In this paper, firstly, Hermite-Hadamard inequality via s-convex functions in the second sense using Caputo-Fabrizio fractional integral operator is established. We also compare our results with the existing ones. It is also shown that the obtained results are a generalization of the existing results. Finally, we give their applications to special means.
Citation: Anjum Mustafa Khan Abbasi, Matloob Anwar. Hermite-Hadamard inequality involving Caputo-Fabrizio fractional integrals and related inequalities via s-convex functions in the second sense[J]. AIMS Mathematics, 2022, 7(10): 18565-18575. doi: 10.3934/math.20221020
[1] | Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306 |
[2] | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989 |
[3] | Lanxin Chen, Junxian Zhang, Muhammad Shoaib Saleem, Imran Ahmed, Shumaila Waheed, Lishuang Pan . Fractional integral inequalities for $ h $-convex functions via Caputo-Fabrizio operator. AIMS Mathematics, 2021, 6(6): 6377-6389. doi: 10.3934/math.2021374 |
[4] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[5] | Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for $ m $-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115 |
[6] | Muhammad Tariq, Hijaz Ahmad, Abdul Ghafoor Shaikh, Soubhagya Kumar Sahoo, Khaled Mohamed Khedher, Tuan Nguyen Gia . New fractional integral inequalities for preinvex functions involving Caputo-Fabrizio operator. AIMS Mathematics, 2022, 7(3): 3440-3455. doi: 10.3934/math.2022191 |
[7] | Sevda Sezer . The Hermite-Hadamard inequality for $ s $-Convex functions in the third sense. AIMS Mathematics, 2021, 6(7): 7719-7732. doi: 10.3934/math.2021448 |
[8] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[9] | Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043 |
[10] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
In this paper, firstly, Hermite-Hadamard inequality via s-convex functions in the second sense using Caputo-Fabrizio fractional integral operator is established. We also compare our results with the existing ones. It is also shown that the obtained results are a generalization of the existing results. Finally, we give their applications to special means.
Fractional calculus has been a fascinating field in the last decades. Some researchers introduced various fractional derivatives, integrals, and their properties with singular or non-singular kernels to exploit its applications in real world problems [3,4,5,9,10,11,12,13,14,15]. These fractional derivatives and fractional integrals have been used in inequalities as well. In inequalities, Hermite-Hadamard inequality is the renowned and is given in the following theorem.
Theorem 1.1. [1] Let ξ:I→R is a convex function on the interval I⊆R and l1,l2∈I with l1<l2, then
ξ(l1+l22)≤1l2−l1∫l2l1ξ(w)dw≤ξ(l1)+ξ(l2)2. | (1.1) |
In [7,8] this inequality was generalized for s-convex functions. In the field of fractional calculus, the main focus of a researcher is to give a definition of new operators and to develop their applications and solution to problems by involving these operators. Singularity and locality are the properties in that the operators are distinct from each other. Whereas, the kernel of operators is based on the type of functions including power law, the exponential function, and the Mittag-Lefler function. The distinct property of the Caputo-Fabrizio operator is that its kernel is non-singular. In this paper, we develop the Hermite-Hadamard inequality for s-convex functions via Caputo-Fabrizio fractional integral. First we define Caputo-Fabrizio fracional derivative and integral [3].
Definition 1.1. Let ξ∈H1(l1,l2)(class of first order differentiable functions), l1<l2, 0≤β≤1, then the left fractional derivative in the Caputo-Fabrizio sense is
(CFl1Dβξ)(t)=B(β)1−β∫tl1ξ′(w)e−β(t−w)β1−βdw, | (1.2) |
and the fractional integral corresponding to this operator is
(CFl1Iβξ)(t)=1−βB(β)ξ(t)+βB(β)∫tl1ξ(w)dw. | (1.3) |
Right fractional derivative is defined as
(CFDβl2ξ)(t)=−B(β)1−β∫l2tξ′(w)e−β(w−t)β1−βdw, | (1.4) |
and the fractional integral corresponding to this operator is
(CFIβl2ξ)(t)=1−βB(β)ξ(t)+βB(β)∫l2tξ(w)dw. | (1.5) |
The Caputo-Fabrizio derivative is obtained by changind the singular kernel (t−w)−β of Caputo fractional derivative by non-singular kernel e−β(t−w)β1−β and 1Γ(1−β) by B(β)1−β, where B(β)>0 is a normalization function satisfying B(0)=B(1)=1 given in [3].
