table 6 shows proposed S-box-2 for remainder one after application of permutation. In Table 7, all elements of matrix have reminder two, which is obtained after completing the second step. Table 8 depicts proposed S-box-3 developed after applying process of permutation. In Table 9, elements are organized into 16×16 matrix, where all elements have remainder of three. Table 10 demonstrates proposed S-box-4, designed through the application of permutation.
Binary values | GF(28) | Binary values | GF(28) | Binary values | GF(28) | Binary values | GF(28) |
11011000 | ϖ251 | 10101101 | ϖ252 | 01000111 | ϖ253 | 10001110 | ϖ254 |
10000011 | ϖ247 | 00011011 | ϖ248 | 00110110 | ϖ249 | 01101100 | ϖ250 |
01111101 | ϖ243 | 11111010 | ϖ244 | 11101001 | ϖ245 | 11001111 | ϖ246 |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
10000000 | ϖ7 | 00011101 | ϖ8 | 00111010 | ϖ9 | 01110100 | ϖ10 |
00001000 | ϖ3 | 00010000 | ϖ4 | 00100000 | ϖ5 | 01000000 | ϖ6 |
00000000 | 0 | 00000001 | 1 | 00000010 | ϖ1 | 00000100 | ϖ2 |
245 | 243 | 222 | 162 | 150 | 233 | 131 | 178 | 17 | 16 | 71 | 73 | 60 | 1 | 148 | 90 |
84 | 3 | 201 | 118 | 66 | 125 | 232 | 58 | 54 | 44 | 171 | 8 | 57 | 204 | 2 | 142 |
218 | 252 | 48 | 161 | 203 | 7 | 135 | 87 | 192 | 149 | 108 | 191 | 128 | 231 | 32 | 30 |
67 | 228 | 72 | 244 | 177 | 127 | 22 | 104 | 28 | 133 | 137 | 64 | 95 | 116 | 219 | 4 |
212 | 225 | 101 | 96 | 6 | 21 | 235 | 152 | 136 | 238 | 154 | 27 | 19 | 220 | 91 | 5 |
190 | 241 | 46 | 153 | 210 | 196 | 255 | 117 | 37 | 176 | 9 | 207 | 29 | 180 | 216 | 173 |
35 | 193 | 239 | 86 | 146 | 40 | 113 | 221 | 34 | 139 | 88 | 119 | 112 | 134 | 223 | 188 |
189 | 170 | 92 | 147 | 74 | 69 | 217 | 122 | 247 | 109 | 186 | 38 | 250 | 42 | 145 | 213 |
115 | 208 | 70 | 227 | 181 | 151 | 156 | 18 | 12 | 143 | 251 | 187 | 249 | 205 | 59 | 41 |
103 | 107 | 14 | 129 | 13 | 160 | 209 | 62 | 157 | 75 | 93 | 234 | 11 | 82 | 24 | 51 |
169 | 199 | 31 | 182 | 230 | 89 | 183 | 68 | 164 | 33 | 83 | 253 | 56 | 45 | 76 | 106 |
194 | 50 | 55 | 141 | 124 | 184 | 159 | 242 | 248 | 26 | 85 | 240 | 206 | 254 | 140 | 25 |
15 | 120 | 130 | 100 | 202 | 224 | 79 | 102 | 163 | 43 | 110 | 39 | 94 | 229 | 20 | 36 |
99 | 168 | 77 | 246 | 111 | 197 | 165 | 237 | 123 | 81 | 155 | 63 | 53 | 61 | 158 | 49 |
214 | 198 | 114 | 175 | 65 | 52 | 200 | 80 | 10 | 226 | 236 | 195 | 179 | 138 | 167 | 97 |
0 | 211 | 98 | 215 | 47 | 174 | 126 | 185 | 132 | 105 | 166 | 121 | 23 | 172 | 78 | 144 |
190 | 241 | 46 | 153 | 210 | 196 | 255 | 117 | 37 | 176 | 9 | 207 | 29 | 180 | 216 | 173 |
212 | 225 | 101 | 96 | 6 | 21 | 235 | 152 | 136 | 238 | 154 | 27 | 19 | 220 | 91 | 5 |
67 | 228 | 72 | 244 | 177 | 127 | 22 | 104 | 28 | 133 | 137 | 64 | 95 | 116 | 219 | 4 |
35 | 193 | 239 | 86 | 146 | 40 | 113 | 221 | 34 | 139 | 88 | 119 | 112 | 134 | 223 | 188 |
84 | 3 | 201 | 118 | 66 | 125 | 232 | 58 | 54 | 44 | 171 | 8 | 57 | 204 | 2 | 142 |
214 | 198 | 114 | 175 | 65 | 52 | 200 | 80 | 10 | 226 | 236 | 195 | 179 | 138 | 167 | 97 |
245 | 243 | 222 | 162 | 150 | 233 | 131 | 178 | 17 | 16 | 71 | 73 | 60 | 1 | 148 | 90 |
15 | 120 | 130 | 100 | 202 | 224 | 79 | 102 | 163 | 43 | 110 | 39 | 94 | 229 | 20 | 36 |
194 | 50 | 55 | 141 | 124 | 184 | 159 | 242 | 248 | 26 | 85 | 240 | 206 | 254 | 140 | 25 |
169 | 199 | 31 | 182 | 230 | 89 | 183 | 68 | 164 | 33 | 83 | 253 | 56 | 45 | 76 | 106 |
99 | 168 | 77 | 246 | 111 | 197 | 165 | 237 | 123 | 81 | 155 | 63 | 53 | 61 | 158 | 49 |
103 | 107 | 14 | 129 | 13 | 160 | 209 | 62 | 157 | 75 | 93 | 234 | 11 | 82 | 24 | 51 |
0 | 211 | 98 | 215 | 47 | 174 | 126 | 185 | 132 | 105 | 166 | 121 | 23 | 172 | 78 | 144 |
189 | 170 | 92 | 147 | 74 | 69 | 217 | 122 | 247 | 109 | 186 | 38 | 250 | 42 | 145 | 213 |
115 | 208 | 70 | 227 | 181 | 151 | 156 | 18 | 12 | 143 | 251 | 187 | 249 | 205 | 59 | 41 |
218 | 252 | 48 | 161 | 203 | 7 | 135 | 87 | 192 | 149 | 108 | 191 | 128 | 231 | 32 | 30 |
174 | 180 | 148 | 149 | 193 | 250 | 58 | 170 | 26 | 30 | 20 | 15 | 142 | 71 | 155 | 90 |
244 | 201 | 82 | 160 | 175 | 105 | 18 | 106 | 115 | 221 | 108 | 16 | 219 | 173 | 2 | 1 |
187 | 85 | 198 | 235 | 152 | 129 | 135 | 252 | 199 | 29 | 218 | 209 | 98 | 8 | 4 | 133 |
132 | 72 | 92 | 186 | 200 | 49 | 38 | 59 | 134 | 207 | 17 | 62 | 251 | 216 | 254 | 35 |
169 | 196 | 33 | 66 | 247 | 253 | 11 | 122 | 176 | 93 | 79 | 131 | 128 | 64 | 67 | 70 |
226 | 86 | 138 | 192 | 145 | 150 | 24 | 190 | 44 | 63 | 220 | 116 | 144 | 27 | 217 | 32 |
55 | 249 | 50 | 211 | 111 | 6 | 143 | 140 | 147 | 197 | 40 | 205 | 121 | 74 | 240 | 54 |
167 | 159 | 213 | 242 | 166 | 96 | 162 | 245 | 127 | 158 | 76 | 195 | 161 | 136 | 210 | 97 |
228 | 87 | 113 | 14 | 231 | 77 | 225 | 194 | 84 | 41 | 45 | 114 | 189 | 125 | 233 | 153 |
109 | 107 | 10 | 21 | 119 | 223 | 75 | 123 | 164 | 212 | 117 | 255 | 22 | 184 | 12 | 232 |
202 | 25 | 237 | 103 | 81 | 120 | 102 | 78 | 36 | 61 | 13 | 236 | 139 | 137 | 19 | 88 |
163 | 130 | 185 | 80 | 224 | 73 | 154 | 53 | 69 | 95 | 181 | 23 | 168 | 34 | 203 | 177 |
94 | 165 | 204 | 215 | 28 | 222 | 83 | 178 | 42 | 43 | 46 | 227 | 141 | 234 | 238 | 37 |
182 | 188 | 47 | 208 | 60 | 179 | 112 | 246 | 52 | 146 | 156 | 191 | 124 | 39 | 9 | 65 |
241 | 171 | 229 | 31 | 183 | 100 | 7 | 118 | 5 | 89 | 239 | 172 | 157 | 206 | 3 | 243 |
0 | 214 | 91 | 230 | 101 | 99 | 151 | 57 | 68 | 110 | 248 | 126 | 51 | 104 | 48 | 56 |
174 | 180 | 148 | 149 | 193 | 250 | 58 | 170 | 26 | 30 | 20 | 15 | 142 | 71 | 155 | 90 |
132 | 72 | 92 | 186 | 200 | 49 | 38 | 59 | 134 | 207 | 17 | 62 | 251 | 216 | 254 | 35 |
0 | 214 | 91 | 230 | 101 | 99 | 151 | 57 | 68 | 110 | 248 | 126 | 51 | 104 | 48 | 56 |
244 | 201 | 82 | 160 | 175 | 105 | 18 | 106 | 115 | 221 | 108 | 16 | 219 | 173 | 2 | 1 |
182 | 188 | 47 | 208 | 60 | 179 | 112 | 246 | 52 | 146 | 156 | 191 | 124 | 39 | 9 | 65 |
226 | 86 | 138 | 192 | 145 | 150 | 24 | 190 | 44 | 63 | 220 | 116 | 144 | 27 | 217 | 32 |
241 | 171 | 229 | 31 | 183 | 100 | 7 | 118 | 5 | 89 | 239 | 172 | 157 | 206 | 3 | 243 |
55 | 249 | 50 | 211 | 111 | 6 | 143 | 140 | 147 | 197 | 40 | 205 | 121 | 74 | 240 | 54 |
109 | 107 | 10 | 21 | 119 | 223 | 75 | 123 | 164 | 212 | 117 | 255 | 22 | 184 | 12 | 232 |
202 | 25 | 237 | 103 | 81 | 120 | 102 | 78 | 36 | 61 | 13 | 236 | 139 | 137 | 19 | 88 |
94 | 165 | 204 | 215 | 28 | 222 | 83 | 178 | 42 | 43 | 46 | 227 | 141 | 234 | 238 | 37 |
163 | 130 | 185 | 80 | 224 | 73 | 154 | 53 | 69 | 95 | 181 | 23 | 168 | 34 | 203 | 177 |
169 | 196 | 33 | 66 | 247 | 253 | 11 | 122 | 176 | 93 | 79 | 131 | 128 | 64 | 67 | 70 |
167 | 159 | 213 | 242 | 166 | 96 | 162 | 245 | 127 | 158 | 76 | 195 | 161 | 136 | 210 | 97 |
187 | 85 | 198 | 235 | 152 | 129 | 135 | 252 | 199 | 29 | 218 | 209 | 98 | 8 | 4 | 133 |
228 | 87 | 113 | 14 | 231 | 77 | 225 | 194 | 84 | 41 | 45 | 114 | 189 | 125 | 233 | 153 |
234 | 95 | 28 | 188 | 141 | 192 | 239 | 217 | 64 | 108 | 166 | 173 | 8 | 4 | 1 | 203 |
80 | 163 | 180 | 155 | 84 | 89 | 232 | 207 | 13 | 10 | 113 | 202 | 150 | 2 | 204 | 148 |
48 | 26 | 247 | 104 | 11 | 183 | 169 | 127 | 58 | 131 | 27 | 32 | 216 | 120 | 71 | 142 |
82 | 123 | 151 | 201 | 210 | 152 | 6 | 176 | 228 | 158 | 29 | 118 | 117 | 213 | 126 | 81 |
59 | 39 | 237 | 223 | 7 | 255 | 137 | 44 | 225 | 125 | 147 | 114 | 21 | 115 | 16 | 224 |
212 | 111 | 101 | 50 | 248 | 15 | 83 | 174 | 184 | 135 | 14 | 119 | 24 | 227 | 54 | 75 |
94 | 230 | 37 | 246 | 18 | 159 | 245 | 144 | 199 | 38 | 112 | 153 | 233 | 43 | 128 | 85 |
97 | 162 | 93 | 181 | 70 | 63 | 122 | 129 | 251 | 79 | 17 | 53 | 205 | 116 | 220 | 87 |
146 | 5 | 62 | 67 | 241 | 30 | 36 | 165 | 143 | 252 | 139 | 22 | 88 | 130 | 73 | 200 |
222 | 56 | 221 | 209 | 121 | 195 | 103 | 96 | 12 | 249 | 208 | 45 | 49 | 154 | 61 | 250 |
98 | 236 | 179 | 20 | 136 | 219 | 23 | 69 | 187 | 52 | 102 | 206 | 253 | 76 | 197 | 19 |
194 | 133 | 214 | 33 | 77 | 35 | 238 | 145 | 74 | 65 | 242 | 170 | 109 | 57 | 90 | 229 |
196 | 198 | 161 | 100 | 107 | 25 | 211 | 189 | 31 | 78 | 182 | 240 | 244 | 157 | 235 | 86 |
60 | 149 | 110 | 41 | 185 | 160 | 218 | 140 | 193 | 68 | 172 | 51 | 72 | 105 | 243 | 178 |
99 | 191 | 177 | 55 | 175 | 171 | 34 | 40 | 47 | 164 | 254 | 46 | 9 | 132 | 138 | 190 |
0 | 215 | 231 | 226 | 42 | 91 | 92 | 186 | 134 | 167 | 66 | 106 | 156 | 124 | 168 | 3 |
82 | 123 | 151 | 201 | 210 | 152 | 6 | 176 | 228 | 158 | 29 | 118 | 117 | 213 | 126 | 81 |
59 | 39 | 237 | 223 | 7 | 255 | 137 | 44 | 225 | 125 | 147 | 114 | 21 | 115 | 16 | 224 |
234 | 95 | 28 | 188 | 141 | 192 | 239 | 217 | 64 | 108 | 166 | 173 | 8 | 4 | 1 | 203 |
98 | 236 | 179 | 20 | 136 | 219 | 23 | 69 | 187 | 52 | 102 | 206 | 253 | 76 | 197 | 19 |
48 | 26 | 247 | 104 | 11 | 183 | 169 | 127 | 58 | 131 | 27 | 32 | 216 | 120 | 71 | 142 |
97 | 162 | 93 | 181 | 70 | 63 | 122 | 129 | 251 | 79 | 17 | 53 | 205 | 116 | 220 | 87 |
99 | 191 | 177 | 55 | 175 | 171 | 34 | 40 | 47 | 164 | 254 | 46 | 9 | 132 | 138 | 190 |
222 | 56 | 221 | 209 | 121 | 195 | 103 | 96 | 12 | 249 | 208 | 45 | 49 | 154 | 61 | 250 |
146 | 5 | 62 | 67 | 241 | 30 | 36 | 165 | 143 | 252 | 139 | 22 | 88 | 130 | 73 | 200 |
212 | 111 | 101 | 50 | 248 | 15 | 83 | 174 | 184 | 135 | 14 | 119 | 24 | 227 | 54 | 75 |
60 | 149 | 110 | 41 | 185 | 160 | 218 | 140 | 193 | 68 | 172 | 51 | 72 | 105 | 243 | 178 |
80 | 163 | 180 | 155 | 84 | 89 | 232 | 207 | 13 | 10 | 113 | 202 | 150 | 2 | 204 | 148 |
194 | 133 | 214 | 33 | 77 | 35 | 238 | 145 | 74 | 65 | 242 | 170 | 109 | 57 | 90 | 229 |
0 | 215 | 231 | 226 | 42 | 91 | 92 | 186 | 134 | 167 | 66 | 106 | 156 | 124 | 168 | 3 |
94 | 230 | 37 | 246 | 18 | 159 | 245 | 144 | 199 | 38 | 112 | 153 | 233 | 43 | 128 | 85 |
196 | 198 | 161 | 100 | 107 | 25 | 211 | 189 | 31 | 78 | 182 | 240 | 244 | 157 | 235 | 86 |
244 | 229 | 218 | 248 | 205 | 160 | 207 | 64 | 38 | 60 | 233 | 136 | 133 | 171 | 155 | 203 |
127 | 72 | 247 | 90 | 186 | 176 | 250 | 18 | 188 | 32 | 182 | 173 | 120 | 108 | 142 | 2 |
118 | 48 | 3 | 130 | 252 | 76 | 82 | 97 | 204 | 49 | 235 | 16 | 27 | 241 | 34 | 75 |
37 | 196 | 36 | 122 | 62 | 180 | 11 | 73 | 178 | 189 | 128 | 54 | 153 | 99 | 167 | 71 |
231 | 63 | 78 | 200 | 101 | 253 | 251 | 45 | 135 | 157 | 58 | 131 | 88 | 65 | 8 | 4 |
240 | 249 | 51 | 220 | 112 | 209 | 10 | 117 | 86 | 19 | 121 | 40 | 228 | 145 | 149 | 216 |
13 | 89 | 79 | 113 | 68 | 115 | 6 | 201 | 236 | 7 | 44 | 232 | 31 | 223 | 67 | 114 |
41 | 226 | 151 | 242 | 43 | 52 | 192 | 140 | 255 | 57 | 123 | 212 | 239 | 116 | 208 | 238 |
105 | 93 | 166 | 170 | 181 | 92 | 172 | 9 | 61 | 245 | 243 | 152 | 104 | 125 | 169 | 29 |
158 | 179 | 191 | 84 | 193 | 175 | 74 | 21 | 26 | 30 | 14 | 80 | 139 | 159 | 144 | 46 |
111 | 94 | 42 | 132 | 197 | 187 | 28 | 66 | 85 | 237 | 227 | 168 | 126 | 96 | 22 | 15 |
165 | 161 | 185 | 210 | 20 | 147 | 162 | 35 | 146 | 47 | 138 | 55 | 177 | 234 | 83 | 222 |
150 | 219 | 211 | 254 | 98 | 194 | 33 | 23 | 198 | 148 | 225 | 195 | 12 | 199 | 224 | 25 |
163 | 214 | 183 | 95 | 50 | 184 | 56 | 154 | 230 | 109 | 53 | 107 | 39 | 5 | 87 | 137 |
246 | 202 | 17 | 206 | 190 | 164 | 100 | 124 | 221 | 70 | 119 | 102 | 156 | 69 | 24 | 143 |
0 | 1 | 215 | 91 | 110 | 103 | 59 | 77 | 217 | 141 | 81 | 174 | 106 | 213 | 134 | 129 |
150 | 219 | 211 | 254 | 98 | 194 | 33 | 23 | 198 | 148 | 225 | 195 | 12 | 199 | 224 | 25 |
105 | 93 | 166 | 170 | 181 | 92 | 172 | 9 | 61 | 245 | 243 | 152 | 104 | 125 | 169 | 29 |
165 | 161 | 185 | 210 | 20 | 147 | 162 | 35 | 146 | 47 | 138 | 55 | 177 | 234 | 83 | 222 |
37 | 196 | 36 | 122 | 62 | 180 | 11 | 73 | 178 | 189 | 128 | 54 | 153 | 99 | 167 | 71 |
118 | 48 | 3 | 130 | 252 | 76 | 82 | 97 | 204 | 49 | 235 | 16 | 27 | 241 | 34 | 75 |
0 | 1 | 215 | 91 | 110 | 103 | 59 | 77 | 217 | 141 | 81 | 174 | 106 | 213 | 134 | 129 |
231 | 63 | 78 | 200 | 101 | 253 | 251 | 45 | 135 | 157 | 58 | 131 | 88 | 65 | 8 | 4 |
111 | 94 | 42 | 132 | 197 | 187 | 28 | 66 | 85 | 237 | 227 | 168 | 126 | 96 | 22 | 15 |
41 | 226 | 151 | 242 | 43 | 52 | 192 | 140 | 255 | 57 | 123 | 212 | 239 | 116 | 208 | 238 |
240 | 249 | 51 | 220 | 112 | 209 | 10 | 117 | 86 | 19 | 121 | 40 | 228 | 145 | 149 | 216 |
246 | 202 | 17 | 206 | 190 | 164 | 100 | 124 | 221 | 70 | 119 | 102 | 156 | 69 | 24 | 143 |
163 | 214 | 183 | 95 | 50 | 184 | 56 | 154 | 230 | 109 | 53 | 107 | 39 | 5 | 87 | 137 |
244 | 229 | 218 | 248 | 205 | 160 | 207 | 64 | 38 | 60 | 233 | 136 | 133 | 171 | 155 | 203 |
13 | 89 | 79 | 113 | 68 | 115 | 6 | 201 | 236 | 7 | 44 | 232 | 31 | 223 | 67 | 114 |
127 | 72 | 247 | 90 | 186 | 176 | 250 | 18 | 188 | 32 | 182 | 173 | 120 | 108 | 142 | 2 |
158 | 179 | 191 | 84 | 193 | 175 | 74 | 21 | 26 | 30 | 14 | 80 | 139 | 159 | 144 | 46 |
Step 1. We generate a 16x16 matrix using elements from GF∗(210) by implementing the subsequent approach, taking into account that our coset diagram encompasses 172 orbits.
