In this manuscript, we formulate the system of fuzzy stochastic fractional evolution equations (FSFEEs) driven by fractional Brownian motion. We find the results about the existence-uniqueness of the formulated system by using the Lipschitizian conditions. By using these conditions we have also investigated the exponential stability of the solution for the above system driven by fractional Brownian motion. Finally, the applications in financial mathematics are presented and the use of financial mathematics in the fractional Black and Scholes model is also discussed. An example is propounded to show the applicability of our results.
Citation: Kinda Abuasbeh, Ramsha Shafqat, Azmat Ullah Khan Niazi, Muath Awadalla. Nonlocal fuzzy fractional stochastic evolution equations with fractional Brownian motion of order (1,2)[J]. AIMS Mathematics, 2022, 7(10): 19344-19358. doi: 10.3934/math.20221062
In this manuscript, we formulate the system of fuzzy stochastic fractional evolution equations (FSFEEs) driven by fractional Brownian motion. We find the results about the existence-uniqueness of the formulated system by using the Lipschitizian conditions. By using these conditions we have also investigated the exponential stability of the solution for the above system driven by fractional Brownian motion. Finally, the applications in financial mathematics are presented and the use of financial mathematics in the fractional Black and Scholes model is also discussed. An example is propounded to show the applicability of our results.
[1] | J. H. Kim, On fuzzy stochastic differential equations, J. Korean Math. Soc., 42 (2005), 153–169. https://doi.org/10.4134/JKMS.2005.42.1.153 doi: 10.4134/JKMS.2005.42.1.153 |
[2] | M. T. Malinowski, M. Mariusz, Stochastic fuzzy differential equations with an application, Kybernetika, 47 (2011), 123–143. |
[3] | M. T. Malinowski, Some properties of strong solutions to stochastic fuzzy differential equations, Inf. Sci., 252 (2013), 62–80. https://doi.org/10.1016/j.ins.2013.02.053 doi: 10.1016/j.ins.2013.02.053 |
[4] | M. T. Malinowski, Strong solutions to stochastic fuzzy differential equations of Itô type, Math. Comput. Model., 55 (2012), 918–928. https://doi.org/10.1016/j.mcm.2011.09.018 doi: 10.1016/j.mcm.2011.09.018 |
[5] | M. T. Malinowski, Itô type stochastic fuzzy differential equations with delay, Syst. Control Lett., 61 (2012), 692–701. https://doi.org/10.1016/j.sysconle.2012.02.012 doi: 10.1016/j.sysconle.2012.02.012 |
[6] | L. A. Zadeh, Information and control, Fuzzy Sets, 8 (1965), 338–353. |
[7] | W. Fei, Existence and uniqueness for solutions to fuzzy stochastic differential equations driven by local martingales under the non-Lipschitzian condition, Nonlinear Anal., 76 (2013), 202–214. https://doi.org/10.1016/j.na.2012.08.015 doi: 10.1016/j.na.2012.08.015 |
[8] | H. Jafari, M. T. Malinowski, M. J. Ebadi, Fuzzy stochastic differential equations driven by fractional Brownian motion, Adv. Differ. Equ., 2021 (2021), 16. https://doi.org/10.1186/s13662-020-03181-z doi: 10.1186/s13662-020-03181-z |
[9] | J. Zhu, L. Yong, W. Fei, On uniqueness and existence of solutions to stochastic set-valued differential equations with fractional Brownian motions, Syst. Sci. Control Eng., 8 (2020), 618–627. https://doi.org/10.1080/21642583.2020.1851806 doi: 10.1080/21642583.2020.1851806 |
[10] | X. Ding, J. J. Nieto, Analytical solutions for multi-time scale fractional stochastic differential equations driven by fractional Brownian motion and their applications, Entropy, 20 (2018), 63. https://doi.org/10.3390/e20010063 doi: 10.3390/e20010063 |
[11] | M. M. Vas'kovskii, A. A. Karpovich, Finiteness of moments of solutions to mixed-type stochastic differential equations driven by standard and fractional brownian motions, Diff. Equat., 57 (2021), 148–154. https://doi.org/10.1134/S0012266121020038 doi: 10.1134/S0012266121020038 |
[12] | W. Y. Fei, D. F. Xia, On solutions to stochastic set differential equations of Itô type under the non-Lipschitzian condition, Dynam. Syst. Appl., 22 (2013), 137–156. |
[13] | M. T. Malinowski, M. Michta, Stochastic set differential equations, Nonlinear Anal., 72 (2010), 1247–1256. https://doi.org/10.1016/j.na.2009.08.015 doi: 10.1016/j.na.2009.08.015 |
[14] | M. Michta, On set-valued stochastic integrals and fuzzy stochastic equations, Fuzzy Sets Syst., 177 (2011), 1–19. https://doi.org/10.1016/j.fss.2011.01.007 doi: 10.1016/j.fss.2011.01.007 |
[15] | A. Abbas, R. Shafqat, M. B. Jeelani, N. H. Alharthi, Significance of chemical reaction and Lorentz force on third-grade fluid flow and heat transfer with Darcy-Forchheimer law over an inclined exponentially stretching sheet embedded in a porous medium, Symmetry, 14 (2022), 779. https://doi.org/10.3390/sym14040779 doi: 10.3390/sym14040779 |