Definition 1.2. [6] A function ξ:I⊆R+→R+ is said to be s-convex function in second sense on I if
ξ(tl1+(1−t)l2)≤tsξ(l1)+(1−t)sξ(l2), |
holds for all l1,l2∈I, and t∈[0,1], for some fix s∈(0,1].
Lemma 1.1. [2,Lemma 1] Let I be a real interval such that ł1,ł2∈I∘, the interior of I with ł1<ł2. Let ξ:I0⊆R→R be a differentiable mapping on I0,l1,l2∈I with l1<l2. If ξ′∈L([l1,l2]), then the following equality holds:
ξ(l1)+ξ(l2)2−1l2−l1∫l2l1ξ(w)dw=l2−l12∫10(1−2t)ξ′(tl1+(1−t)l2)dt. | (1.6) |
Lemma 1.2. [2,Lemma 2] Let I be a real interval such that ł1,ł2∈I∘, the interior of I with ł1<ł2. Let ξ:I⊆R→R be a differentiable function on I0, l1,l2∈I with l1<l2. If ξ′∈L([l1,l2]) and 0≤β≤1, then following inequality holds:
l2−l12∫10(1−2t)ξ′(tl1+(1−t)l2)dt−2(1−β)β(l2−l1)ξ(k)=ξ(l1)+ξ(l2)2−B(β)β(l2−l1)((CFl1Iβξ)(k)+(CFIβl2ξ)(k)) | (1.7) |
where k∈[l1,l2] and B(β)>0 is normalization function.
Here we present Hermite-Hadamard inequality for s-convex functions via Caputo-Fabrizio fractional operator which is stated in the following theorem.
Theorem 2.1. Let I be a real interval such that ł1,ł2∈I∘; the interior of I with ł1<ł2. Let a function ξ:[l1,l2]⊆R→R be s-convex on [l1,l2] for s∈(0,1) and ξ∈L([l1,l2]). If 0≤β≤1, then we have the following double inequality:
2s−1ξ(l1+l22)≤B(β)β(l2−l1)[(CFl1Iβξ)(k)+(CFIβl2ξ)(k)−2(1−β)B(β)ξ(k)]≤ξ(l1)+ξ(l2)2. | (2.1) |
where k∈[l1,l2] and B(β)>0 is normalization function.
Proof. Since ξ is s-convex, taking λ=12 we get
2sξ(x+y2)≤ξ(x)+ξ(y). |
On making change of variables and integrating over [0,1], we get
2s−1ξ(l1+l22)≤1l2−l1∫l2l1ξ(x)dx. |
Multiplying both sides by β(l2−l1)B(β) we get
2s−1β(l2−l1)B(β)ξ(l1+l22)≤βB(β)∫l2l1ξ(x)dx |
and
2s−1β(l2−l1)B(β)ξ(l1+l22)≤βB(β)(∫kl1ξ(x)dx+∫l2kξ(x)dx). |
Adding 2(1−β)B(β)ξ(k) on both sides we have
2s−1β(l2−l1)B(β)ξ(l1+l22)+2(1−β)B(β)ξ(k)≤(1−βB(β)ξ(k)+βB(β)∫kl1ξ(x)dx)+(1−βB(β)ξ(k)+βB(β)∫l2kξ(x)dx), |
which means that
2s−1β(l2−l1)B(β)ξ(l1+l22)≤(CFl1Iβξ)(k)+(CFIβl2ξ)(k)−2(1−β)B(β)ξ(k), |
i.e.,