We can begin by examining the orbit in the coset diagram that contains α1. We can refer to this orbit as γ1, and we can apply the transformation lmlm−1l l to α1 which will result in α947. While traversing through this path, we encounter α1022,α77,α946andα76 before finally arriving at α947. We can represent α76 as the final element of the first row of the 16×16 look-up table. After writing 1 node of any γkϵ{γj:j=1,2,3,…,170}, in order to choose the next copy from γj, we find a node v=αi1+1, where αi1,αi2,αi3,αi4,αi5,andαi6 are the nodes of γk, such that i1<ij, where j=2,3,4,5,6. If αi1+1 is utilized in earlier selected copies of γj, then we go on to the copy of γj containing v=αi1+2 and so on. For moving on to each node we apply lmlm−1lonv. Note that, in each γj, there are 0,1,2or3 nodes belonging to GF∗(210) out of 6. Write these nodes in the 16×16 lookup table in a specific order. The function keeps iterating until all the 1022 nodes of γj are utilized. Next, select 0 from π and place it as the first element of the last row.
Step 2. Let h:GF∗(210)→GF(28) be defined by the equation f(αn)=ωn4, where the elements of F28 are represented using powers of ω as demonstrated in Table 2. The irreducible polynomial p(x) = x10+x3+1 over Z2 is used in this context. In this stage, we execute the function h on every matrix utilized in the initial step. By following this approach, we generate a 16x16 matrix consisting of elements from GF(28). Subsequently, we transform each element of the matrix into binary form, and eventually, we convert them into decimal form. Similarly we have done the same task for remainders 1, 2 and 3. For the remainders 1, 2 and 3, we use mappings f(αn)=ωn−14,ωn−24andωn−34 respectively. In this way we have obtained 4 S-boxes (Tables 3, 5, 7, 9) having nonlinearity 101,102,103 and 104 respectively. These S-boxes are acceptable in encryption processes and are up to the mark. We increase their strength by utilizing permutations of the group S16 in the following manner:
Algorithm 1: Permutations of the group S16. |
a. In Table 4, we apply the following permutation (174316138141110129156)(25) of the group S16 to generate our proposed S-box 1. |
b. In Table 6, we apply the following permutation (1)(24)(31578145131110916) of the group S16 to generate our proposed S-box 2. |
c. In Table 8, we apply the following permutation (135212131614114)(6108)(715)(9) of the group S16 to generate our proposed S-box 3. |
d. In Table 10, we apply the following permutation (113)(2151189)(3571412)(4)(61016) of the group S16 to generate our proposed S-box 4. |
In order to increase the nonlinearity of bijective S-box (n×m), a strategy of dividing a larger S-box into smaller S-boxes makes sense. In this strategy, a larger S-box of 2048 bits is arranged into 16 smaller blocks. Each element of the S-box consists of one byte and each smaller S-box contains 128 bits. In the first round, start dividing the standard/required S-box into smaller S-boxes column wise and store them in an arrayList. In the second round, repeat the same process row wise. After that, in order to increase the nonlinearity [38], swap each smaller S-box with another S-box while keeping an eye on nonlinearity.
Algorithm 2 is introduced, which utilizes the divide and conquer approach, beginning with the development of an S-box using a coset graph.
Algorithm 2: Divide and conquer strategy based nonlinear booster algorithm. |
Step1: S1 ← the function F(n) generates bijective S-box S1(n×m) using coset graph. |
Step2: S2 ←S1 ∴ Here we are generating temporary copy of actual S-box, |
While 1: n ∴ Setting a loop that continue to execute loop body (Step 3 to 7) as long as condition holds true |
Step 3: Received 16 blocks of size 4×4 ← divide the S-box (S2) into blocks of size 128 bits. |
Step4: Received updated S-box (S2) ← Swap the one block size 4×4 with another one. |
Step5: NewNL ← calculate the nonlinearity of updated S-box. |
Step 6: Compare new NL with NL of actual S-box. |
Stept 7: If the new nonlinearity (NL) is greater than the actual NL, make this change permanent. Otherwise, reverse the change. |
end |
Step 8: We will receive an S-box with improved nonlinearity. |
Results after applying Algorithm 1
In Tables 11–14, we are presenting optimized S-boxes using Algorithm 2. The proposed S-boxes have a nonlinearity of 112.
7 | 167 | 60 | 72 | 84 | 183 | 100 | 3 | 157 | 238 | 228 | 20 | 69 | 226 | 123 | 40 |
152 | 204 | 44 | 208 | 255 | 166 | 141 | 24 | 162 | 89 | 215 | 148 | 224 | 142 | 30 | 249 |
116 | 160 | 77 | 79 | 195 | 59 | 177 | 156 | 117 | 207 | 219 | 15 | 35 | 17 | 91 | 66 |
185 | 143 | 222 | 225 | 173 | 254 | 104 | 139 | 94 | 65 | 102 | 196 | 197 | 36 | 31 | 145 |
5 | 172 | 233 | 239 | 76 | 78 | 227 | 25 | 6 | 92 | 223 | 158 | 232 | 55 | 179 | 41 |
26 | 62 | 114 | 43 | 137 | 129 | 51 | 186 | 206 | 176 | 90 | 237 | 112 | 198 | 1 | 135 |
211 | 111 | 190 | 230 | 241 | 163 | 9 | 180 | 110 | 250 | 146 | 113 | 16 | 47 | 133 | 96 |
33 | 19 | 242 | 125 | 18 | 121 | 68 | 107 | 52 | 147 | 122 | 23 | 56 | 81 | 210 | 61 |
217 | 216 | 201 | 103 | 109 | 67 | 63 | 144 | 236 | 251 | 205 | 161 | 153 | 99 | 29 | 27 |
182 | 71 | 0 | 150 | 32 | 235 | 170 | 73 | 138 | 247 | 155 | 85 | 203 | 88 | 130 | 22 |
192 | 64 | 120 | 80 | 252 | 253 | 119 | 234 | 189 | 115 | 220 | 214 | 70 | 169 | 159 | 229 |
97 | 98 | 118 | 187 | 231 | 14 | 175 | 191 | 154 | 171 | 13 | 106 | 57 | 93 | 53 | 202 |
11 | 174 | 54 | 38 | 132 | 199 | 101 | 82 | 188 | 164 | 21 | 128 | 74 | 10 | 2 | 45 |
105 | 50 | 39 | 149 | 75 | 140 | 87 | 194 | 221 | 213 | 178 | 124 | 34 | 134 | 127 | 108 |
212 | 248 | 245 | 136 | 58 | 184 | 8 | 48 | 240 | 168 | 200 | 151 | 244 | 209 | 95 | 83 |
37 | 4 | 246 | 218 | 46 | 28 | 12 | 193 | 126 | 49 | 42 | 243 | 165 | 181 | 131 | 86 |
20 | 116 | 237 | 8 | 167 | 218 | 0 | 185 | 93 | 9 | 94 | 166 | 176 | 182 | 102 | 106 |
129 | 115 | 118 | 208 | 78 | 160 | 143 | 165 | 22 | 157 | 112 | 179 | 145 | 124 | 16 | 225 |
212 | 219 | 226 | 72 | 25 | 215 | 98 | 50 | 42 | 152 | 26 | 198 | 28 | 149 | 70 | 59 |
201 | 85 | 103 | 247 | 180 | 38 | 134 | 69 | 49 | 95 | 249 | 213 | 105 | 121 | 138 | 181 |
45 | 14 | 41 | 144 | 29 | 195 | 161 | 67 | 47 | 220 | 254 | 132 | 27 | 60 | 206 | 51 |
76 | 87 | 120 | 48 | 139 | 12 | 199 | 37 | 240 | 174 | 189 | 34 | 63 | 211 | 99 | 131 |
104 | 128 | 141 | 56 | 194 | 100 | 233 | 183 | 170 | 108 | 5 | 153 | 113 | 10 | 130 | 142 |
173 | 58 | 217 | 1 | 110 | 65 | 151 | 43 | 190 | 97 | 33 | 96 | 89 | 178 | 238 | 83 |
252 | 6 | 196 | 216 | 82 | 150 | 31 | 11 | 19 | 135 | 68 | 123 | 228 | 21 | 122 | 158 |
175 | 55 | 214 | 3 | 162 | 86 | 17 | 184 | 30 | 36 | 133 | 171 | 188 | 127 | 197 | 146 |
18 | 80 | 227 | 40 | 13 | 200 | 92 | 159 | 154 | 77 | 79 | 234 | 54 | 156 | 2 | 177 |
44 | 101 | 224 | 137 | 91 | 209 | 64 | 15 | 109 | 46 | 210 | 53 | 248 | 231 | 192 | 230 |
187 | 117 | 126 | 202 | 81 | 232 | 7 | 88 | 207 | 168 | 71 | 169 | 193 | 253 | 23 | 111 |
164 | 186 | 222 | 239 | 74 | 172 | 24 | 39 | 236 | 203 | 61 | 163 | 119 | 148 | 245 | 62 |
235 | 229 | 140 | 250 | 205 | 251 | 242 | 241 | 155 | 223 | 125 | 244 | 246 | 204 | 75 | 243 |
221 | 57 | 84 | 191 | 107 | 35 | 136 | 255 | 114 | 52 | 32 | 4 | 90 | 147 | 66 | 73 |
082 | 123 | 151 | 201 | 210 | 152 | 006 | 176 | 228 | 158 | 029 | 118 | 117 | 213 | 126 | 081 |
171 | 248 | 032 | 121 | 080 | 120 | 025 | 012 | 155 | 194 | 203 | 156 | 150 | 084 | 250 | 061 |
148 | 038 | 063 | 089 | 231 | 141 | 197 | 095 | 056 | 107 | 030 | 221 | 208 | 161 | 115 | 053 |
255 | 185 | 237 | 193 | 218 | 241 | 192 | 196 | 005 | 235 | 190 | 128 | 022 | 187 | 039 | 251 |
083 | 175 | 183 | 130 | 142 | 062 | 002 | 238 | 104 | 099 | 067 | 143 | 229 | 047 | 106 | 108 |
059 | 239 | 249 | 073 | 233 | 180 | 090 | 091 | 163 | 174 | 004 | 114 | 222 | 068 | 064 | 100 |
207 | 140 | 055 | 027 | 125 | 102 | 164 | 216 | 093 | 076 | 243 | 060 | 111 | 145 | 077 | 230 |
058 | 186 | 041 | 028 | 014 | 070 | 031 | 189 | 166 | 212 | 159 | 088 | 247 | 000 | 078 | 253 |
045 | 160 | 103 | 219 | 036 | 157 | 169 | 065 | 105 | 177 | 016 | 245 | 240 | 001 | 003 | 127 |
232 | 136 | 138 | 252 | 037 | 225 | 162 | 168 | 096 | 137 | 023 | 110 | 149 | 008 | 098 | 195 |
170 | 009 | 033 | 215 | 226 | 011 | 085 | 050 | 153 | 021 | 206 | 191 | 013 | 094 | 246 | 242 |
182 | 042 | 181 | 113 | 79 | 179 | 122 | 224 | 133 | 204 | 109 | 217 | 147 | 040 | 154 | 057 |
167 | 205 | 173 | 178 | 044 | 043 | 198 | 112 | 086 | 046 | 017 | 024 | 026 | 072 | 200 | 132 |
188 | 139 | 172 | 071 | 124 | 209 | 054 | 010 | 034 | 075 | 244 | 116 | 097 | 101 | 066 | 007 |
254 | 214 | 087 | 052 | 236 | 165 | 144 | 131 | 019 | 146 | 184 | 051 | 015 | 223 | 119 | 220 |
211 | 049 | 069 | 020 | 129 | 234 | 135 | 092 | 199 | 227 | 134 | 202 | 048 | 018 | 074 | 035 |
150 | 219 | 211 | 254 | 098 | 194 | 033 | 023 | 198 | 148 | 225 | 195 | 012 | 199 | 224 | 025 |
131 | 107 | 015 | 084 | 160 | 109 | 203 | 240 | 034 | 141 | 166 | 218 | 209 | 068 | 003 | 132 |
065 | 061 | 044 | 100 | 137 | 040 | 181 | 094 | 035 | 041 | 011 | 173 | 079 | 083 | 247 | 237 |
016 | 031 | 054 | 202 | 167 | 136 | 077 | 006 | 182 | 248 | 170 | 037 | 221 | 104 | 253 | 067 |
081 | 060 | 215 | 189 | 080 | 128 | 097 | 164 | 039 | 106 | 184 | 046 | 186 | 200 | 208 | 112 |
056 | 102 | 146 | 214 | 229 | 062 | 233 | 238 | 116 | 122 | 156 | 169 | 021 | 127 | 070 | 174 |
178 | 239 | 180 | 045 | 117 | 147 | 246 | 192 | 222 | 206 | 129 | 172 | 118 | 099 | 171 | 119 |
213 | 090 | 130 | 149 | 216 | 242 | 126 | 087 | 022 | 210 | 110 | 075 | 052 | 093 | 236 | 232 |
140 | 008 | 051 | 004 | 145 | 227 | 074 | 176 | 228 | 066 | 095 | 013 | 059 | 231 | 076 | 155 |
036 | 255 | 201 | 055 | 157 | 153 | 159 | 175 | 103 | 017 | 113 | 071 | 001 | 252 | 187 | 154 |
005 | 020 | 250 | 096 | 125 | 057 | 092 | 196 | 197 | 124 | 072 | 142 | 163 | 101 | 204 | 115 |
028 | 042 | 029 | 114 | 089 | 053 | 193 | 223 | 027 | 191 | 135 | 220 | 226 | 014 | 120 | 165 |
134 | 111 | 241 | 230 | 139 | 082 | 235 | 207 | 058 | 143 | 019 | 002 | 177 | 162 | 190 | 158 |
188 | 030 | 151 | 078 | 185 | 064 | 088 | 026 | 108 | 183 | 018 | 243 | 212 | 000 | 050 | 152 |
105 | 032 | 179 | 121 | 091 | 038 | 069 | 217 | 048 | 234 | 024 | 063 | 144 | 009 | 123 | 138 |
161 | 007 | 073 | 245 | 010 | 249 | 043 | 049 | 168 | 086 | 133 | 251 | 085 | 047 | 244 | 205 |
In order to keep security precautions in place, we have worked on cryptanalysis in this section. We ran a number of security measure tests to determine key characteristics of our proposed S-boxes. We can utilize the proposed S-boxes in various coding schemes and secure communication by examining its cryptographic properties. Our proposed S-boxes are evaluated by standard evaluation criteria including, nonlinearity, bit independence criterion (BIC), strict avalanche criterion (SAC), linear approximation probability (LP), differential approximation probability (DP), fixed point (Fp), and reverse fixed point (OFp). We examined the proposed S-box's outcomes and contrasted them with those of known S-boxes. Let's look at these tests in more detail for a better understanding.
In Table 15, average nonlinearity values of well-known S-boxes are shown, including the comparison of these values with the value of our proposed S-boxes. Table 16 presents a detailed Bit Independence Criterion analysis for the proposed S-box-4. This table provides an in-depth exploration of BIC. Table 17 depicts a comprehensive BIC comparison between our proposed S-boxes and other existing S-boxes. Table 18 shows a detailed breakdowns of the SAC for our S-boxes. Additionally, this table also includes the average SAC. Table 19 demonstrates the LP analysis for our S-boxes, along with comparison to other S-boxes. Table 20 contains comprehensive DP analysis for proposed S-box-4. Table 21 illustrates the analysis of fixed point, reverse fixed pint for our S-boxes, alongside a comparative assessment with other S-boxes.