[16] | A. Abbas, R. Shafqat, M. B. Jeelani, N. H. Alharthi, Convective heat and mass transfer in third-grade fluid with Darcy-Forchheimer relation in the presence of thermal-diffusion and diffusion-thermo effects over an exponentially inclined stretching sheet surrounded by a porous medium: A CFD study, Processes, 10 (2022), 776. https://doi.org/10.3390/pr10040776 doi: 10.3390/pr10040776 |
[17] | R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. M. Torres, Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3–29. https://doi.org/10.1016/j.cam.2017.09.039 doi: 10.1016/j.cam.2017.09.039 |
[18] | R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72 (2010), 2859–2862. https://doi.org/10.1016/j.na.2009.11.029 doi: 10.1016/j.na.2009.11.029 |
[19] | Y. Guo, Q. Zhu, F. Wang, Stability analysis of impulsive stochastic functional differential equations, Commun. Nonlinear Sci. Numer. Simul., 82 (2020), 105013. https://doi.org/10.1016/j.cnsns.2019.105013 doi: 10.1016/j.cnsns.2019.105013 |
[20] | W. Hu, Q. Zhu, H. R. Karimi, Some improved Razumikhin stability criteria for impulsive stochastic delay differential systems, IEEE T. Automat. Contr., 64 (2019), 5207–5213. https://doi.org/10.1109/TAC.2019.2911182 doi: 10.1109/TAC.2019.2911182 |
[21] | Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE T. Automat. Contr., 64 (2018), 3764–3771. https://doi.org/10.1109/TAC.2018.2882067 doi: 10.1109/TAC.2018.2882067 |
[22] | W. Fei, H. Liu, W. Zhang, On solutions to fuzzy stochastic differential equations with local martingales, Syst. Control Lett., 65 (2014), 96–105. https://doi.org/10.1016/j.sysconle.2013.12.009 doi: 10.1016/j.sysconle.2013.12.009 |
[23] | V. Uluçay, I. Deli, M. Șahin, Intuitionistic trapezoidal fuzzy multi-numbers and its application to multi-criteria decision-making problems, Complex Intell. Syst., 5 (2019), 65–78. https://doi.org/10.1007/s40747-018-0074-z doi: 10.1007/s40747-018-0074-z |
[24] | V. Uluçay, I. Deli, M. Șahin, Trapezoidal fuzzy multi-number and its application to multi-criteria decision-making problems, Neural Comput. Appl., 30 (2018), 1469–1478. https://doi.org/10.1007/s00521-016-2760-3 doi: 10.1007/s00521-016-2760-3 |
[25] | D. Bakbak, V. Uluçay, A new decision-making method for architecture based on the Jaccard similarity measure of intuitionistic trapezoidal fuzzy multi-numbers, NeutroAlgebra Theory, 2021. |
[26] | A. U. K. Niazi, J. He, R. Shafqat, B. Ahmed, Existence, uniqueness, and $E_{q}$-Ulam-type stability of fuzzy fractional differential equation, Fractal Fract., 5 (2021), 66. https://doi.org/10.3390/fractalfract5030066 doi: 10.3390/fractalfract5030066 |
[27] | N. Iqbal, A. U. K. Niazi, R. Shafqat, S. Zaland, Existence and uniqueness of mild solution for fractional-order controlled fuzzy evolution equation, J. Funct. Spaces, 2021 (2021), 5795065. https://doi.org/10.1155/2021/5795065 doi: 10.1155/2021/5795065 |
[28] | R. Shafqat, A. U. K. Niazi, M. B. Jeelani, N. H. Alharthi, Existence and uniqueness of mild solution where $\alpha \in (1, 2)$ for fuzzy fractional evolution equations with uncertainty, Fractal Fract., 6 (2022), 65. https://doi.org/10.3390/fractalfract6020065 doi: 10.3390/fractalfract6020065 |
[29] | K. Abuasbeh, R. Shafqat, A. U. K. Niazi, M. Awadalla, Local and global existence and uniqueness of solution for time-fractional fuzzy Navier-Stokes equations, Fractal Fract., 6 (2022), 330. https://doi.org/10.3390/fractalfract6060330 doi: 10.3390/fractalfract6060330 |
[30] | A. S. Alnahdi, R. Shafqat, A. U. K. Niazi, M. B. Jeelani, Pattern formation induced by fuzzy fractional-order model of COVID-19, Axioms, 11 (2022), 313. https://doi.org/10.3390/axioms11070313 doi: 10.3390/axioms11070313 |
[31] | E. Arhrrabi, M. Elomari, S. Melliani, L. S. Chadli, Existence and stability of solutions of fuzzy fractional stochastic differential equations with fractional Brownian motions, Adv. Fuzzy Syst., 2021 (2021), 3948493. https://doi.org/10.1155/2021/3948493 doi: 10.1155/2021/3948493 |
[32] | Y. K. Kim, Measurability for fuzzy valued functions, Fuzzy Sets Syst., 129 (2002), 105–109. https://doi.org/10.1016/S0165-0114(01)00121-X doi: 10.1016/S0165-0114(01)00121-X |
[33] | N. Van Hoa, Fuzzy fractional functional differential equations under Caputo gH-differentiability, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1134–1157. https://doi.org/10.1016/j.cnsns.2014.08.006 doi: 10.1016/j.cnsns.2014.08.006 |
[34] | J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 2011 (2011), 1–10. https://doi.org/10.14232/ejqtde.2011.1.63 doi: 10.14232/ejqtde.2011.1.63 |
[35] | A. N. Shiryaev, Essentials of stochastic finance: Facts, models, theory, Vol. 3, World Scientific, 1999. |