2s−1ξ(l1+l22)≤B(β)β(l2−l1)((CFl1Iβξ)(k)+(CFIβl2ξ)(k)−2(1−β)B(β)ξ(k)). | (2.2) |
which proves first inequality. Now, we prove second inequality, since
1l2−l1∫l2l1ξ(x)dx=∫10ξ(tl1+(1−t)l2)dt. |
As ξ is s-convex in the second sense, we get
1l2−l1∫l2l1ξ(x)dx≤∫10[tsξ(l1)+(1−t)sξ(l2)]dt. |
Multiplying both sides by β(l2−l1)B(β) we get
βB(β)∫l2l1ξ(x)dx≤β(l2−l1)B(β)(ξ(l1)+ξ(l2)s+1). |
Adding 2(1−β)B(β)ξ(k) on both sides
(βB(β)∫kl1ξ(x)dx+(1−β)B(β)ξ(k))+(βB(β)∫l2kξ(x)dx+(1−β)B(β)ξ(k))≤β(l2−l1)B(β)(ξ(l1)+ξ(l2)s+1)+2(1−β)B(β)ξ(k), |
and this gives that
B(β)β(l2−l1)((CFl1Iβξ)(k)+(CFIβl2ξ)(k)−2(1−β)B(β)ξ(k))≤ξ(l1)+ξ(l2)s+1. | (2.3) |
From (9) and (10) we get (8), which is required.
Remark 2.1. For s=1 we get Theorem 2 of [2].
Theorem 2.2. Let I be a real interval such that ł1,ł2∈I∘; the interior of I with ł1<ł2.
Let ξ1:[l1,l2]⊆R→R be a convex non-negative and ξ2:[l1,l2]⊆R→R be an s-convex functions on I. If ξ1ξ2∈L([l1,l2]), then we have the following inequality:
B(β)β(l2−l1)((CFl1Iβξ1ξ2)(k)+(CFIβl2ξ1ξ2)(k)−2(1−β)B(β)ξ1(k)ξ2(k))≤M(l1,l2)s+2+N(l1,l2)(s+1)(s+2), | (2.4) |
where M(l1,l2)=ξ1(l1)ξ2(l1)+ξ1(l2)ξ2(l2), N(l1,l2)=ξ1(l1)ξ2(l2)+ξ1(l2)ξ2(l1).
Proof. Since ξ1 is convex and ξ2 is s-convex then we have
ξ1(tl1+(1−t)l2)≤tξ1(l1)+(1−t)ξ2(l2), |
ξ2(tl1+(1−t)l2)≤tsξ2(l1)+(1−t)sξ2(l2). |
Multiplying these inequalities we get
ξ1(tl1+(1−t)l2)ξ2(tl1+(1−t)l2)≤ts+1ξ1(l1)ξ2(l1)+(1−t)s+1ξ1(l2)ξ2(l2)+t(1−t)sξ1(l1)ξ2(l2)+ts(1−t)ξ1(l2)ξ2(l1). |
Integrating over t∈[0,1], then making change of variables we get
1l2−l1∫l2l1ξ1(x)ξ2(x)dx≤ξ1(l1)ξ2(l1)+ξ1(l2)ξ2(l2)s+2+ξ1(l1)ξ2(l2)+ξ1(l2)ξ2(l1)(s+1)(s+2). |
Multiplying both sides by β(l2−l1)B(β) and adding 2(1−β)B(β)ξ1(k)ξ2(k), we get
βB(β)∫kl1ξ1(x)ξ2(x)dx+(1−β)B(β)ξ1(k)ξ2(k)+βB(β)∫l2kξ1(x)ξ2(x)dx+(1−β)B(β)ξ1(k)ξ2(k)≤β(l2−l1)B(β)(M(l1,l2)s+2)+β(l2−l1)B(β)(N(l1,l2)(s+1)(s+2))+(1−β)B(β)ξ1(k)ξ2(k). |
On simplifying the last inequality, we get
B(β)β(l2−l1)((CFl1Iβξ1ξ2)(k)+(CFIβl2ξ1ξ2)(k)−2(1−β)B(β)ξ1(k)ξ2(k))≤M(l1,l2)s+2+N(l1,l2)(s+1)(s+2). |
Remark 2.2. (i) For β=1,B(β)=B(1)=1, we get Theorem 5 of [6].