S-box | f1 | f2 | f3 | f4 | f5 | f6 | f7 | f8 | Average |
Proposed 1 (Table 11) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 2 (Table 12) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 3 (Table 13) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 4 (Table 14) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Zhu [40] | 108 | 108 | 106 | 102 | 108 | 102 | 108 | 104 | 105.75 |
Zahid [41] | 110 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 111.75 |
Hussain [42] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Gautam et al. [43] | 108 | 106 | 104 | 98 | 102 | 102 | 98 | 74 | 99 |
Prime [44] | 94 | 100 | 104 | 104 | 102 | 100 | 98 | 94 | 99.5 |
S8 AES [45] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Xhi [46] | 106 | 104 | 106 | 106 | 104 | 106 | 104 | 106 | 105 |
AES [47] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Skipjac and Kea [48] | 104 | 108 | 108 | 108 | 108 | 104 | 104 | 106 | 106.75 |
Alkhaldi et al. [19] | 108 | 104 | 106 | 106 | 102 | 98 | 104 | 108 | 104 |
Chen et al. [49] | 100 | 102 | 103 | 104 | 106 | 106 | 106 | 108 | 104.3 |
Tang et al. [50] | 100 | 103 | 104 | 104 | 105 | 105 | 106 | 109 | 104.5 |
Khan et al. [37] | 102 | 108 | 106 | 102 | 106 | 106 | 106 | 98 | 104.25 |
Belazi et al. [51] | 106 | 106 | 106 | 104 | 108 | 102 | 106 | 104 | 105.25 |
Hua [52] | 106 | 106 | 108 | 106 | 102 | 102 | 108 | 104 | 105.25 |
Javeed [53] | 108 | 106 | 106 | 110 | 106 | 108 | 108 | 108 | 107.50 |
Detailed BIC Analysis for proposed S-box-4 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---- | 102 | 104 | 100 | 106 | 106 | 106 | 106 | |
102 | ---- | 102 | 108 | 104 | 108 | 104 | 102 | |
104 | 102 | ---- | 104 | 108 | 108 | 102 | 104 | |
100 | 108 | 104 | ---- | 104 | 108 | 106 | 108 | |
106 | 104 | 108 | 104 | ---- | 96 | 104 | 98 | |
106 | 108 | 108 | 108 | 96 | ---- | 104 | 106 | |
106 | 104 | 102 | 106 | 104 | 104 | ---- | 104 | |
106 | 102 | 104 | 108 | 98 | 106 | 104 | ---- | |
Average BIC: 104.35 |
S-boxes | Minimum value | Average | Square deviation |
Proposed 1 | 96 | 103.42 | 2.56 |
Proposed 2 | 98 | 102.86 | 2.38 |
Proposed 3 | 96 | 104.57 | 2.41 |
Proposed 4 | 96 | 104.35 | 2.81 |
Hussain [42] | 112 | 112 | 0 |
Gautam [43] | 92 | 103 | 3.5225 |
Prime [44] | 94 | 101.71 | 3.53 |
S8 AES [54] | 112 | 112 | 0 |
Xyi [46] | 98 | 103.78 | 2.743 |
AES [47] | 112 | 112 | 0 |
Skipjac [48] | 102 | 104.14 | 1.767 |
SAC Results (S-box-1) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
0.484375 | 0.531250 | 0.484375 | 0.546875 | 0.484375 | 0.515625 | 0.484375 | 0.468750 | |
0.546875 | 0.500000 | 0.515625 | 0.546875 | 0.453125 | 0.515625 | 0.515625 | 0.468750 | |
0.484375 | 0.500000 | 0.500000 | 0.484375 | 0.515625 | 0.500000 | 0.500000 | 0.515625 | |
0.453125 | 0.546875 | 0.578125 | 0.515625 | 0.500000 | 0.578125 | 0.531250 | 0.484375 | |
0.531250 | 0.562500 | 0.484375 | 0.515625 | 0.515625 | 0.515625 | 0.515625 | 0.484375 | |
0.531250 | 0.468750 | 0.500000 | 0.500000 | 0.484375 | 0.484375 | 0.484375 | 0.515625 | |
0.515625 | 0.515625 | 0.531250 | 0.468750 | 0.500000 | 0.562500 | 0.500000 | 0.531250 | |
0.453125 | 0.484375 | 0.546875 | 0.562500 | 0.500000 | 0.484375 | 0.500000 | 0.531250 | |
Average SAC (S-box-1) | 0.508301 | |||||||
Average SAC (S-box-2) | 0.504150 | |||||||
Average SAC (S-box-3) | 0.499756 | |||||||
Average SAC (S-box-4) | 0.506348 |
S-boxes | Max value | Max LP |
Proposed 1 (Table 11) | 160 | 0.125 |
Proposed 2 (Table 12) | 162 | 0.133 |
Proposed 3 (Table 13) | 164 | 0.141 |
Proposed 4 (Table 14) | 158 | 0.117 |
AES [47] | 144 | 0.062 |
Hussain [42] | 144 | 0.062 |
Skipjack [48] | 156 | 0.109 |
Prime [44] | 162 | 0.132 |
Gautam [43] | 164 | 0.2109 |
S8 AES [54] | 144 | 0.062 |
Xyi [46] | 168 | 0.156 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
0 | 8 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 | 6 | 6 |
6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 |
6 | 6 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 |
6 | 8 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 10 | 8 | 6 | 6 | 6 | 6 | 6 |
8 | 8 | 6 | 8 | 8 | 6 | 8 | 4 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 |
6 | 8 | 6 | 6 | 6 | 8 | 6 | 4 | 6 | 6 | 8 | 6 | 8 | 6 | 4 | 8 |
6 | 10 | 12 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 6 |
6 | 8 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 10 | 8 | 6 | 6 | 8 |
8 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 | 6 | 4 | 8 | 6 | 6 |
6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 8 | 6 | 6 | 8 | 6 |
8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 |
6 | 6 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 |
8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 6 | 6 | 6 | 8 | 6 |
8 | 6 | 8 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 6 |
6 | 8 | 8 | 8 | 8 | 8 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 6 |
Max Val: 12 |
S-box | No. of fixed point | No. of reverse fixed point |
Lambić [32] | 2 | 3 |
Jamal [58] | 18 | None |
Tian [59] | 1 | 1 |
Çavuşoğlu [60] | 0 | 2 |
Özkaynak [61] | 4 | 1 |
Ullah [23] | 4 | None |
Proposed S-box-1 (Table-11) | 3 | 1 |
Proposed S-box-2 (Table-12) | 1 | 1 |
Proposed S-box-3 (Table-13) | 2 | None |
Proposed S-box-4 (Table-14) | 3 | 1 |
In 1988, Pieprzyk and Finkelstein [39] introduced the term nonlinearity. The strength of the S-box is measured by this tool. It is very important in order to know the non-linear properties of the encrypted or coded material. A nonlinear component (S-box) with greater nonlinearity is generally considered more secure than one with lower nonlinearity. The mathematical formula is as follows:
Nk=2l−1(1−2−lmax|S(k)(j)|), |
where
S(k)(j)=∑j∈Fl2(−1)(k(x)⊗⍭.j. |
The newly proposed S-boxes have an average nonlinearity value of 112. Table 15 presents a comparison between the proposed S-boxes and other robust S-boxes.
The pairwise avalanche vectors' independent behavior and the variations in input bits are primarily evaluated using the bit independence criterion [29,30]. We have tested and sorted out the nonlinearity of the proposed S-box via BIC. In Table 17, the proposed S-box's minimum and average BIC values are compared with other well-known S-boxes' square deviation values.
Tavares and Webster [39] introduced Strict Avalanche Criterion. In this article, they gave the idea of avalanche and completeness effect. The purpose of the SAC component is achieved if there is a 0.5 probability that each output bit is changed by modifying a single input bit. In Table 18, the SAC of proposed S-box is displayed.
We investigate about the highest imbalance of an event in Linear Approximation Probability [55]. The uniformity of the input bits should be similar to that of output bits. Every input bit is examined separately and its results are scrutinizing by output bits. The masks denoted by ωx and ωy respectively are applied on the uniformity of both input and output bits. It is given as
LP=maxωx,ωy≠0|#{f|f.ωx=S(f)∗ωy}2n−12|, |
where f is the collection of all possible inputs and 2n represents the total number of elements. The results of our proposed S-box and different renowned S-boxes via LP are shown in Table 15. Our proposed S-box is built so well and strong enough to avoid the linear attacks while comparison.
A non-linear mapping is used to sort out the differential uniformity. It is a relation between input and output bits. The input differential has a distinct transformation with the output differential. It is given as
Dps(Δg→Δh)=[#{g∈I|S(g)⊕S(g⊕Δg)=Δh}]2n. |
Here, Δg and Δh refer to the differentials of the input and output, respectively. We applied this test on our S-box and the results are as follows (Table 20).
A fixed point in an S-box refers to an input value that remains unchanged after undergoing the substitution process. In other words, if a specific input value maps to the same value as the output, that input value is said to be a fixed point. Fixed points potentially impact the resistance of the S-box against certain attacks. Therefore, an S-box designer ensures that there are no fixed points (FP) in the particular S-box and such an S-box is very useful in image encryption [6]. On the other hand, when an output value is used as an input, it yields the original input value, which is known as a reverse fixed point. Additionally, short cycles are specific patterns that appear in the output values of an S-box. Liu et al. [56] proposed an improved coupling quadratic map (ICQM) algorithm for S-box design, and in order to remove fixed point and reverse fixed point criteria. To prevent leakage in any statistical cryptanalysis, the number of Fp and OFp should be kept as low as possible. In modern S-box designs, researchers have successfully eliminated the Fp and OFp by employing a 2D enhanced quadratic map [57].
The main accomplishment of this research is to create a way to use coset graph and optimization algorithms to develop secure S-boxes with enhanced nonlinearity. In this article, we propose a new, simple, and efficient S-box construction scheme based on a coset graph over the finite field GF(210). Various evaluations are conducted to determine the efficacy of the proposed S-box construction method, and the results are completely satisfactory. The experimental results demonstrated that the proposed S-boxes are strong enough to provide security against various algebraic attacks. Furthermore, the proposed nonlinearity enhancement algorithm improves the cryptographic properties of the constructed S-boxes. The application of the proposed algorithm is not restricted to the proposed S-boxes, but it can also improve the nonlinearity of any S-box.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors have no conflicts of interest to declare that are relevant to the content of this article.
[1] |
S. Asongu, M. Amari, A. Jarboui, K. Mouakhar, ICT dynamics for gender inclusive intermediary education: minimum poverty and inequality thresholds in developing countries, Telecommun. Policy, 45 (2021), 102125. https://doi.org/10.1016/j.telpol.2021.102125 doi: 10.1016/j.telpol.2021.102125
![]() |
[2] |
E. B. Barbier, J. P. Hochard, Land degradation and poverty, Nat. Sustain., 1 (2018), 623–631. https://doi.org/10.1038/s41893-018-0155-4 doi: 10.1038/s41893-018-0155-4
![]() |
[3] |
Q. Song, J. Li, Y. Wu, Z. Yin, Accessibility of financial services and household consumption in China: evidence from micro data, The North American Journal of Economics and Finance, 53 (2020), 101213. https://doi.org/10.1016/j.najef.2020.101213 doi: 10.1016/j.najef.2020.101213
![]() |
[4] |
S. Xu, C. Yang, Z. Huang, P. Failler, Interaction between digital economy and environmental pollution: new evidence from a spatial perspective, Int. J. Environ. Res. Public Health, 19 (2022), 5074. https://doi.org/10.3390/ijerph19095074 doi: 10.3390/ijerph19095074
![]() |
[5] | H. Qi, Does the development of regional financial inclusion affect economic growth?, In: 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), 2022,760–764. https://doi.org/10.1109/ITOEC53115.2022.9734457 |
[6] |
Z. J. Zhou, Y. Yao, J. M. Zhu, The impact of inclusive finance on high-quality economic development of the Yangtze River delta in China, Math. Probl. Eng., 2022 (2022), 3393734. https://doi.org/10.1155/2022/3393734 doi: 10.1155/2022/3393734
![]() |
[7] |
H. Ge, L. Tang, X. Zhou, D. Tang, V. Boamah, Research on the effect of rural inclusive financial ecological environment on rural household income in China, Int. J. Environ. Res. Public Health, 19 (2022), 2486. https://doi.org/10.3390/ijerph19042486 doi: 10.3390/ijerph19042486
![]() |
[8] |
H. Wang, Y. Zhuo, The necessary way for the development of China's rural areas in the new era-rural revitalization strategy, Open Journal of Social Sciences, 6 (2018), 97–106. https://doi.org/10.4236/jss.2018.66010 doi: 10.4236/jss.2018.66010
![]() |
[9] |
C. H. He, H. Y. Du, Urbanization, inclusive finance and urban-rural income gap, Appl. Econ. Lett., 29 (2022), 755–759. https://doi.org/10.1080/13504851.2021.1885603 doi: 10.1080/13504851.2021.1885603
![]() |
[10] |
T. Li, J. Zhong, Z. Huang, Potential dependence of financial cycles between emerging and developed countries: based on ARIMA-GARCH Copula model, Emerg. Mark. Financ. Tr., 56 (2020), 1237–1250. https://doi.org/10.1080/1540496x.2019.1611559 doi: 10.1080/1540496x.2019.1611559
![]() |
[11] |
Z. Li, Z. Ao, B. Mo, Revisiting the valuable roles of global financial assets for international stock markets: quantile coherence and causality-in-quantiles approaches, Mathematics, 9 (2021), 1750. https://doi.org/10.3390/math9151750 doi: 10.3390/math9151750
![]() |
[12] |
Z. Li, H. Dong, C. Floros, A. Charemis, P. Failler, Re-examining Bitcoin Volatility: A CAViaR-based Approach, Emerg. Mark. Financ. Tr., 58 (2022), 1320–1338. https://doi.org/10.1080/1540496x.2021.1873127 doi: 10.1080/1540496x.2021.1873127
![]() |
[13] |
Z. Li, F. Zou, B. Mo, Does mandatory CSR disclosure affect enterprise total factor productivity?, Economic Research-Ekonomska Istrazivanja, 35 (2022), 4902–4921. https://doi.org/10.1080/1331677x.2021.2019596 doi: 10.1080/1331677x.2021.2019596
![]() |
[14] |
Y. Liu, Z. Li, M. Xu, The influential factors of financial cycle spillover: evidence from China, Emerg. Mark. Financ. Tr., 56 (2020), 1336–1350. https://doi.org/10.1080/1540496x.2019.1658076 doi: 10.1080/1540496x.2019.1658076
![]() |
[15] |
Y. Zheng, Z. Wang, Z. Huang, T. Jiang, Comovement between the Chinese business cycle and financial volatility: based on a DCC-MIDAS model, Emerg. Mark. Financ. Tr., 56 (2020), 1181–1195. https://doi.org/10.1080/1540496x.2019.1620100 doi: 10.1080/1540496x.2019.1620100
![]() |
[16] |
K. H. Liow, J. Song, X. Zhou, Volatility connectedness and market dependence across major financial markets in China economy, Quant. Financ. Econ., 5 (2021), 397–420. https://doi.org/10.3934/qfe.2021018 doi: 10.3934/qfe.2021018
![]() |
[17] |
T. Tuzcuoglu, The impact of financial fragility on firm performance: an analysis of BIST companies, Quant. Financ. Econ., 4 (2020), 310–342. https://doi.org/10.3934/qfe.2020015 doi: 10.3934/qfe.2020015
![]() |
[18] |
G. Corrado, L. Corrado, Inclusive finance for inclusive growth and development, Curr. Opin. Env. Sust., 24 (2017), 19–23. https://doi.org/10.1016/j.cosust.2017.01.013 doi: 10.1016/j.cosust.2017.01.013
![]() |
[19] |
M. M. Hasan, Y. Lu, A. Mahmud, Regional development of China's inclusive finance through financial technology, SAGE Open, 10 (2020), 1–16. https://doi.org/10.1177/2158244019901252 doi: 10.1177/2158244019901252
![]() |
[20] |
G. Liu, H. Fang, X. Gong, F. Wang, Inclusive finance, industrial structure upgrading and farmers' income: empirical analysis based on provincial panel data in China, PLoS ONE, 16 (2021), e0258860. https://doi.org/10.1371/journal.pone.0258860 doi: 10.1371/journal.pone.0258860
![]() |
[21] |
S. Jia, Y. Qiu, C. Yang, Sustainable development goals, financial inclusion, and grain security efficiency, Agronomy, 11 (2021), 2542. https://doi.org/10.3390/agronomy11122542 doi: 10.3390/agronomy11122542
![]() |
[22] |
M. Naz, S. F. Iftikhar, A. Fatima, Does financial inclusiveness matter for the formal financial inflows? Evidence from Pakistan, Quant. Financ. Econ., 4 (2020), 19–35. https://doi.org/10.3934/qfe.2020002 doi: 10.3934/qfe.2020002
![]() |
[23] |
Y. Su, Z. Li, C. Yang, Spatial interaction spillover effects between digital financial technology and urban ecological efficiency in China: an empirical study based on spatial simultaneous equations, Int. J. Environ. Res. Public Health, 18 (2021), 8535. https://doi.org/10.3390/ijerph18168535 doi: 10.3390/ijerph18168535
![]() |
[24] |
Z. Li, J. Zhong, Impact of economic policy uncertainty shocks on China's financial conditions, Financ. Res. Lett., 35 (2020), 101303. https://doi.org/10.1016/j.frl.2019.101303 doi: 10.1016/j.frl.2019.101303
![]() |
[25] |
Y. Yao, D. Hu, C. Yang, Y. Tan, The impact and mechanism of fintech on green total factor productivity, Green Finance, 3 (2021), 198–221. https://doi.org/10.3934/gf.2021011 doi: 10.3934/gf.2021011
![]() |
[26] |
J. Zhu, Z. Li, Can digital financial inclusion effectively stimulate technological Innovation of agricultural enterprises?—A case study on China, National Accounting Review, 3 (2021), 398–421. https://doi.org/10.3934/NAR.2021021 doi: 10.3934/NAR.2021021
![]() |
[27] |
L. Yao, X. Ma, Has digital finance widened the income gap?, PLoS ONE, 17 (2022), e0263915. https://doi.org/10.1371/journal.pone.0263915 doi: 10.1371/journal.pone.0263915
![]() |
[28] |
T. Beck, A. Demirguc-Kunt, M. S. Martinez Peria, Reaching out: access to and use of banking services across countries, J. Financ. Econ., 85 (2007), 234–266. https://doi.org/10.1016/j.jfineco.2006.07.002 doi: 10.1016/j.jfineco.2006.07.002
![]() |
[29] | M. Sarma, Index of financial inclusion, Working paper, 2008. |
[30] | R. U. Arora, Measuring financial access, Griffith Business School Discussion Papers Economics, 2010-07. |
[31] |
R. Gupte, B. Venkataramani, D. Gupta, Computation of financial inclusion index for India, Procedia-Social and Behavioral Sciences, 37 (2012), 133–149. https://doi.org/10.1016/j.sbspro.2012.03.281 doi: 10.1016/j.sbspro.2012.03.281
![]() |
[32] |
B. Zhang, Y. Wang, The effect of green finance on energy sustainable development: a case study in China, Emerg. Mark. Financ. Tr., 57 (2021), 3435–3454. https://doi.org/10.1080/1540496X.2019.1695595 doi: 10.1080/1540496X.2019.1695595
![]() |
[33] | M. Sarma, Measuring financial inclusion for Asian economies, In: Financial inclusion in Asia, London: Palgrave Macmillan, 2016, 3–34. https://doi.org/10.1057/978-1-137-58337-6_1 |
[34] |
N. Cámara, D. Tuesta, Measuring financial inclusion: A muldimensional index, BBVA Research Paper, 2014, 14/26. https://doi.org/10.2139/ssrn.2634616 doi: 10.2139/ssrn.2634616
![]() |
[35] |
A. Mialou, G. Amidzic, A. Massara, Assessing countries' financial inclusion standing—A new composite index, Journal of Banking and Financial Economics, 2 (2017), 105–126. https://doi.org/10.7172/2353-6845.jbfe.2017.2.5 doi: 10.7172/2353-6845.jbfe.2017.2.5
![]() |
[36] |
J. Kebede, A. Naranpanawa, S. Selvanathan, Financial inclusion: measures and applications to Africa, Econ. Anal. Policy, 70 (2021), 365–379. https://doi.org/10.1016/j.eap.2021.03.008 doi: 10.1016/j.eap.2021.03.008
![]() |
[37] |
A. Demir, V. Pesqué-Cela, Y. Altunbas, V. Murinde, Fintech, financial inclusion and income inequality: a quantile regression approach, The European Journal of Finance, 28 (2022), 86–107. https://doi.org/10.1080/1351847X.2020.1772335 doi: 10.1080/1351847X.2020.1772335
![]() |
[38] |
Z. Li, F. Zou, Y. Tan, J. Zhu, Does financial excess support land urbanization—an empirical study of cities in China, Land, 10 (2021), 635. https://doi.org/10.3390/land10060635 doi: 10.3390/land10060635
![]() |
[39] |
M. Zhu, X. Song, W. Chen, The impact of social capital on land arrangement behavior of migrant workers in China, Journal of Economic Analysis, 1 (2022), 52–80. https://doi.org/10.12410/jea.2811-0943.2022.01.003 doi: 10.12410/jea.2811-0943.2022.01.003
![]() |
[40] |
S. Jia, C. Yang, M. Wang, P. Failler, Heterogeneous impact of land-use on climate change: study from a spatial perspective, Front. Environ. Sci., 10 (2022), 840603. https://doi.org/10.3389/fenvs.2022.840603 doi: 10.3389/fenvs.2022.840603
![]() |
[41] |
L. Jiang, A. Tong, Z. Hu, Y. Wang, The impact of the inclusive financial development index on farmer entrepreneurship, PLoS ONE, 14 (2019), e0216466. https://doi.org/10.1371/journal.pone.0216466 doi: 10.1371/journal.pone.0216466
![]() |
[42] |
Y. Li, M. Wang, G. Liao, J. Wang, Spatial spillover effect and threshold effect of digital financial inclusion on farmers' income growth—based on provincial data of China, Sustainability, 14 (2022), 1838. https://doi.org/10.3390/su14031838 doi: 10.3390/su14031838
![]() |
[43] |
K. Iqbal, P. K. Roy, S. Alam, The impact of banking services on poverty: Evidence from sub-district level for Bangladesh, J. Asian Econ., 66 (2020), 101154. https://doi.org/10.1016/j.asieco.2019.101154 doi: 10.1016/j.asieco.2019.101154
![]() |
[44] |
R. Mushtaq, C. Bruneau, Microfinance, financial inclusion and ICT: implications for poverty and inequality, Technol. Soc., 59 (2019), 101154. https://doi.org/10.1016/j.techsoc.2019.101154 doi: 10.1016/j.techsoc.2019.101154
![]() |
[45] |
A. Coulibaly, U. T. Yogo, The path to shared prosperity: leveraging financial services outreach to create decent jobs in developing countries, Econ. Model., 87 (2020), 131–147. https://doi.org/10.1016/j.econmod.2019.07.013 doi: 10.1016/j.econmod.2019.07.013
![]() |
[46] |
S. G. Jeanneney, K. Kpodar, Financial development and poverty reduction: Can there be a benefit without a cost?, The Journal of development studies, 47 (2011), 143–163. https://doi.org/10.1080/00220388.2010.506918 doi: 10.1080/00220388.2010.506918
![]() |
[47] |
G. Kling, V. Pesqué-Cela, L. Tian, D. Luo, A theory of financial inclusion and income inequality, The European Journal of Finance, 28 (2022), 137–157. https://doi.org/10.1080/1351847X.2020.1792960 doi: 10.1080/1351847X.2020.1792960
![]() |
[48] |
U. Seven, Y. Coskun, Does financial development reduce income inequality and poverty? Evidence from emerging countries, Emerg. Mark. Rev., 26 (2016), 34–63. https://doi.org/10.1016/j.ememar.2016.02.002 doi: 10.1016/j.ememar.2016.02.002
![]() |
[49] |
S. Neaime, I. Gaysset, Financial inclusion and stability in MENA: evidence from poverty and inequality, Financ. Res. Lett., 24 (2018), 230–237. https://doi.org/10.1016/j.frl.2017.09.007 doi: 10.1016/j.frl.2017.09.007
![]() |
[50] |
A. O. Acheampong, I. Appiah-Otoo, J. Dzator, K. K. Agyemang, Remittances, financial development and poverty reduction in Sub-Saharan Africa: implications for post-COVID-19 macroeconomic policies, J. Policy Model., 43 (2021), 1365–1387. https://doi.org/10.1016/j.jpolmod.2021.09.005 doi: 10.1016/j.jpolmod.2021.09.005
![]() |
[51] |
J. Ismail, W. Xianhua, Investigation and analysis on current situation of rural cooperative finance in Xinjiang, Procedia Computer Science, 17 (2013), 1266–1275. https://doi.org/10.1016/j.procs.2013.05.161 doi: 10.1016/j.procs.2013.05.161
![]() |
[52] | T. T. Xie, An empirical study of rural civil finance and rural poverty reduction relation on Xinjiang, In: Proceedings of 2013 IEEE International Conference on Grey systems and Intelligent Services (GSIS), 2013, 78–80. https://doi.org/10.1109/GSIS.2013.6714736 |
[53] |
H. Peng, J. Wang, L. Wen, P. Ding, Y. Zhu, Is the development of inclusive finance truly able to alleviate poverty?—An empirical study based on spatial effect and threshold effect, Emerg. Mark. Financ. Tr., 58 (2022), 2505–2521. https://doi.org/10.1080/1540496X.2021.2002141 doi: 10.1080/1540496X.2021.2002141
![]() |
[54] |
P. K. Ozili, Impact of digital finance on financial inclusion and stability, Borsa Istanb. Rev., 18 (2018), 329–340. https://doi.org/10.1016/j.bir.2017.12.003 doi: 10.1016/j.bir.2017.12.003
![]() |
[55] |
Y. Li, Q. Zhong, L. Xie, Has inclusive finance narrowed the income gap between urban and rural areas? An empirical analysis based on coastal and noncoastal regions' panel data, J. Coastal Res., 106 (2020), 305–308. https://doi.org/10.2112/SI106-071.1 doi: 10.2112/SI106-071.1
![]() |
[56] | P. Aghion, P. W. Howitt, The economics of growth, MIT press, 2008. |
[57] |
Z. Huang, G. Liao, Z. Li, Loaning scale and government subsidy for promoting green innovation, Technol. Forecast. Soc., 144 (2019), 148–156. https://doi.org/10.1016/j.techfore.2019.04.023 doi: 10.1016/j.techfore.2019.04.023
![]() |
[58] |
S. Liu, X. Shen, T. Jiang, P. Failler, Impacts of the financialization of manufacturing enterprises on total factor productivity: empirical examination from China's listed companies, Green Finance, 3 (2021), 59–89. https://doi.org/10.3934/Gf.2021005 doi: 10.3934/Gf.2021005
![]() |
[59] |
C. Zheng, F. Deng, C. Zhuo, W. Sun, Green credit policy, institution supply and enterprise green innovation, Journal of Economic Analysis, 1 (2022), 28–51. https://doi.org/10.12410/jea.2811-0943.2022.01.002 doi: 10.12410/jea.2811-0943.2022.01.002
![]() |
[60] |
A. Chunxiang, Y. Shen, Y. Zeng, Dynamic asset-liability management problem in a continuous-time model with delay, Int. J. Control, 95 (2022), 1315–1336. https://doi.org/10.1080/00207179.2020.1849807 doi: 10.1080/00207179.2020.1849807
![]() |
[61] | W. Wang, D. Muravey, Y. Shen, Y. Zeng, Optimal investment and reinsurance strategies under 4/2 stochastic volatility model, Scand. Actuar. J., in press. https://doi.org/10.1080/03461238.2022.2108335 |
[62] | Z. Li, H. Chen, B. Mo, Can digital finance promote urban innovation? Evidence from China, Borsa Istanb. Rev., in press. https://doi.org/10.1016/j.bir.2022.10.006 |
[63] |
T. Li, J. Ma, T. Li, J. Ma, Does digital finance benefit the income of rural residents? A case study on China, Quant. Financ. Econ., 5 (2021), 664–688. https://doi.org/10.3934/QFE.2021030 doi: 10.3934/QFE.2021030
![]() |
[64] |
K. Kyissima, G. Xue, T. Kossele, A. Abeid, Analysis of capital structure stability of listed firms in China, China Financ. Rev. Int., 10 (2020), 213–228. https://doi.org/10.1108/cfri-05-2018-0044 doi: 10.1108/cfri-05-2018-0044
![]() |
[65] |
D. McNeish, K. Kelley, Fixed effects models versus mixed effects models for clustered data: reviewing the approaches, disentangling the differences, and making recommendations, Psychol. Methods, 24 (2019), 20–35. https://doi.org/10.1037/met0000182 doi: 10.1037/met0000182
![]() |
[66] |
H. Liu, H. Lei, Y. Zhou, How does green trade affect the environment? Evidence from China, Journal of Economic Analysis, 1 (2022), 1–27. https://doi.org/10.12410/jea.2811-0943.2022.01.001 doi: 10.12410/jea.2811-0943.2022.01.001
![]() |
[67] |
S. Ren, Z. Liu, R. Zhanbayev, M. Du, Does the internet development put pressure on energy-saving potential for environmental sustainability? Evidence from China, Journal of Economic Analysis, 1 (2022), 81–101. https://doi.org/10.12410/jea.2811-0943.2022.01.004 doi: 10.12410/jea.2811-0943.2022.01.004
![]() |
[68] |
H. Wu, Y. Xia, X. Yang, Y. Hao, S. Ren, Does environmental pollution promote China's crime rate? A new perspective through government official corruption, Struct. Change Econ. Dyn., 57 (2021), 292–307. https://doi.org/10.1016/j.strueco.2021.04.006 doi: 10.1016/j.strueco.2021.04.006
![]() |
[69] |
H. Wu, N. Ba, S. Ren, L. Xu, J. Chai, M. Irfan, et al., The impact of internet development on the health of Chinese residents: transmission mechanisms and empirical tests, Socio-Econ. Plan. Sci., 81 (2022), 101178. https://doi.org/10.1016/j.seps.2021.101178 doi: 10.1016/j.seps.2021.101178
![]() |
[70] |