(ii) For s=1 we get Theorem 3 of [2].
Theorem 2.3. Let I be a real interval such that ł1,ł2∈I∘; the interior of I with ł1<ł2.
Let ξ1,ξ2:[l1,l2]⊆R→R, be non-negative functions such that ξ1,ξ2 and ξ1ξ2 are in L([l1,l2]). If ξ1 is s1-convex and ξ2 is s2-convex on [l1,l2] for some fixed s1,s2∈(0,1], then
B(β)b−a((CFl1Iβξ1ξ2)(k)+(CFIβl2ξ1ξ2)(k)−2(1−β)B(β)ξ1(k)ξ2(k))≤1s1+s2+1(M(l1,l2)+s1s2Γs1Γs2Γ(s1+s2+1)N(l1,l2)), | (2.5) |
where M(l1,l2)=ξ1(l1)ξ2(l1)+ξ1(l2)ξ2(l2), and N(l1,l2)=ξ1(l1)ξ2(l2)+ξ1(l2)ξ2(l1), and Γ. is the Gamma function.
Proof. As ξ1 is s1-convex and ξ2 is s2-convex we have
ξ1(tl1+(1−t)l2)≤ts1ξ1(l1)+(1−t)s1ξ1(l2), |
ξ2(tl1+(1−t)l2)≤ts2ξ2(l1)+(1−t)s2ξ2(l2). |
Multiplying these inequalities we obtain
ξ1(tl1+(1−t)l2)ξ2(tl1+(1−t)l2)≤ts1+s2ξ1(l1)ξ2(l1)+(1−t)s1+s2ξ1(l2)ξ2(l2)+ts1(1−t)s2ξ1(l1)ξ2(l2)+ts2(1−t)s1ξ1(l2)ξ2(l1). |
Integrating with respect to t over [0,1] and making change of variables, we get
1l2−l1∫l2l1ξ1(x)ξ2(x)dx≤1s1+s2+1(ξ1(l1)ξ2(l1)+ξ1(l2)ξ2(l2))+Γ(s1+1)Γ(s2+1)Γ(s1+s2+2)(ξ1(l1)ξ2(l2)+ξ1(l2)ξ2(l1)). |
Multiplying both sides by β(l2−l1)B(β) and adding 2(1−β)B(β)ξ1(k)ξ2(k) we get
B(β)l2−l1((CFl1Iβξ1ξ2)(k)+(CFIβl2ξ1ξ2)(k)−2(1−β)B(β)ξ1(k)ξ2(k))≤1s1+s2+1(M(l1,l2)+s1s2Γs1Γs2Γ(s1+s2+1)N(l1,l2)). |
Remark 2.3. (i) For β=1,B(β)=B(1)=1, we get [5,Theorem 6].
(ii) For s1=s2=1 we get [2,Theorem 3].
Theorem 2.4. Let I be a real interval such that ł1,ł2∈I∘; the interior of I with ł1<ł2.
Let ξ1,ξ2:[l1,l2]⊆R→R, be the function such that ξ1,ξ2,ξ1ξ2∈L([l1,l2]). If ξ1 is convex and non-negative on [l1,l2] and ξ2 is s-convex on [l1,l2] for some fixed s∈(0,1], then
ξ1(l1+l22)ξ2(l1+l22)−12s(l2−l1)((CFl1Iβξ1ξ2)(k)+(CFIβl2ξ1ξ2)(k)−(1−β)2s−1β(l2−l1)ξ1(k)ξ2(k))≤12s(M(l1,l2)(s+1)(s+2)+N(l1,l2)s+2). | (2.6) |
Where M(l1,l2)=ξ1(l1)ξ2(l1)+ξ1(l2)ξ2(l2), and N(l1,l2)=ξ1(l1)ξ2(l2)+ξ1(l2)ξ2(l1).