Y. Hao, J. Huang, Y. Guo, H. Wu, S. Ren, Does the legacy of state planning put pressure on ecological efficiency? Evidence from China, Bus. Strateg. Environ., 31 (2022), 3100–3121. https://doi.org/10.1002/bse.3066 doi: 10.1002/bse.3066
![]() |
[71] |
A. Bhargava, L. Franzini, W. Narendranathan, Serial correlation and the fixed effects model, The Review of Economic Studies, 49 (1982), 533–549. https://doi.org/10.2307/2297285 doi: 10.2307/2297285
![]() |
[72] |
T. Li, X. Li, G. Liao, Business cycles and energy intensity. Evidence from emerging economies, Borsa Istanb. Rev., 22 (2022), 560–570. https://doi.org/10.1016/j.bir.2021.07.005 doi: 10.1016/j.bir.2021.07.005
![]() |
[73] |
T. Li, X. Li, Does structural deceleration happen in China? Evidence from the effect of industrial structure on economic growth quality, National Accounting Review, 2 (2020), 155–173. https://doi.org/10.3934/NAR.2020009 doi: 10.3934/NAR.2020009
![]() |
[74] |
Z. Li, Z. Huang, H. Dong, The influential factors on outward foreign direct investment: evidence from the "The Belt and Road", Emerg. Mark. Financ. Tr., 55 (2019), 3211–3226. https://doi.org/10.1080/1540496X.2019.1569512 doi: 10.1080/1540496X.2019.1569512
![]() |
[75] |
Y. Zheng, S. Chen, N. Wang, Does financial agglomeration enhance regional green economy development? Evidence from China, Green Finance, 2 (2020), 173–196. https://doi.org/10.3934/GF.2020010 doi: 10.3934/GF.2020010
![]() |
[76] | C. Fang, Q. Shi, Public pension and borrowing behavior: evidence from rural China, China Financ. Rev. Int., in press. https://doi.org/10.1108/cfri-07-2020-0103 |
[77] |
Z. Li, C. Yang, Z. Huang, How does the fintech sector react to signals from central bank digital currencies?, Financ. Res. Lett., 50 (2020), 103308. https://doi.org/10.1016/j.frl.2022.103308 doi: 10.1016/j.frl.2022.103308
![]() |
[78] |
J. Xiao, C. Tao, Consumer finance/household finance: the definition and scope, China Financ. Rev. Int., 11 (2021), 1–25. https://doi.org/10.1108/cfri-04-2020-0032 doi: 10.1108/cfri-04-2020-0032
![]() |
[79] |
S. Agarwal, Y. Chua, FinTech and household finance: a review of the empirical literature, China Financ. Rev. Int., 10 (2020), 361–376. https://doi.org/10.1108/cfri-03-2020-0024 doi: 10.1108/cfri-03-2020-0024
![]() |
1. | Adil Waheed, Fazli Subhan, Mazliham Mohd Suud, Muhammad Mansoor Alam, Sajjad Haider, Design and optimization of nonlinear component of block cipher: Applications to multimedia security, 2024, 15, 20904479, 102507, 10.1016/j.asej.2023.102507 | |
2. | Adil Waheed, Fazli Subhan, Mazliham Mohd Su'ud, Muhammad Mansoor Alam, Molding robust S-box design based on linear fractional transformation and multilayer Perceptron: Applications to multimedia security, 2024, 26, 11108665, 100480, 10.1016/j.eij.2024.100480 | |
3. | Muhammad Umair Safdar, Tariq Shah, Asif Ali, Enhancing image data security with chain and non-chain Galois ring structures, 2024, 225, 03784754, 659, 10.1016/j.matcom.2024.06.008 | |
4. | Adil Waheed, Fazli Subhan, S-box design based on logistic skewed chaotic map and modified Rabin-Karp algorithm: applications to multimedia security, 2024, 99, 0031-8949, 055236, 10.1088/1402-4896/ad3991 | |
5. | Saeed Ullah, Xinge Liu, Adil Waheed, Shuailei Zhang, S-box using fractional-order 4D hyperchaotic system and its application to RSA cryptosystem-based color image encryption, 2025, 09205489, 103980, 10.1016/j.csi.2025.103980 | |
6. | R. V. Chethana, Jayavrinda Vrindavanam, Subarna Roy, P. C. Deshmukh, A Review of Block Ciphers and Its Post-Quantum Considerations, 2025, 13, 2169-3536, 57834, 10.1109/ACCESS.2025.3554602 |
GF(210) | Binary values | GF(210) | Binary values | GF(210) | Binary values | GF(210) | |
0000000000 | 0 | 0000000001 | 1 | 0000000010 | α1 | 0000000100 | α2 |
0000001000 | α3 | 0000010000 | α4 | 0000100000 | α5 | 0001000000 | α6 |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
0100100110 | α1015 | 1001001100 | α1016 | 0010010001 | α1017 | 0100100010 | α1018 |
1001000100 | α1019 | 0010000001 | α1020 | 0100000010 | α1021 | 1000000100 | α1022 |
Binary values | GF(28) | Binary values | GF(28) | Binary values | GF(28) | Binary values | GF(28) |
11011000 | ϖ251 | 10101101 | ϖ252 | 01000111 | ϖ253 | 10001110 | ϖ254 |
10000011 | ϖ247 | 00011011 | ϖ248 | 00110110 | ϖ249 | 01101100 | ϖ250 |
01111101 | ϖ243 | 11111010 | ϖ244 | 11101001 | ϖ245 | 11001111 | ϖ246 |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
10000000 | ϖ7 | 00011101 | ϖ8 | 00111010 | ϖ9 | 01110100 | ϖ10 |
00001000 | ϖ3 | 00010000 | ϖ4 | 00100000 | ϖ5 | 01000000 | ϖ6 |
00000000 | 0 | 00000001 | 1 | 00000010 | ϖ1 | 00000100 | ϖ2 |
245 | 243 | 222 | 162 | 150 | 233 | 131 | 178 | 17 | 16 | 71 | 73 | 60 | 1 | 148 | 90 |
84 | 3 | 201 | 118 | 66 | 125 | 232 | 58 | 54 | 44 | 171 | 8 | 57 | 204 | 2 | 142 |
218 | 252 | 48 | 161 | 203 | 7 | 135 | 87 | 192 | 149 | 108 | 191 | 128 | 231 | 32 | 30 |
67 | 228 | 72 | 244 | 177 | 127 | 22 | 104 | 28 | 133 | 137 | 64 | 95 | 116 | 219 | 4 |
212 | 225 | 101 | 96 | 6 | 21 | 235 | 152 | 136 | 238 | 154 | 27 | 19 | 220 | 91 | 5 |
190 | 241 | 46 | 153 | 210 | 196 | 255 | 117 | 37 | 176 | 9 | 207 | 29 | 180 | 216 | 173 |
35 | 193 | 239 | 86 | 146 | 40 | 113 | 221 | 34 | 139 | 88 | 119 | 112 | 134 | 223 | 188 |
189 | 170 | 92 | 147 | 74 | 69 | 217 | 122 | 247 | 109 | 186 | 38 | 250 | 42 | 145 | 213 |
115 | 208 | 70 | 227 | 181 | 151 | 156 | 18 | 12 | 143 | 251 | 187 | 249 | 205 | 59 | 41 |
103 | 107 | 14 | 129 | 13 | 160 | 209 | 62 | 157 | 75 | 93 | 234 | 11 | 82 | 24 | 51 |
169 | 199 | 31 | 182 | 230 | 89 | 183 | 68 | 164 | 33 | 83 | 253 | 56 | 45 | 76 | 106 |
194 | 50 | 55 | 141 | 124 | 184 | 159 | 242 | 248 | 26 | 85 | 240 | 206 | 254 | 140 | 25 |
15 | 120 | 130 | 100 | 202 | 224 | 79 | 102 | 163 | 43 | 110 | 39 | 94 | 229 | 20 | 36 |
99 | 168 | 77 | 246 | 111 | 197 | 165 | 237 | 123 | 81 | 155 | 63 | 53 | 61 | 158 | 49 |
214 | 198 | 114 | 175 | 65 | 52 | 200 | 80 | 10 | 226 | 236 | 195 | 179 | 138 | 167 | 97 |
0 | 211 | 98 | 215 | 47 | 174 | 126 | 185 | 132 | 105 | 166 | 121 | 23 | 172 | 78 | 144 |
190 | 241 | 46 | 153 | 210 | 196 | 255 | 117 | 37 | 176 | 9 | 207 | 29 | 180 | 216 | 173 |
212 | 225 | 101 | 96 | 6 | 21 | 235 | 152 | 136 | 238 | 154 | 27 | 19 | 220 | 91 | 5 |
67 | 228 | 72 | 244 | 177 | 127 | 22 | 104 | 28 | 133 | 137 | 64 | 95 | 116 | 219 | 4 |
35 | 193 | 239 | 86 | 146 | 40 | 113 | 221 | 34 | 139 | 88 | 119 | 112 | 134 | 223 | 188 |
84 | 3 | 201 | 118 | 66 | 125 | 232 | 58 | 54 | 44 | 171 | 8 | 57 | 204 | 2 | 142 |
214 | 198 | 114 | 175 | 65 | 52 | 200 | 80 | 10 | 226 | 236 | 195 | 179 | 138 | 167 | 97 |
245 | 243 | 222 | 162 | 150 | 233 | 131 | 178 | 17 | 16 | 71 | 73 | 60 | 1 | 148 | 90 |
15 | 120 | 130 | 100 | 202 | 224 | 79 | 102 | 163 | 43 | 110 | 39 | 94 | 229 | 20 | 36 |
194 | 50 | 55 | 141 | 124 | 184 | 159 | 242 | 248 | 26 | 85 | 240 | 206 | 254 | 140 | 25 |
169 | 199 | 31 | 182 | 230 | 89 | 183 | 68 | 164 | 33 | 83 | 253 | 56 | 45 | 76 | 106 |
99 | 168 | 77 | 246 | 111 | 197 | 165 | 237 | 123 | 81 | 155 | 63 | 53 | 61 | 158 | 49 |
103 | 107 | 14 | 129 | 13 | 160 | 209 | 62 | 157 | 75 | 93 | 234 | 11 | 82 | 24 | 51 |
0 | 211 | 98 | 215 | 47 | 174 | 126 | 185 | 132 | 105 | 166 | 121 | 23 | 172 | 78 | 144 |
189 | 170 | 92 | 147 | 74 | 69 | 217 | 122 | 247 | 109 | 186 | 38 | 250 | 42 | 145 | 213 |
115 | 208 | 70 | 227 | 181 | 151 | 156 | 18 | 12 | 143 | 251 | 187 | 249 | 205 | 59 | 41 |
218 | 252 | 48 | 161 | 203 | 7 | 135 | 87 | 192 | 149 | 108 | 191 | 128 | 231 | 32 | 30 |
174 | 180 | 148 | 149 | 193 | 250 | 58 | 170 | 26 | 30 | 20 | 15 | 142 | 71 | 155 | 90 |
244 | 201 | 82 | 160 | 175 | 105 | 18 | 106 | 115 | 221 | 108 | 16 | 219 | 173 | 2 | 1 |
187 | 85 | 198 | 235 | 152 | 129 | 135 | 252 | 199 | 29 | 218 | 209 | 98 | 8 | 4 | 133 |
132 | 72 | 92 | 186 | 200 | 49 | 38 | 59 | 134 | 207 | 17 | 62 | 251 | 216 | 254 | 35 |
169 | 196 | 33 | 66 | 247 | 253 | 11 | 122 | 176 | 93 | 79 | 131 | 128 | 64 | 67 | 70 |
226 | 86 | 138 | 192 | 145 | 150 | 24 | 190 | 44 | 63 | 220 | 116 | 144 | 27 | 217 | 32 |
55 | 249 | 50 | 211 | 111 | 6 | 143 | 140 | 147 | 197 | 40 | 205 | 121 | 74 | 240 | 54 |
167 | 159 | 213 | 242 | 166 | 96 | 162 | 245 | 127 | 158 | 76 | 195 | 161 | 136 | 210 | 97 |
228 | 87 | 113 | 14 | 231 | 77 | 225 | 194 | 84 | 41 | 45 | 114 | 189 | 125 | 233 | 153 |
109 | 107 | 10 | 21 | 119 | 223 | 75 | 123 | 164 | 212 | 117 | 255 | 22 | 184 | 12 | 232 |
202 | 25 | 237 | 103 | 81 | 120 | 102 | 78 | 36 | 61 | 13 | 236 | 139 | 137 | 19 | 88 |
163 | 130 | 185 | 80 | 224 | 73 | 154 | 53 | 69 | 95 | 181 | 23 | 168 | 34 | 203 | 177 |
94 | 165 | 204 | 215 | 28 | 222 | 83 | 178 | 42 | 43 | 46 | 227 | 141 | 234 | 238 | 37 |
182 | 188 | 47 | 208 | 60 | 179 | 112 | 246 | 52 | 146 | 156 | 191 | 124 | 39 | 9 | 65 |
241 | 171 | 229 | 31 | 183 | 100 | 7 | 118 | 5 | 89 | 239 | 172 | 157 | 206 | 3 | 243 |
0 | 214 | 91 | 230 | 101 | 99 | 151 | 57 | 68 | 110 | 248 | 126 | 51 | 104 | 48 | 56 |
174 | 180 | 148 | 149 | 193 | 250 | 58 | 170 | 26 | 30 | 20 | 15 | 142 | 71 | 155 | 90 |
132 | 72 | 92 | 186 | 200 | 49 | 38 | 59 | 134 | 207 | 17 | 62 | 251 | 216 | 254 | 35 |
0 | 214 | 91 | 230 | 101 | 99 | 151 | 57 | 68 | 110 | 248 | 126 | 51 | 104 | 48 | 56 |
244 | 201 | 82 | 160 | 175 | 105 | 18 | 106 | 115 | 221 | 108 | 16 | 219 | 173 | 2 | 1 |
182 | 188 | 47 | 208 | 60 | 179 | 112 | 246 | 52 | 146 | 156 | 191 | 124 | 39 | 9 | 65 |
226 | 86 | 138 | 192 | 145 | 150 | 24 | 190 | 44 | 63 | 220 | 116 | 144 | 27 | 217 | 32 |
241 | 171 | 229 | 31 | 183 | 100 | 7 | 118 | 5 | 89 | 239 | 172 | 157 | 206 | 3 | 243 |
55 | 249 | 50 | 211 | 111 | 6 | 143 | 140 | 147 | 197 | 40 | 205 | 121 | 74 | 240 | 54 |
109 | 107 | 10 | 21 | 119 | 223 | 75 | 123 | 164 | 212 | 117 | 255 | 22 | 184 | 12 | 232 |
202 | 25 | 237 | 103 | 81 | 120 | 102 | 78 | 36 | 61 | 13 | 236 | 139 | 137 | 19 | 88 |
94 | 165 | 204 | 215 | 28 | 222 | 83 | 178 | 42 | 43 | 46 | 227 | 141 | 234 | 238 | 37 |
163 | 130 | 185 | 80 | 224 | 73 | 154 | 53 | 69 | 95 | 181 | 23 | 168 | 34 | 203 | 177 |
169 | 196 | 33 | 66 | 247 | 253 | 11 | 122 | 176 | 93 | 79 | 131 | 128 | 64 | 67 | 70 |
167 | 159 | 213 | 242 | 166 | 96 | 162 | 245 | 127 | 158 | 76 | 195 | 161 | 136 | 210 | 97 |
187 | 85 | 198 | 235 | 152 | 129 | 135 | 252 | 199 | 29 | 218 | 209 | 98 | 8 | 4 | 133 |
228 | 87 | 113 | 14 | 231 | 77 | 225 | 194 | 84 | 41 | 45 | 114 | 189 | 125 | 233 | 153 |
234 | 95 | 28 | 188 | 141 | 192 | 239 | 217 | 64 | 108 | 166 | 173 | 8 | 4 | 1 | 203 |
80 | 163 | 180 | 155 | 84 | 89 | 232 | 207 | 13 | 10 | 113 | 202 | 150 | 2 | 204 | 148 |
48 | 26 | 247 | 104 | 11 | 183 | 169 | 127 | 58 | 131 | 27 | 32 | 216 | 120 | 71 | 142 |
82 | 123 | 151 | 201 | 210 | 152 | 6 | 176 | 228 | 158 | 29 | 118 | 117 | 213 | 126 | 81 |
59 | 39 | 237 | 223 | 7 | 255 | 137 | 44 | 225 | 125 | 147 | 114 | 21 | 115 | 16 | 224 |
212 | 111 | 101 | 50 | 248 | 15 | 83 | 174 | 184 | 135 | 14 | 119 | 24 | 227 | 54 | 75 |
94 | 230 | 37 | 246 | 18 | 159 | 245 | 144 | 199 | 38 | 112 | 153 | 233 | 43 | 128 | 85 |
97 | 162 | 93 | 181 | 70 | 63 | 122 | 129 | 251 | 79 | 17 | 53 | 205 | 116 | 220 | 87 |
146 | 5 | 62 | 67 | 241 | 30 | 36 | 165 | 143 | 252 | 139 | 22 | 88 | 130 | 73 | 200 |
222 | 56 | 221 | 209 | 121 | 195 | 103 | 96 | 12 | 249 | 208 | 45 | 49 | 154 | 61 | 250 |
98 | 236 | 179 | 20 | 136 | 219 | 23 | 69 | 187 | 52 | 102 | 206 | 253 | 76 | 197 | 19 |
194 | 133 | 214 | 33 | 77 | 35 | 238 | 145 | 74 | 65 | 242 | 170 | 109 | 57 | 90 | 229 |
196 | 198 | 161 | 100 | 107 | 25 | 211 | 189 | 31 | 78 | 182 | 240 | 244 | 157 | 235 | 86 |
60 | 149 | 110 | 41 | 185 | 160 | 218 | 140 | 193 | 68 | 172 | 51 | 72 | 105 | 243 | 178 |
99 | 191 | 177 | 55 | 175 | 171 | 34 | 40 | 47 | 164 | 254 | 46 | 9 | 132 | 138 | 190 |
0 | 215 | 231 | 226 | 42 | 91 | 92 | 186 | 134 | 167 | 66 | 106 | 156 | 124 | 168 | 3 |
82 | 123 | 151 | 201 | 210 | 152 | 6 | 176 | 228 | 158 | 29 | 118 | 117 | 213 | 126 | 81 |
59 | 39 | 237 | 223 | 7 | 255 | 137 | 44 | 225 | 125 | 147 | 114 | 21 | 115 | 16 | 224 |
234 | 95 | 28 | 188 | 141 | 192 | 239 | 217 | 64 | 108 | 166 | 173 | 8 | 4 | 1 | 203 |
98 | 236 | 179 | 20 | 136 | 219 | 23 | 69 | 187 | 52 | 102 | 206 | 253 | 76 | 197 | 19 |
48 | 26 | 247 | 104 | 11 | 183 | 169 | 127 | 58 | 131 | 27 | 32 | 216 | 120 | 71 | 142 |
97 | 162 | 93 | 181 | 70 | 63 | 122 | 129 | 251 | 79 | 17 | 53 | 205 | 116 | 220 | 87 |
99 | 191 | 177 | 55 | 175 | 171 | 34 | 40 | 47 | 164 | 254 | 46 | 9 | 132 | 138 | 190 |
222 | 56 | 221 | 209 | 121 | 195 | 103 | 96 | 12 | 249 | 208 | 45 | 49 | 154 | 61 | 250 |
146 | 5 | 62 | 67 | 241 | 30 | 36 | 165 | 143 | 252 | 139 | 22 | 88 | 130 | 73 | 200 |
212 | 111 | 101 | 50 | 248 | 15 | 83 | 174 | 184 | 135 | 14 | 119 | 24 | 227 | 54 | 75 |
60 | 149 | 110 | 41 | 185 | 160 | 218 | 140 | 193 | 68 | 172 | 51 | 72 | 105 | 243 | 178 |
80 | 163 | 180 | 155 | 84 | 89 | 232 | 207 | 13 | 10 | 113 | 202 | 150 | 2 | 204 | 148 |
194 | 133 | 214 | 33 | 77 | 35 | 238 | 145 | 74 | 65 | 242 | 170 | 109 | 57 | 90 | 229 |
0 | 215 | 231 | 226 | 42 | 91 | 92 | 186 | 134 | 167 | 66 | 106 | 156 | 124 | 168 | 3 |
94 | 230 | 37 | 246 | 18 | 159 | 245 | 144 | 199 | 38 | 112 | 153 | 233 | 43 | 128 | 85 |
196 | 198 | 161 | 100 | 107 | 25 | 211 | 189 | 31 | 78 | 182 | 240 | 244 | 157 | 235 | 86 |
244 | 229 | 218 | 248 | 205 | 160 | 207 | 64 | 38 | 60 | 233 | 136 | 133 | 171 | 155 | 203 |
127 | 72 | 247 | 90 | 186 | 176 | 250 | 18 | 188 | 32 | 182 | 173 | 120 | 108 | 142 | 2 |
118 | 48 | 3 | 130 | 252 | 76 | 82 | 97 | 204 | 49 | 235 | 16 | 27 | 241 | 34 | 75 |
37 | 196 | 36 | 122 | 62 | 180 | 11 | 73 | 178 | 189 | 128 | 54 | 153 | 99 | 167 | 71 |
231 | 63 | 78 | 200 | 101 | 253 | 251 | 45 | 135 | 157 | 58 | 131 | 88 | 65 | 8 | 4 |
240 | 249 | 51 | 220 | 112 | 209 | 10 | 117 | 86 | 19 | 121 | 40 | 228 | 145 | 149 | 216 |
13 | 89 | 79 | 113 | 68 | 115 | 6 | 201 | 236 | 7 | 44 | 232 | 31 | 223 | 67 | 114 |
41 | 226 | 151 | 242 | 43 | 52 | 192 | 140 | 255 | 57 | 123 | 212 | 239 | 116 | 208 | 238 |
105 | 93 | 166 | 170 | 181 | 92 | 172 | 9 | 61 | 245 | 243 | 152 | 104 | 125 | 169 | 29 |
158 | 179 | 191 | 84 | 193 | 175 | 74 | 21 | 26 | 30 | 14 | 80 | 139 | 159 | 144 | 46 |
111 | 94 | 42 | 132 | 197 | 187 | 28 | 66 | 85 | 237 | 227 | 168 | 126 | 96 | 22 | 15 |
165 | 161 | 185 | 210 | 20 | 147 | 162 | 35 | 146 | 47 | 138 | 55 | 177 | 234 | 83 | 222 |
150 | 219 | 211 | 254 | 98 | 194 | 33 | 23 | 198 | 148 | 225 | 195 | 12 | 199 | 224 | 25 |
163 | 214 | 183 | 95 | 50 | 184 | 56 | 154 | 230 | 109 | 53 | 107 | 39 | 5 | 87 | 137 |
246 | 202 | 17 | 206 | 190 | 164 | 100 | 124 | 221 | 70 | 119 | 102 | 156 | 69 | 24 | 143 |
0 | 1 | 215 | 91 | 110 | 103 | 59 | 77 | 217 | 141 | 81 | 174 | 106 | 213 | 134 | 129 |
150 | 219 | 211 | 254 | 98 | 194 | 33 | 23 | 198 | 148 | 225 | 195 | 12 | 199 | 224 | 25 |
105 | 93 | 166 | 170 | 181 | 92 | 172 | 9 | 61 | 245 | 243 | 152 | 104 | 125 | 169 | 29 |
165 | 161 | 185 | 210 | 20 | 147 | 162 | 35 | 146 | 47 | 138 | 55 | 177 | 234 | 83 | 222 |
37 | 196 | 36 | 122 | 62 | 180 | 11 | 73 | 178 | 189 | 128 | 54 | 153 | 99 | 167 | 71 |
118 | 48 | 3 | 130 | 252 | 76 | 82 | 97 | 204 | 49 | 235 | 16 | 27 | 241 | 34 | 75 |
0 | 1 | 215 | 91 | 110 | 103 | 59 | 77 | 217 | 141 | 81 | 174 | 106 | 213 | 134 | 129 |
231 | 63 | 78 | 200 | 101 | 253 | 251 | 45 | 135 | 157 | 58 | 131 | 88 | 65 | 8 | 4 |
111 | 94 | 42 | 132 | 197 | 187 | 28 | 66 | 85 | 237 | 227 | 168 | 126 | 96 | 22 | 15 |
41 | 226 | 151 | 242 | 43 | 52 | 192 | 140 | 255 | 57 | 123 | 212 | 239 | 116 | 208 | 238 |
240 | 249 | 51 | 220 | 112 | 209 | 10 | 117 | 86 | 19 | 121 | 40 | 228 | 145 | 149 | 216 |
246 | 202 | 17 | 206 | 190 | 164 | 100 | 124 | 221 | 70 | 119 | 102 | 156 | 69 | 24 | 143 |
163 | 214 | 183 | 95 | 50 | 184 | 56 | 154 | 230 | 109 | 53 | 107 | 39 | 5 | 87 | 137 |
244 | 229 | 218 | 248 | 205 | 160 | 207 | 64 | 38 | 60 | 233 | 136 | 133 | 171 | 155 | 203 |
13 | 89 | 79 | 113 | 68 | 115 | 6 | 201 | 236 | 7 | 44 | 232 | 31 | 223 | 67 | 114 |
127 | 72 | 247 | 90 | 186 | 176 | 250 | 18 | 188 | 32 | 182 | 173 | 120 | 108 | 142 | 2 |
158 | 179 | 191 | 84 | 193 | 175 | 74 | 21 | 26 | 30 | 14 | 80 | 139 | 159 | 144 | 46 |
Algorithm 1: Permutations of the group S16. |
a. In Table 4, we apply the following permutation (174316138141110129156)(25) of the group S16 to generate our proposed S-box 1. |
b. In Table 6, we apply the following permutation (1)(24)(31578145131110916) of the group S16 to generate our proposed S-box 2. |
c. In Table 8, we apply the following permutation (135212131614114)(6108)(715)(9) of the group S16 to generate our proposed S-box 3. |
d. In Table 10, we apply the following permutation (113)(2151189)(3571412)(4)(61016) of the group S16 to generate our proposed S-box 4. |
Algorithm 2: Divide and conquer strategy based nonlinear booster algorithm. |
Step1: S1 ← the function F(n) generates bijective S-box S1(n×m) using coset graph. |
Step2: S2 ←S1 ∴ Here we are generating temporary copy of actual S-box, |
While 1: n ∴ Setting a loop that continue to execute loop body (Step 3 to 7) as long as condition holds true |
Step 3: Received 16 blocks of size 4×4 ← divide the S-box (S2) into blocks of size 128 bits. |
Step4: Received updated S-box (S2) ← Swap the one block size 4×4 with another one. |
Step5: NewNL ← calculate the nonlinearity of updated S-box. |
Step 6: Compare new NL with NL of actual S-box. |
Stept 7: If the new nonlinearity (NL) is greater than the actual NL, make this change permanent. Otherwise, reverse the change. |
end |
Step 8: We will receive an S-box with improved nonlinearity. |
7 | 167 | 60 | 72 | 84 | 183 | 100 | 3 | 157 | 238 | 228 | 20 | 69 | 226 | 123 | 40 |
152 | 204 | 44 | 208 | 255 | 166 | 141 | 24 | 162 | 89 | 215 | 148 | 224 | 142 | 30 | 249 |
116 | 160 | 77 | 79 | 195 | 59 | 177 | 156 | 117 | 207 | 219 | 15 | 35 | 17 | 91 | 66 |
185 | 143 | 222 | 225 | 173 | 254 | 104 | 139 | 94 | 65 | 102 | 196 | 197 | 36 | 31 | 145 |
5 | 172 | 233 | 239 | 76 | 78 | 227 | 25 | 6 | 92 | 223 | 158 | 232 | 55 | 179 | 41 |
26 | 62 | 114 | 43 | 137 | 129 | 51 | 186 | 206 | 176 | 90 | 237 | 112 | 198 | 1 | 135 |
211 | 111 | 190 | 230 | 241 | 163 | 9 | 180 | 110 | 250 | 146 | 113 | 16 | 47 | 133 | 96 |
33 | 19 | 242 | 125 | 18 | 121 | 68 | 107 | 52 | 147 | 122 | 23 | 56 | 81 | 210 | 61 |
217 | 216 | 201 | 103 | 109 | 67 | 63 | 144 | 236 | 251 | 205 | 161 | 153 | 99 | 29 | 27 |
182 | 71 | 0 | 150 | 32 | 235 | 170 | 73 | 138 | 247 | 155 | 85 | 203 | 88 | 130 | 22 |
192 | 64 | 120 | 80 | 252 | 253 | 119 | 234 | 189 | 115 | 220 | 214 | 70 | 169 | 159 | 229 |
97 | 98 | 118 | 187 | 231 | 14 | 175 | 191 | 154 | 171 | 13 | 106 | 57 | 93 | 53 | 202 |
11 | 174 | 54 | 38 | 132 | 199 | 101 | 82 | 188 | 164 | 21 | 128 | 74 | 10 | 2 | 45 |
105 | 50 | 39 | 149 | 75 | 140 | 87 | 194 | 221 | 213 | 178 | 124 | 34 | 134 | 127 | 108 |
212 | 248 | 245 | 136 | 58 | 184 | 8 | 48 | 240 | 168 | 200 | 151 | 244 | 209 | 95 | 83 |
37 | 4 | 246 | 218 | 46 | 28 | 12 | 193 | 126 | 49 | 42 | 243 | 165 | 181 | 131 | 86 |
20 | 116 | 237 | 8 | 167 | 218 | 0 | 185 | 93 | 9 | 94 | 166 | 176 | 182 | 102 | 106 |
129 | 115 | 118 | 208 | 78 | 160 | 143 | 165 | 22 | 157 | 112 | 179 | 145 | 124 | 16 | 225 |
212 | 219 | 226 | 72 | 25 | 215 | 98 | 50 | 42 | 152 | 26 | 198 | 28 | 149 | 70 | 59 |
201 | 85 | 103 | 247 | 180 | 38 | 134 | 69 | 49 | 95 | 249 | 213 | 105 | 121 | 138 | 181 |
45 | 14 | 41 | 144 | 29 | 195 | 161 | 67 | 47 | 220 | 254 | 132 | 27 | 60 | 206 | 51 |
76 | 87 | 120 | 48 | 139 | 12 | 199 | 37 | 240 | 174 | 189 | 34 | 63 | 211 | 99 | 131 |
104 | 128 | 141 | 56 | 194 | 100 | 233 | 183 | 170 | 108 | 5 | 153 | 113 | 10 | 130 | 142 |
173 | 58 | 217 | 1 | 110 | 65 | 151 | 43 | 190 | 97 | 33 | 96 | 89 | 178 | 238 | 83 |
252 | 6 | 196 | 216 | 82 | 150 | 31 | 11 | 19 | 135 | 68 | 123 | 228 | 21 | 122 | 158 |
175 | 55 | 214 | 3 | 162 | 86 | 17 | 184 | 30 | 36 | 133 | 171 | 188 | 127 | 197 | 146 |
18 | 80 | 227 | 40 | 13 | 200 | 92 | 159 | 154 | 77 | 79 | 234 | 54 | 156 | 2 | 177 |
44 | 101 | 224 | 137 | 91 | 209 | 64 | 15 | 109 | 46 | 210 | 53 | 248 | 231 | 192 | 230 |
187 | 117 | 126 | 202 | 81 | 232 | 7 | 88 | 207 | 168 | 71 | 169 | 193 | 253 | 23 | 111 |
164 | 186 | 222 | 239 | 74 | 172 | 24 | 39 | 236 | 203 | 61 | 163 | 119 | 148 | 245 | 62 |
235 | 229 | 140 | 250 | 205 | 251 | 242 | 241 | 155 | 223 | 125 | 244 | 246 | 204 | 75 | 243 |
221 | 57 | 84 | 191 | 107 | 35 | 136 | 255 | 114 | 52 | 32 | 4 | 90 | 147 | 66 | 73 |
082 | 123 | 151 | 201 | 210 | 152 | 006 | 176 | 228 | 158 | 029 | 118 | 117 | 213 | 126 | 081 |
171 | 248 | 032 | 121 | 080 | 120 | 025 | 012 | 155 | 194 | 203 | 156 | 150 | 084 | 250 | 061 |
148 | 038 | 063 | 089 | 231 | 141 | 197 | 095 | 056 | 107 | 030 | 221 | 208 | 161 | 115 | 053 |
255 | 185 | 237 | 193 | 218 | 241 | 192 | 196 | 005 | 235 | 190 | 128 | 022 | 187 | 039 | 251 |
083 | 175 | 183 | 130 | 142 | 062 | 002 | 238 | 104 | 099 | 067 | 143 | 229 | 047 | 106 | 108 |
059 | 239 | 249 | 073 | 233 | 180 | 090 | 091 | 163 | 174 | 004 | 114 | 222 | 068 | 064 | 100 |
207 | 140 | 055 | 027 | 125 | 102 | 164 | 216 | 093 | 076 | 243 | 060 | 111 | 145 | 077 | 230 |
058 | 186 | 041 | 028 | 014 | 070 | 031 | 189 | 166 | 212 | 159 | 088 | 247 | 000 | 078 | 253 |
045 | 160 | 103 | 219 | 036 | 157 | 169 | 065 | 105 | 177 | 016 | 245 | 240 | 001 | 003 | 127 |
232 | 136 | 138 | 252 | 037 | 225 | 162 | 168 | 096 | 137 | 023 | 110 | 149 | 008 | 098 | 195 |
170 | 009 | 033 | 215 | 226 | 011 | 085 | 050 | 153 | 021 | 206 | 191 | 013 | 094 | 246 | 242 |
182 | 042 | 181 | 113 | 79 | 179 | 122 | 224 | 133 | 204 | 109 | 217 | 147 | 040 | 154 | 057 |
167 | 205 | 173 | 178 | 044 | 043 | 198 | 112 | 086 | 046 | 017 | 024 | 026 | 072 | 200 | 132 |
188 | 139 | 172 | 071 | 124 | 209 | 054 | 010 | 034 | 075 | 244 | 116 | 097 | 101 | 066 | 007 |
254 | 214 | 087 | 052 | 236 | 165 | 144 | 131 | 019 | 146 | 184 | 051 | 015 | 223 | 119 | 220 |
211 | 049 | 069 | 020 | 129 | 234 | 135 | 092 | 199 | 227 | 134 | 202 | 048 | 018 | 074 | 035 |
150 | 219 | 211 | 254 | 098 | 194 | 033 | 023 | 198 | 148 | 225 | 195 | 012 | 199 | 224 | 025 |
131 | 107 | 015 | 084 | 160 | 109 | 203 | 240 | 034 | 141 | 166 | 218 | 209 | 068 | 003 | 132 |
065 | 061 | 044 | 100 | 137 | 040 | 181 | 094 | 035 | 041 | 011 | 173 | 079 | 083 | 247 | 237 |
016 | 031 | 054 | 202 | 167 | 136 | 077 | 006 | 182 | 248 | 170 | 037 | 221 | 104 | 253 | 067 |
081 | 060 | 215 | 189 | 080 | 128 | 097 | 164 | 039 | 106 | 184 | 046 | 186 | 200 | 208 | 112 |
056 | 102 | 146 | 214 | 229 | 062 | 233 | 238 | 116 | 122 | 156 | 169 | 021 | 127 | 070 | 174 |
178 | 239 | 180 | 045 | 117 | 147 | 246 | 192 | 222 | 206 | 129 | 172 | 118 | 099 | 171 | 119 |
213 | 090 | 130 | 149 | 216 | 242 | 126 | 087 | 022 | 210 | 110 | 075 | 052 | 093 | 236 | 232 |
140 | 008 | 051 | 004 | 145 | 227 | 074 | 176 | 228 | 066 | 095 | 013 | 059 | 231 | 076 | 155 |
036 | 255 | 201 | 055 | 157 | 153 | 159 | 175 | 103 | 017 | 113 | 071 | 001 | 252 | 187 | 154 |
005 | 020 | 250 | 096 | 125 | 057 | 092 | 196 | 197 | 124 | 072 | 142 | 163 | 101 | 204 | 115 |
028 | 042 | 029 | 114 | 089 | 053 | 193 | 223 | 027 | 191 | 135 | 220 | 226 | 014 | 120 | 165 |
134 | 111 | 241 | 230 | 139 | 082 | 235 | 207 | 058 | 143 | 019 | 002 | 177 | 162 | 190 | 158 |
188 | 030 | 151 | 078 | 185 | 064 | 088 | 026 | 108 | 183 | 018 | 243 | 212 | 000 | 050 | 152 |
105 | 032 | 179 | 121 | 091 | 038 | 069 | 217 | 048 | 234 | 024 | 063 | 144 | 009 | 123 | 138 |
161 | 007 | 073 | 245 | 010 | 249 | 043 | 049 | 168 | 086 | 133 | 251 | 085 | 047 | 244 | 205 |
S-box | f1 | f2 | f3 | f4 | f5 | f6 | f7 | f8 | Average |
Proposed 1 (Table 11) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 2 (Table 12) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 3 (Table 13) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 4 (Table 14) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Zhu [40] | 108 | 108 | 106 | 102 | 108 | 102 | 108 | 104 | 105.75 |
Zahid [41] | 110 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 111.75 |
Hussain [42] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Gautam et al. [43] | 108 | 106 | 104 | 98 | 102 | 102 | 98 | 74 | 99 |
Prime [44] | 94 | 100 | 104 | 104 | 102 | 100 | 98 | 94 | 99.5 |
S8 AES [45] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Xhi [46] | 106 | 104 | 106 | 106 | 104 | 106 | 104 | 106 | 105 |
AES [47] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Skipjac and Kea [48] | 104 | 108 | 108 | 108 | 108 | 104 | 104 | 106 | 106.75 |
Alkhaldi et al. [19] | 108 | 104 | 106 | 106 | 102 | 98 | 104 | 108 | 104 |
Chen et al. [49] | 100 | 102 | 103 | 104 | 106 | 106 | 106 | 108 | 104.3 |
Tang et al. [50] | 100 | 103 | 104 | 104 | 105 | 105 | 106 | 109 | 104.5 |
Khan et al. [37] | 102 | 108 | 106 | 102 | 106 | 106 | 106 | 98 | 104.25 |
Belazi et al. [51] | 106 | 106 | 106 | 104 | 108 | 102 | 106 | 104 | 105.25 |
Hua [52] | 106 | 106 | 108 | 106 | 102 | 102 | 108 | 104 | 105.25 |
Javeed [53] | 108 | 106 | 106 | 110 | 106 | 108 | 108 | 108 | 107.50 |
Detailed BIC Analysis for proposed S-box-4 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---- | 102 | 104 | 100 | 106 | 106 | 106 | 106 | |
102 | ---- | 102 | 108 | 104 | 108 | 104 | 102 | |
104 | 102 | ---- | 104 | 108 | 108 | 102 | 104 | |
100 | 108 | 104 | ---- | 104 | 108 | 106 | 108 | |
106 | 104 | 108 | 104 | ---- | 96 | 104 | 98 | |
106 | 108 | 108 | 108 | 96 | ---- | 104 | 106 | |
106 | 104 | 102 | 106 | 104 | 104 | ---- | 104 | |
106 | 102 | 104 | 108 | 98 | 106 | 104 | ---- | |
Average BIC: 104.35 |
S-boxes | Minimum value | Average | Square deviation |
Proposed 1 | 96 | 103.42 | 2.56 |
Proposed 2 | 98 | 102.86 | 2.38 |
Proposed 3 | 96 | 104.57 | 2.41 |
Proposed 4 | 96 | 104.35 | 2.81 |
Hussain [42] | 112 | 112 | 0 |
Gautam [43] | 92 | 103 | 3.5225 |
Prime [44] | 94 | 101.71 | 3.53 |
S8 AES [54] | 112 | 112 | 0 |
Xyi [46] | 98 | 103.78 | 2.743 |
AES [47] | 112 | 112 | 0 |
Skipjac [48] | 102 | 104.14 | 1.767 |
SAC Results (S-box-1) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
0.484375 | 0.531250 | 0.484375 | 0.546875 | 0.484375 | 0.515625 | 0.484375 | 0.468750 | |
0.546875 | 0.500000 | 0.515625 | 0.546875 | 0.453125 | 0.515625 | 0.515625 | 0.468750 | |
0.484375 | 0.500000 | 0.500000 | 0.484375 | 0.515625 | 0.500000 | 0.500000 | 0.515625 | |
0.453125 | 0.546875 | 0.578125 | 0.515625 | 0.500000 | 0.578125 | 0.531250 | 0.484375 | |
0.531250 | 0.562500 | 0.484375 | 0.515625 | 0.515625 | 0.515625 | 0.515625 | 0.484375 | |
0.531250 | 0.468750 | 0.500000 | 0.500000 | 0.484375 | 0.484375 | 0.484375 | 0.515625 | |
0.515625 | 0.515625 | 0.531250 | 0.468750 | 0.500000 | 0.562500 | 0.500000 | 0.531250 | |
0.453125 | 0.484375 | 0.546875 | 0.562500 | 0.500000 | 0.484375 | 0.500000 | 0.531250 | |
Average SAC (S-box-1) | 0.508301 | |||||||
Average SAC (S-box-2) | 0.504150 | |||||||
Average SAC (S-box-3) | 0.499756 | |||||||
Average SAC (S-box-4) | 0.506348 |
S-boxes | Max value | Max LP |
Proposed 1 (Table 11) | 160 | 0.125 |
Proposed 2 (Table 12) | 162 | 0.133 |
Proposed 3 (Table 13) | 164 | 0.141 |
Proposed 4 (Table 14) | 158 | 0.117 |
AES [47] | 144 | 0.062 |
Hussain [42] | 144 | 0.062 |
Skipjack [48] | 156 | 0.109 |
Prime [44] | 162 | 0.132 |
Gautam [43] | 164 | 0.2109 |
S8 AES [54] | 144 | 0.062 |
Xyi [46] | 168 | 0.156 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
0 | 8 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 | 6 | 6 |
6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 |
6 | 6 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 |
6 | 8 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 10 | 8 | 6 | 6 | 6 | 6 | 6 |
8 | 8 | 6 | 8 | 8 | 6 | 8 | 4 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 |
6 | 8 | 6 | 6 | 6 | 8 | 6 | 4 | 6 | 6 | 8 | 6 | 8 | 6 | 4 | 8 |
6 | 10 | 12 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 6 |
6 | 8 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 10 | 8 | 6 | 6 | 8 |
8 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 | 6 | 4 | 8 | 6 | 6 |
6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 8 | 6 | 6 | 8 | 6 |
8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 |
6 | 6 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 |
8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 6 | 6 | 6 | 8 | 6 |
8 | 6 | 8 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 6 |
6 | 8 | 8 | 8 | 8 | 8 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 6 |
Max Val: 12 |
S-box | No. of fixed point | No. of reverse fixed point |
Lambić [32] | 2 | 3 |
Jamal [58] | 18 | None |
Tian [59] | 1 | 1 |
Çavuşoğlu [60] | 0 | 2 |
Özkaynak [61] | 4 | 1 |
Ullah [23] | 4 | None |
Proposed S-box-1 (Table-11) | 3 | 1 |
Proposed S-box-2 (Table-12) | 1 | 1 |
Proposed S-box-3 (Table-13) | 2 | None |
Proposed S-box-4 (Table-14) | 3 | 1 |
GF(210) | Binary values | GF(210) | Binary values | GF(210) | Binary values | GF(210) | |
0000000000 | 0 | 0000000001 | 1 | 0000000010 | α1 | 0000000100 | α2 |
0000001000 | α3 | 0000010000 | α4 | 0000100000 | α5 | 0001000000 | α6 |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
0100100110 | α1015 | 1001001100 | α1016 | 0010010001 | α1017 | 0100100010 | α1018 |
1001000100 | α1019 | 0010000001 | α1020 | 0100000010 | α1021 | 1000000100 | α1022 |
Binary values | GF(28) | Binary values | GF(28) | Binary values | GF(28) | Binary values | GF(28) |
11011000 | ϖ251 | 10101101 | ϖ252 | 01000111 | ϖ253 | 10001110 | ϖ254 |
10000011 | ϖ247 | 00011011 | ϖ248 | 00110110 | ϖ249 | 01101100 | ϖ250 |
01111101 | ϖ243 | 11111010 | ϖ244 | 11101001 | ϖ245 | 11001111 | ϖ246 |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
… | … | … | … | … | … | … | … |
10000000 | ϖ7 | 00011101 | ϖ8 | 00111010 | ϖ9 | 01110100 | ϖ10 |
00001000 | ϖ3 | 00010000 | ϖ4 | 00100000 | ϖ5 | 01000000 | ϖ6 |
00000000 | 0 | 00000001 | 1 | 00000010 | ϖ1 | 00000100 | ϖ2 |
245 | 243 | 222 | 162 | 150 | 233 | 131 | 178 | 17 | 16 | 71 | 73 | 60 | 1 | 148 | 90 |
84 | 3 | 201 | 118 | 66 | 125 | 232 | 58 | 54 | 44 | 171 | 8 | 57 | 204 | 2 | 142 |
218 | 252 | 48 | 161 | 203 | 7 | 135 | 87 | 192 | 149 | 108 | 191 | 128 | 231 | 32 | 30 |
67 | 228 | 72 | 244 | 177 | 127 | 22 | 104 | 28 | 133 | 137 | 64 | 95 | 116 | 219 | 4 |
212 | 225 | 101 | 96 | 6 | 21 | 235 | 152 | 136 | 238 | 154 | 27 | 19 | 220 | 91 | 5 |
190 | 241 | 46 | 153 | 210 | 196 | 255 | 117 | 37 | 176 | 9 | 207 | 29 | 180 | 216 | 173 |
35 | 193 | 239 | 86 | 146 | 40 | 113 | 221 | 34 | 139 | 88 | 119 | 112 | 134 | 223 | 188 |
189 | 170 | 92 | 147 | 74 | 69 | 217 | 122 | 247 | 109 | 186 | 38 | 250 | 42 | 145 | 213 |
115 | 208 | 70 | 227 | 181 | 151 | 156 | 18 | 12 | 143 | 251 | 187 | 249 | 205 | 59 | 41 |
103 | 107 | 14 | 129 | 13 | 160 | 209 | 62 | 157 | 75 | 93 | 234 | 11 | 82 | 24 | 51 |
169 | 199 | 31 | 182 | 230 | 89 | 183 | 68 | 164 | 33 | 83 | 253 | 56 | 45 | 76 | 106 |
194 | 50 | 55 | 141 | 124 | 184 | 159 | 242 | 248 | 26 | 85 | 240 | 206 | 254 | 140 | 25 |
15 | 120 | 130 | 100 | 202 | 224 | 79 | 102 | 163 | 43 | 110 | 39 | 94 | 229 | 20 | 36 |
99 | 168 | 77 | 246 | 111 | 197 | 165 | 237 | 123 | 81 | 155 | 63 | 53 | 61 | 158 | 49 |
214 | 198 | 114 | 175 | 65 | 52 | 200 | 80 | 10 | 226 | 236 | 195 | 179 | 138 | 167 | 97 |
0 | 211 | 98 | 215 | 47 | 174 | 126 | 185 | 132 | 105 | 166 | 121 | 23 | 172 | 78 | 144 |
190 | 241 | 46 | 153 | 210 | 196 | 255 | 117 | 37 | 176 | 9 | 207 | 29 | 180 | 216 | 173 |
212 | 225 | 101 | 96 | 6 | 21 | 235 | 152 | 136 | 238 | 154 | 27 | 19 | 220 | 91 | 5 |
67 | 228 | 72 | 244 | 177 | 127 | 22 | 104 | 28 | 133 | 137 | 64 | 95 | 116 | 219 | 4 |
35 | 193 | 239 | 86 | 146 | 40 | 113 | 221 | 34 | 139 | 88 | 119 | 112 | 134 | 223 | 188 |
84 | 3 | 201 | 118 | 66 | 125 | 232 | 58 | 54 | 44 | 171 | 8 | 57 | 204 | 2 | 142 |
214 | 198 | 114 | 175 | 65 | 52 | 200 | 80 | 10 | 226 | 236 | 195 | 179 | 138 | 167 | 97 |
245 | 243 | 222 | 162 | 150 | 233 | 131 | 178 | 17 | 16 | 71 | 73 | 60 | 1 | 148 | 90 |
15 | 120 | 130 | 100 | 202 | 224 | 79 | 102 | 163 | 43 | 110 | 39 | 94 | 229 | 20 | 36 |
194 | 50 | 55 | 141 | 124 | 184 | 159 | 242 | 248 | 26 | 85 | 240 | 206 | 254 | 140 | 25 |
169 | 199 | 31 | 182 | 230 | 89 | 183 | 68 | 164 | 33 | 83 | 253 | 56 | 45 | 76 | 106 |
99 | 168 | 77 | 246 | 111 | 197 | 165 | 237 | 123 | 81 | 155 | 63 | 53 | 61 | 158 | 49 |
103 | 107 | 14 | 129 | 13 | 160 | 209 | 62 | 157 | 75 | 93 | 234 | 11 | 82 | 24 | 51 |
0 | 211 | 98 | 215 | 47 | 174 | 126 | 185 | 132 | 105 | 166 | 121 | 23 | 172 | 78 | 144 |
189 | 170 | 92 | 147 | 74 | 69 | 217 | 122 | 247 | 109 | 186 | 38 | 250 | 42 | 145 | 213 |
115 | 208 | 70 | 227 | 181 | 151 | 156 | 18 | 12 | 143 | 251 | 187 | 249 | 205 | 59 | 41 |
218 | 252 | 48 | 161 | 203 | 7 | 135 | 87 | 192 | 149 | 108 | 191 | 128 | 231 | 32 | 30 |
174 | 180 | 148 | 149 | 193 | 250 | 58 | 170 | 26 | 30 | 20 | 15 | 142 | 71 | 155 | 90 |
244 | 201 | 82 | 160 | 175 | 105 | 18 | 106 | 115 | 221 | 108 | 16 | 219 | 173 | 2 | 1 |
187 | 85 | 198 | 235 | 152 | 129 | 135 | 252 | 199 | 29 | 218 | 209 | 98 | 8 | 4 | 133 |
132 | 72 | 92 | 186 | 200 | 49 | 38 | 59 | 134 | 207 | 17 | 62 | 251 | 216 | 254 | 35 |
169 | 196 | 33 | 66 | 247 | 253 | 11 | 122 | 176 | 93 | 79 | 131 | 128 | 64 | 67 | 70 |
226 | 86 | 138 | 192 | 145 | 150 | 24 | 190 | 44 | 63 | 220 | 116 | 144 | 27 | 217 | 32 |
55 | 249 | 50 | 211 | 111 | 6 | 143 | 140 | 147 | 197 | 40 | 205 | 121 | 74 | 240 | 54 |
167 | 159 | 213 | 242 | 166 | 96 | 162 | 245 | 127 | 158 | 76 | 195 | 161 | 136 | 210 | 97 |
228 | 87 | 113 | 14 | 231 | 77 | 225 | 194 | 84 | 41 | 45 | 114 | 189 | 125 | 233 | 153 |
109 | 107 | 10 | 21 | 119 | 223 | 75 | 123 | 164 | 212 | 117 | 255 | 22 | 184 | 12 | 232 |
202 | 25 | 237 | 103 | 81 | 120 | 102 | 78 | 36 | 61 | 13 | 236 | 139 | 137 | 19 | 88 |
163 | 130 | 185 | 80 | 224 | 73 | 154 | 53 | 69 | 95 | 181 | 23 | 168 | 34 | 203 | 177 |
94 | 165 | 204 | 215 | 28 | 222 | 83 | 178 | 42 | 43 | 46 | 227 | 141 | 234 | 238 | 37 |
182 | 188 | 47 | 208 | 60 | 179 | 112 | 246 | 52 | 146 | 156 | 191 | 124 | 39 | 9 | 65 |
241 | 171 | 229 | 31 | 183 | 100 | 7 | 118 | 5 | 89 | 239 | 172 | 157 | 206 | 3 | 243 |
0 | 214 | 91 | 230 | 101 | 99 | 151 | 57 | 68 | 110 | 248 | 126 | 51 | 104 | 48 | 56 |
174 | 180 | 148 | 149 | 193 | 250 | 58 | 170 | 26 | 30 | 20 | 15 | 142 | 71 | 155 | 90 |
132 | 72 | 92 | 186 | 200 | 49 | 38 | 59 | 134 | 207 | 17 | 62 | 251 | 216 | 254 | 35 |
0 | 214 | 91 | 230 | 101 | 99 | 151 | 57 | 68 | 110 | 248 | 126 | 51 | 104 | 48 | 56 |
244 | 201 | 82 | 160 | 175 | 105 | 18 | 106 | 115 | 221 | 108 | 16 | 219 | 173 | 2 | 1 |
182 | 188 | 47 | 208 | 60 | 179 | 112 | 246 | 52 | 146 | 156 | 191 | 124 | 39 | 9 | 65 |
226 | 86 | 138 | 192 | 145 | 150 | 24 | 190 | 44 | 63 | 220 | 116 | 144 | 27 | 217 | 32 |
241 | 171 | 229 | 31 | 183 | 100 | 7 | 118 | 5 | 89 | 239 | 172 | 157 | 206 | 3 | 243 |
55 | 249 | 50 | 211 | 111 | 6 | 143 | 140 | 147 | 197 | 40 | 205 | 121 | 74 | 240 | 54 |
109 | 107 | 10 | 21 | 119 | 223 | 75 | 123 | 164 | 212 | 117 | 255 | 22 | 184 | 12 | 232 |
202 | 25 | 237 | 103 | 81 | 120 | 102 | 78 | 36 | 61 | 13 | 236 | 139 | 137 | 19 | 88 |
94 | 165 | 204 | 215 | 28 | 222 | 83 | 178 | 42 | 43 | 46 | 227 | 141 | 234 | 238 | 37 |
163 | 130 | 185 | 80 | 224 | 73 | 154 | 53 | 69 | 95 | 181 | 23 | 168 | 34 | 203 | 177 |
169 | 196 | 33 | 66 | 247 | 253 | 11 | 122 | 176 | 93 | 79 | 131 | 128 | 64 | 67 | 70 |
167 | 159 | 213 | 242 | 166 | 96 | 162 | 245 | 127 | 158 | 76 | 195 | 161 | 136 | 210 | 97 |
187 | 85 | 198 | 235 | 152 | 129 | 135 | 252 | 199 | 29 | 218 | 209 | 98 | 8 | 4 | 133 |
228 | 87 | 113 | 14 | 231 | 77 | 225 | 194 | 84 | 41 | 45 | 114 | 189 | 125 | 233 | 153 |
234 | 95 | 28 | 188 | 141 | 192 | 239 | 217 | 64 | 108 | 166 | 173 | 8 | 4 | 1 | 203 |
80 | 163 | 180 | 155 | 84 | 89 | 232 | 207 | 13 | 10 | 113 | 202 | 150 | 2 | 204 | 148 |
48 | 26 | 247 | 104 | 11 | 183 | 169 | 127 | 58 | 131 | 27 | 32 | 216 | 120 | 71 | 142 |
82 | 123 | 151 | 201 | 210 | 152 | 6 | 176 | 228 | 158 | 29 | 118 | 117 | 213 | 126 | 81 |
59 | 39 | 237 | 223 | 7 | 255 | 137 | 44 | 225 | 125 | 147 | 114 | 21 | 115 | 16 | 224 |
212 | 111 | 101 | 50 | 248 | 15 | 83 | 174 | 184 | 135 | 14 | 119 | 24 | 227 | 54 | 75 |
94 | 230 | 37 | 246 | 18 | 159 | 245 | 144 | 199 | 38 | 112 | 153 | 233 | 43 | 128 | 85 |
97 | 162 | 93 | 181 | 70 | 63 | 122 | 129 | 251 | 79 | 17 | 53 | 205 | 116 | 220 | 87 |
146 | 5 | 62 | 67 | 241 | 30 | 36 | 165 | 143 | 252 | 139 | 22 | 88 | 130 | 73 | 200 |
222 | 56 | 221 | 209 | 121 | 195 | 103 | 96 | 12 | 249 | 208 | 45 | 49 | 154 | 61 | 250 |
98 | 236 | 179 | 20 | 136 | 219 | 23 | 69 | 187 | 52 | 102 | 206 | 253 | 76 | 197 | 19 |
194 | 133 | 214 | 33 | 77 | 35 | 238 | 145 | 74 | 65 | 242 | 170 | 109 | 57 | 90 | 229 |
196 | 198 | 161 | 100 | 107 | 25 | 211 | 189 | 31 | 78 | 182 | 240 | 244 | 157 | 235 | 86 |
60 | 149 | 110 | 41 | 185 | 160 | 218 | 140 | 193 | 68 | 172 | 51 | 72 | 105 | 243 | 178 |
99 | 191 | 177 | 55 | 175 | 171 | 34 | 40 | 47 | 164 | 254 | 46 | 9 | 132 | 138 | 190 |
0 | 215 | 231 | 226 | 42 | 91 | 92 | 186 | 134 | 167 | 66 | 106 | 156 | 124 | 168 | 3 |
82 | 123 | 151 | 201 | 210 | 152 | 6 | 176 | 228 | 158 | 29 | 118 | 117 | 213 | 126 | 81 |
59 | 39 | 237 | 223 | 7 | 255 | 137 | 44 | 225 | 125 | 147 | 114 | 21 | 115 | 16 | 224 |
234 | 95 | 28 | 188 | 141 | 192 | 239 | 217 | 64 | 108 | 166 | 173 | 8 | 4 | 1 | 203 |
98 | 236 | 179 | 20 | 136 | 219 | 23 | 69 | 187 | 52 | 102 | 206 | 253 | 76 | 197 | 19 |
48 | 26 | 247 | 104 | 11 | 183 | 169 | 127 | 58 | 131 | 27 | 32 | 216 | 120 | 71 | 142 |
97 | 162 | 93 | 181 | 70 | 63 | 122 | 129 | 251 | 79 | 17 | 53 | 205 | 116 | 220 | 87 |
99 | 191 | 177 | 55 | 175 | 171 | 34 | 40 | 47 | 164 | 254 | 46 | 9 | 132 | 138 | 190 |
222 | 56 | 221 | 209 | 121 | 195 | 103 | 96 | 12 | 249 | 208 | 45 | 49 | 154 | 61 | 250 |
146 | 5 | 62 | 67 | 241 | 30 | 36 | 165 | 143 | 252 | 139 | 22 | 88 | 130 | 73 | 200 |
212 | 111 | 101 | 50 | 248 | 15 | 83 | 174 | 184 | 135 | 14 | 119 | 24 | 227 | 54 | 75 |
60 | 149 | 110 | 41 | 185 | 160 | 218 | 140 | 193 | 68 | 172 | 51 | 72 | 105 | 243 | 178 |
80 | 163 | 180 | 155 | 84 | 89 | 232 | 207 | 13 | 10 | 113 | 202 | 150 | 2 | 204 | 148 |
194 | 133 | 214 | 33 | 77 | 35 | 238 | 145 | 74 | 65 | 242 | 170 | 109 | 57 | 90 | 229 |
0 | 215 | 231 | 226 | 42 | 91 | 92 | 186 | 134 | 167 | 66 | 106 | 156 | 124 | 168 | 3 |
94 | 230 | 37 | 246 | 18 | 159 | 245 | 144 | 199 | 38 | 112 | 153 | 233 | 43 | 128 | 85 |
196 | 198 | 161 | 100 | 107 | 25 | 211 | 189 | 31 | 78 | 182 | 240 | 244 | 157 | 235 | 86 |
244 | 229 | 218 | 248 | 205 | 160 | 207 | 64 | 38 | 60 | 233 | 136 | 133 | 171 | 155 | 203 |
127 | 72 | 247 | 90 | 186 | 176 | 250 | 18 | 188 | 32 | 182 | 173 | 120 | 108 | 142 | 2 |
118 | 48 | 3 | 130 | 252 | 76 | 82 | 97 | 204 | 49 | 235 | 16 | 27 | 241 | 34 | 75 |
37 | 196 | 36 | 122 | 62 | 180 | 11 | 73 | 178 | 189 | 128 | 54 | 153 | 99 | 167 | 71 |
231 | 63 | 78 | 200 | 101 | 253 | 251 | 45 | 135 | 157 | 58 | 131 | 88 | 65 | 8 | 4 |
240 | 249 | 51 | 220 | 112 | 209 | 10 | 117 | 86 | 19 | 121 | 40 | 228 | 145 | 149 | 216 |
13 | 89 | 79 | 113 | 68 | 115 | 6 | 201 | 236 | 7 | 44 | 232 | 31 | 223 | 67 | 114 |
41 | 226 | 151 | 242 | 43 | 52 | 192 | 140 | 255 | 57 | 123 | 212 | 239 | 116 | 208 | 238 |
105 | 93 | 166 | 170 | 181 | 92 | 172 | 9 | 61 | 245 | 243 | 152 | 104 | 125 | 169 | 29 |
158 | 179 | 191 | 84 | 193 | 175 | 74 | 21 | 26 | 30 | 14 | 80 | 139 | 159 | 144 | 46 |
111 | 94 | 42 | 132 | 197 | 187 | 28 | 66 | 85 | 237 | 227 | 168 | 126 | 96 | 22 | 15 |
165 | 161 | 185 | 210 | 20 | 147 | 162 | 35 | 146 | 47 | 138 | 55 | 177 | 234 | 83 | 222 |
150 | 219 | 211 | 254 | 98 | 194 | 33 | 23 | 198 | 148 | 225 | 195 | 12 | 199 | 224 | 25 |
163 | 214 | 183 | 95 | 50 | 184 | 56 | 154 | 230 | 109 | 53 | 107 | 39 | 5 | 87 | 137 |
246 | 202 | 17 | 206 | 190 | 164 | 100 | 124 | 221 | 70 | 119 | 102 | 156 | 69 | 24 | 143 |
0 | 1 | 215 | 91 | 110 | 103 | 59 | 77 | 217 | 141 | 81 | 174 | 106 | 213 | 134 | 129 |
150 | 219 | 211 | 254 | 98 | 194 | 33 | 23 | 198 | 148 | 225 | 195 | 12 | 199 | 224 | 25 |
105 | 93 | 166 | 170 | 181 | 92 | 172 | 9 | 61 | 245 | 243 | 152 | 104 | 125 | 169 | 29 |
165 | 161 | 185 | 210 | 20 | 147 | 162 | 35 | 146 | 47 | 138 | 55 | 177 | 234 | 83 | 222 |
37 | 196 | 36 | 122 | 62 | 180 | 11 | 73 | 178 | 189 | 128 | 54 | 153 | 99 | 167 | 71 |
118 | 48 | 3 | 130 | 252 | 76 | 82 | 97 | 204 | 49 | 235 | 16 | 27 | 241 | 34 | 75 |
0 | 1 | 215 | 91 | 110 | 103 | 59 | 77 | 217 | 141 | 81 | 174 | 106 | 213 | 134 | 129 |
231 | 63 | 78 | 200 | 101 | 253 | 251 | 45 | 135 | 157 | 58 | 131 | 88 | 65 | 8 | 4 |
111 | 94 | 42 | 132 | 197 | 187 | 28 | 66 | 85 | 237 | 227 | 168 | 126 | 96 | 22 | 15 |
41 | 226 | 151 | 242 | 43 | 52 | 192 | 140 | 255 | 57 | 123 | 212 | 239 | 116 | 208 | 238 |
240 | 249 | 51 | 220 | 112 | 209 | 10 | 117 | 86 | 19 | 121 | 40 | 228 | 145 | 149 | 216 |
246 | 202 | 17 | 206 | 190 | 164 | 100 | 124 | 221 | 70 | 119 | 102 | 156 | 69 | 24 | 143 |
163 | 214 | 183 | 95 | 50 | 184 | 56 | 154 | 230 | 109 | 53 | 107 | 39 | 5 | 87 | 137 |
244 | 229 | 218 | 248 | 205 | 160 | 207 | 64 | 38 | 60 | 233 | 136 | 133 | 171 | 155 | 203 |
13 | 89 | 79 | 113 | 68 | 115 | 6 | 201 | 236 | 7 | 44 | 232 | 31 | 223 | 67 | 114 |
127 | 72 | 247 | 90 | 186 | 176 | 250 | 18 | 188 | 32 | 182 | 173 | 120 | 108 | 142 | 2 |
158 | 179 | 191 | 84 | 193 | 175 | 74 | 21 | 26 | 30 | 14 | 80 | 139 | 159 | 144 | 46 |
Algorithm 1: Permutations of the group S16. |
a. In Table 4, we apply the following permutation (174316138141110129156)(25) of the group S16 to generate our proposed S-box 1. |
b. In Table 6, we apply the following permutation (1)(24)(31578145131110916) of the group S16 to generate our proposed S-box 2. |
c. In Table 8, we apply the following permutation (135212131614114)(6108)(715)(9) of the group S16 to generate our proposed S-box 3. |
d. In Table 10, we apply the following permutation (113)(2151189)(3571412)(4)(61016) of the group S16 to generate our proposed S-box 4. |
Algorithm 2: Divide and conquer strategy based nonlinear booster algorithm. |
Step1: S1 ← the function F(n) generates bijective S-box S1(n×m) using coset graph. |
Step2: S2 ←S1 ∴ Here we are generating temporary copy of actual S-box, |
While 1: n ∴ Setting a loop that continue to execute loop body (Step 3 to 7) as long as condition holds true |
Step 3: Received 16 blocks of size 4×4 ← divide the S-box (S2) into blocks of size 128 bits. |
Step4: Received updated S-box (S2) ← Swap the one block size 4×4 with another one. |
Step5: NewNL ← calculate the nonlinearity of updated S-box. |
Step 6: Compare new NL with NL of actual S-box. |
Stept 7: If the new nonlinearity (NL) is greater than the actual NL, make this change permanent. Otherwise, reverse the change. |
end |
Step 8: We will receive an S-box with improved nonlinearity. |
7 | 167 | 60 | 72 | 84 | 183 | 100 | 3 | 157 | 238 | 228 | 20 | 69 | 226 | 123 | 40 |
152 | 204 | 44 | 208 | 255 | 166 | 141 | 24 | 162 | 89 | 215 | 148 | 224 | 142 | 30 | 249 |
116 | 160 | 77 | 79 | 195 | 59 | 177 | 156 | 117 | 207 | 219 | 15 | 35 | 17 | 91 | 66 |
185 | 143 | 222 | 225 | 173 | 254 | 104 | 139 | 94 | 65 | 102 | 196 | 197 | 36 | 31 | 145 |
5 | 172 | 233 | 239 | 76 | 78 | 227 | 25 | 6 | 92 | 223 | 158 | 232 | 55 | 179 | 41 |
26 | 62 | 114 | 43 | 137 | 129 | 51 | 186 | 206 | 176 | 90 | 237 | 112 | 198 | 1 | 135 |
211 | 111 | 190 | 230 | 241 | 163 | 9 | 180 | 110 | 250 | 146 | 113 | 16 | 47 | 133 | 96 |
33 | 19 | 242 | 125 | 18 | 121 | 68 | 107 | 52 | 147 | 122 | 23 | 56 | 81 | 210 | 61 |
217 | 216 | 201 | 103 | 109 | 67 | 63 | 144 | 236 | 251 | 205 | 161 | 153 | 99 | 29 | 27 |
182 | 71 | 0 | 150 | 32 | 235 | 170 | 73 | 138 | 247 | 155 | 85 | 203 | 88 | 130 | 22 |
192 | 64 | 120 | 80 | 252 | 253 | 119 | 234 | 189 | 115 | 220 | 214 | 70 | 169 | 159 | 229 |
97 | 98 | 118 | 187 | 231 | 14 | 175 | 191 | 154 | 171 | 13 | 106 | 57 | 93 | 53 | 202 |
11 | 174 | 54 | 38 | 132 | 199 | 101 | 82 | 188 | 164 | 21 | 128 | 74 | 10 | 2 | 45 |
105 | 50 | 39 | 149 | 75 | 140 | 87 | 194 | 221 | 213 | 178 | 124 | 34 | 134 | 127 | 108 |
212 | 248 | 245 | 136 | 58 | 184 | 8 | 48 | 240 | 168 | 200 | 151 | 244 | 209 | 95 | 83 |
37 | 4 | 246 | 218 | 46 | 28 | 12 | 193 | 126 | 49 | 42 | 243 | 165 | 181 | 131 | 86 |
20 | 116 | 237 | 8 | 167 | 218 | 0 | 185 | 93 | 9 | 94 | 166 | 176 | 182 | 102 | 106 |
129 | 115 | 118 | 208 | 78 | 160 | 143 | 165 | 22 | 157 | 112 | 179 | 145 | 124 | 16 | 225 |
212 | 219 | 226 | 72 | 25 | 215 | 98 | 50 | 42 | 152 | 26 | 198 | 28 | 149 | 70 | 59 |
201 | 85 | 103 | 247 | 180 | 38 | 134 | 69 | 49 | 95 | 249 | 213 | 105 | 121 | 138 | 181 |
45 | 14 | 41 | 144 | 29 | 195 | 161 | 67 | 47 | 220 | 254 | 132 | 27 | 60 | 206 | 51 |
76 | 87 | 120 | 48 | 139 | 12 | 199 | 37 | 240 | 174 | 189 | 34 | 63 | 211 | 99 | 131 |
104 | 128 | 141 | 56 | 194 | 100 | 233 | 183 | 170 | 108 | 5 | 153 | 113 | 10 | 130 | 142 |
173 | 58 | 217 | 1 | 110 | 65 | 151 | 43 | 190 | 97 | 33 | 96 | 89 | 178 | 238 | 83 |
252 | 6 | 196 | 216 | 82 | 150 | 31 | 11 | 19 | 135 | 68 | 123 | 228 | 21 | 122 | 158 |
175 | 55 | 214 | 3 | 162 | 86 | 17 | 184 | 30 | 36 | 133 | 171 | 188 | 127 | 197 | 146 |
18 | 80 | 227 | 40 | 13 | 200 | 92 | 159 | 154 | 77 | 79 | 234 | 54 | 156 | 2 | 177 |
44 | 101 | 224 | 137 | 91 | 209 | 64 | 15 | 109 | 46 | 210 | 53 | 248 | 231 | 192 | 230 |
187 | 117 | 126 | 202 | 81 | 232 | 7 | 88 | 207 | 168 | 71 | 169 | 193 | 253 | 23 | 111 |
164 | 186 | 222 | 239 | 74 | 172 | 24 | 39 | 236 | 203 | 61 | 163 | 119 | 148 | 245 | 62 |
235 | 229 | 140 | 250 | 205 | 251 | 242 | 241 | 155 | 223 | 125 | 244 | 246 | 204 | 75 | 243 |
221 | 57 | 84 | 191 | 107 | 35 | 136 | 255 | 114 | 52 | 32 | 4 | 90 | 147 | 66 | 73 |
082 | 123 | 151 | 201 | 210 | 152 | 006 | 176 | 228 | 158 | 029 | 118 | 117 | 213 | 126 | 081 |
171 | 248 | 032 | 121 | 080 | 120 | 025 | 012 | 155 | 194 | 203 | 156 | 150 | 084 | 250 | 061 |
148 | 038 | 063 | 089 | 231 | 141 | 197 | 095 | 056 | 107 | 030 | 221 | 208 | 161 | 115 | 053 |
255 | 185 | 237 | 193 | 218 | 241 | 192 | 196 | 005 | 235 | 190 | 128 | 022 | 187 | 039 | 251 |
083 | 175 | 183 | 130 | 142 | 062 | 002 | 238 | 104 | 099 | 067 | 143 | 229 | 047 | 106 | 108 |
059 | 239 | 249 | 073 | 233 | 180 | 090 | 091 | 163 | 174 | 004 | 114 | 222 | 068 | 064 | 100 |
207 | 140 | 055 | 027 | 125 | 102 | 164 | 216 | 093 | 076 | 243 | 060 | 111 | 145 | 077 | 230 |
058 | 186 | 041 | 028 | 014 | 070 | 031 | 189 | 166 | 212 | 159 | 088 | 247 | 000 | 078 | 253 |
045 | 160 | 103 | 219 | 036 | 157 | 169 | 065 | 105 | 177 | 016 | 245 | 240 | 001 | 003 | 127 |
232 | 136 | 138 | 252 | 037 | 225 | 162 | 168 | 096 | 137 | 023 | 110 | 149 | 008 | 098 | 195 |
170 | 009 | 033 | 215 | 226 | 011 | 085 | 050 | 153 | 021 | 206 | 191 | 013 | 094 | 246 | 242 |
182 | 042 | 181 | 113 | 79 | 179 | 122 | 224 | 133 | 204 | 109 | 217 | 147 | 040 | 154 | 057 |
167 | 205 | 173 | 178 | 044 | 043 | 198 | 112 | 086 | 046 | 017 | 024 | 026 | 072 | 200 | 132 |
188 | 139 | 172 | 071 | 124 | 209 | 054 | 010 | 034 | 075 | 244 | 116 | 097 | 101 | 066 | 007 |
254 | 214 | 087 | 052 | 236 | 165 | 144 | 131 | 019 | 146 | 184 | 051 | 015 | 223 | 119 | 220 |
211 | 049 | 069 | 020 | 129 | 234 | 135 | 092 | 199 | 227 | 134 | 202 | 048 | 018 | 074 | 035 |
150 | 219 | 211 | 254 | 098 | 194 | 033 | 023 | 198 | 148 | 225 | 195 | 012 | 199 | 224 | 025 |
131 | 107 | 015 | 084 | 160 | 109 | 203 | 240 | 034 | 141 | 166 | 218 | 209 | 068 | 003 | 132 |
065 | 061 | 044 | 100 | 137 | 040 | 181 | 094 | 035 | 041 | 011 | 173 | 079 | 083 | 247 | 237 |
016 | 031 | 054 | 202 | 167 | 136 | 077 | 006 | 182 | 248 | 170 | 037 | 221 | 104 | 253 | 067 |
081 | 060 | 215 | 189 | 080 | 128 | 097 | 164 | 039 | 106 | 184 | 046 | 186 | 200 | 208 | 112 |
056 | 102 | 146 | 214 | 229 | 062 | 233 | 238 | 116 | 122 | 156 | 169 | 021 | 127 | 070 | 174 |
178 | 239 | 180 | 045 | 117 | 147 | 246 | 192 | 222 | 206 | 129 | 172 | 118 | 099 | 171 | 119 |
213 | 090 | 130 | 149 | 216 | 242 | 126 | 087 | 022 | 210 | 110 | 075 | 052 | 093 | 236 | 232 |
140 | 008 | 051 | 004 | 145 | 227 | 074 | 176 | 228 | 066 | 095 | 013 | 059 | 231 | 076 | 155 |
036 | 255 | 201 | 055 | 157 | 153 | 159 | 175 | 103 | 017 | 113 | 071 | 001 | 252 | 187 | 154 |
005 | 020 | 250 | 096 | 125 | 057 | 092 | 196 | 197 | 124 | 072 | 142 | 163 | 101 | 204 | 115 |
028 | 042 | 029 | 114 | 089 | 053 | 193 | 223 | 027 | 191 | 135 | 220 | 226 | 014 | 120 | 165 |
134 | 111 | 241 | 230 | 139 | 082 | 235 | 207 | 058 | 143 | 019 | 002 | 177 | 162 | 190 | 158 |
188 | 030 | 151 | 078 | 185 | 064 | 088 | 026 | 108 | 183 | 018 | 243 | 212 | 000 | 050 | 152 |
105 | 032 | 179 | 121 | 091 | 038 | 069 | 217 | 048 | 234 | 024 | 063 | 144 | 009 | 123 | 138 |
161 | 007 | 073 | 245 | 010 | 249 | 043 | 049 | 168 | 086 | 133 | 251 | 085 | 047 | 244 | 205 |
S-box | f1 | f2 | f3 | f4 | f5 | f6 | f7 | f8 | Average |
Proposed 1 (Table 11) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 2 (Table 12) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 3 (Table 13) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Proposed 4 (Table 14) | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Zhu [40] | 108 | 108 | 106 | 102 | 108 | 102 | 108 | 104 | 105.75 |
Zahid [41] | 110 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 111.75 |
Hussain [42] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Gautam et al. [43] | 108 | 106 | 104 | 98 | 102 | 102 | 98 | 74 | 99 |
Prime [44] | 94 | 100 | 104 | 104 | 102 | 100 | 98 | 94 | 99.5 |
S8 AES [45] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Xhi [46] | 106 | 104 | 106 | 106 | 104 | 106 | 104 | 106 | 105 |
AES [47] | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 | 112 |
Skipjac and Kea [48] | 104 | 108 | 108 | 108 | 108 | 104 | 104 | 106 | 106.75 |
Alkhaldi et al. [19] | 108 | 104 | 106 | 106 | 102 | 98 | 104 | 108 | 104 |
Chen et al. [49] | 100 | 102 | 103 | 104 | 106 | 106 | 106 | 108 | 104.3 |
Tang et al. [50] | 100 | 103 | 104 | 104 | 105 | 105 | 106 | 109 | 104.5 |
Khan et al. [37] | 102 | 108 | 106 | 102 | 106 | 106 | 106 | 98 | 104.25 |
Belazi et al. [51] | 106 | 106 | 106 | 104 | 108 | 102 | 106 | 104 | 105.25 |
Hua [52] | 106 | 106 | 108 | 106 | 102 | 102 | 108 | 104 | 105.25 |
Javeed [53] | 108 | 106 | 106 | 110 | 106 | 108 | 108 | 108 | 107.50 |
Detailed BIC Analysis for proposed S-box-4 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---- | 102 | 104 | 100 | 106 | 106 | 106 | 106 | |
102 | ---- | 102 | 108 | 104 | 108 | 104 | 102 | |
104 | 102 | ---- | 104 | 108 | 108 | 102 | 104 | |
100 | 108 | 104 | ---- | 104 | 108 | 106 | 108 | |
106 | 104 | 108 | 104 | ---- | 96 | 104 | 98 | |
106 | 108 | 108 | 108 | 96 | ---- | 104 | 106 | |
106 | 104 | 102 | 106 | 104 | 104 | ---- | 104 | |
106 | 102 | 104 | 108 | 98 | 106 | 104 | ---- | |
Average BIC: 104.35 |
S-boxes | Minimum value | Average | Square deviation |
Proposed 1 | 96 | 103.42 | 2.56 |
Proposed 2 | 98 | 102.86 | 2.38 |
Proposed 3 | 96 | 104.57 | 2.41 |
Proposed 4 | 96 | 104.35 | 2.81 |
Hussain [42] | 112 | 112 | 0 |
Gautam [43] | 92 | 103 | 3.5225 |
Prime [44] | 94 | 101.71 | 3.53 |
S8 AES [54] | 112 | 112 | 0 |
Xyi [46] | 98 | 103.78 | 2.743 |
AES [47] | 112 | 112 | 0 |
Skipjac [48] | 102 | 104.14 | 1.767 |
SAC Results (S-box-1) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
0.484375 | 0.531250 | 0.484375 | 0.546875 | 0.484375 | 0.515625 | 0.484375 | 0.468750 | |
0.546875 | 0.500000 | 0.515625 | 0.546875 | 0.453125 | 0.515625 | 0.515625 | 0.468750 | |
0.484375 | 0.500000 | 0.500000 | 0.484375 | 0.515625 | 0.500000 | 0.500000 | 0.515625 | |
0.453125 | 0.546875 | 0.578125 | 0.515625 | 0.500000 | 0.578125 | 0.531250 | 0.484375 | |
0.531250 | 0.562500 | 0.484375 | 0.515625 | 0.515625 | 0.515625 | 0.515625 | 0.484375 | |
0.531250 | 0.468750 | 0.500000 | 0.500000 | 0.484375 | 0.484375 | 0.484375 | 0.515625 | |
0.515625 | 0.515625 | 0.531250 | 0.468750 | 0.500000 | 0.562500 | 0.500000 | 0.531250 | |
0.453125 | 0.484375 | 0.546875 | 0.562500 | 0.500000 | 0.484375 | 0.500000 | 0.531250 | |
Average SAC (S-box-1) | 0.508301 | |||||||
Average SAC (S-box-2) | 0.504150 | |||||||
Average SAC (S-box-3) | 0.499756 | |||||||
Average SAC (S-box-4) | 0.506348 |
S-boxes | Max value | Max LP |
Proposed 1 (Table 11) | 160 | 0.125 |
Proposed 2 (Table 12) | 162 | 0.133 |
Proposed 3 (Table 13) | 164 | 0.141 |
Proposed 4 (Table 14) | 158 | 0.117 |
AES [47] | 144 | 0.062 |
Hussain [42] | 144 | 0.062 |
Skipjack [48] | 156 | 0.109 |
Prime [44] | 162 | 0.132 |
Gautam [43] | 164 | 0.2109 |
S8 AES [54] | 144 | 0.062 |
Xyi [46] | 168 | 0.156 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
0 | 8 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 | 6 | 6 |
6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 |
6 | 6 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 |
6 | 8 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 10 | 8 | 6 | 6 | 6 | 6 | 6 |
8 | 8 | 6 | 8 | 8 | 6 | 8 | 4 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 |
6 | 8 | 6 | 6 | 6 | 8 | 6 | 4 | 6 | 6 | 8 | 6 | 8 | 6 | 4 | 8 |
6 | 10 | 12 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 6 |
6 | 8 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 10 | 8 | 6 | 6 | 8 |
8 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 | 8 | 6 | 6 | 4 | 8 | 6 | 6 |
6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 8 | 6 | 6 | 8 | 6 |
8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 6 |
6 | 6 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 8 | 6 | 6 | 6 | 6 |
8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 6 | 6 | 6 | 8 | 6 |
8 | 6 | 8 | 8 | 8 | 6 | 8 | 8 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 6 |
6 | 8 | 8 | 8 | 8 | 8 | 6 | 8 | 6 | 6 | 6 | 6 | 8 | 8 | 6 | 6 |
Max Val: 12 |
S-box | No. of fixed point | No. of reverse fixed point |
Lambić [32] | 2 | 3 |
Jamal [58] | 18 | None |
Tian [59] | 1 | 1 |
Çavuşoğlu [60] | 0 | 2 |
Özkaynak [61] | 4 | 1 |
Ullah [23] | 4 | None |
Proposed S-box-1 (Table-11) | 3 | 1 |
Proposed S-box-2 (Table-12) | 1 | 1 |
Proposed S-box-3 (Table-13) | 2 | None |
Proposed S-box-4 (Table-14) | 3 | 1 |