Proof. As
l1+l22=tl1+(1−t)l22+(1−t)l1+tl22, |
and
ξ1(l1+l22)ξ2(l1+l22)=ξ1(tl1+(1−t)l22+(1−t)l1+tl22)ξ2(tl1+(1−t)l22+(1−t)l1+tl22). |
Using convexity of ξ1 and s-convexity of ξ2, we get
ξ1(l1+l22)ξ2(l1+l22)≤12[ξ1(tl1+(1−t)l2)+ξ1((1−t)l1+tl2)]12s[ξ2(tl1+(1−t)l2)+ξ2((1−t)l1+tl2)], |
≤12s+1[ξ1(tl1+(1−t)l2)ξ2(tl1+(1−t)l2)+ξ1((1−t)l1+tl2)ξ2((1−t)l1+tl2)]+12s+1[{(1−t)ξ1(l1)+tξ1(l2)}{tsξ2(l1)+(1−t)sξ2(l2)}+{tξ1(l1)+(1−t)ξ1(l2)}{(1−t)sξ2(l1)+tsξ2(l2)}]=12s+1[ξ1(tl2+(1−t)l2)ξ2(tl1+(1−t)l2)+ξ1((1−t)l1+tl2)ξ2((1−t)l1+tl2)]+12s+1[(t(1−t)s+(1−t)ts){ξ1(l1)ξ2(l1)+ξ1(l2)ξ2(l2)}+(ts+1+(1−t)s+1){ξ1(l1)ξ2(l2)+ξ2(l1)ξ1(l2)}]. |
Integrating with respect to t over [0,1] and making change of variable we get
ξ1(l1+l22)ξ2(l1+l22)≤12s(l2−l1)∫l2l1ξ1(x)ξ2(x)dx+12s+1(2(s+1)(s+2)M(l1,l2)+2s+2N(l1,l2)),2sξ1(l1+l22)ξ2(l1+l22)≤1(l2−l1)∫l2l1ξ1(x)ξ2(x)dx+1(s+1)(s+2)M(l1,l2)+1s+2N(l1,l2). |
Multiplying both sides by β(l2−l1)B(β) and subtracting 2(1−β)B(β)ξ1(k)ξ2(k), we obtain
2sβ(l2−l1)B(β)ξ1(l1+l22)ξ2(l1+l22)−βB(β)[∫kl1ξ1(x)ξ2(x)dx+∫l2kξ1(x)ξ2(x)dx]−2(1−β)B(β)ξ1(k)ξ2(k)≤β(l2−l1)B(β)(M(l1,l2)(s+1)(s+2)+N(l1,l2)(s+2))−2(1−β)B(β)ξ1(k)ξ2(k). |
After simplification we get
ξ1(l1+l22)ξ2(l1+l22)−12s(l2−l1)[(CFl1Iβξ1ξ2)(k)+(CFIβl2ξ1ξ2)(k)−(1−β)2s−1β(l2−l1)ξ1(k)ξ2(k)]≤12s(M(l1,l2)(s+1)(s+2)+N(l1,l2)s+2). |
Corollary 2.1. For β=1 we get Theorem 7 of [6].
In this section, we present Hermite-Hadamard type inequalities for s-convex functions via Caputo-Fabrizio fractional operator.
Theorem 3.1. Let I be a real interval such that ł1,ł2∈I∘; the interior of I with ł1<ł2. Let ξ:I⊆R→R be a positive differentiable mapping on I0 and |ξ′| is s-convex on [l1,l2]. If ξ′∈L([l1,l2]) and β∈[0,1], then we have the following inequality:
|ξ(l1)+ξ(l2)2−B(β)β(l2−l1)((CFl1Iβξ)(k)+(CFIβl2ξ)(k)−2(1−β)B(β)ξ(k))|≤l2−l12(2−s+s(s+1)(s+2))(|ξ′(l1)|+|ξ′(l2)|). | (3.1) |
Proof. By Lemma 1.3 and the property of modulus we obtain,
|ξ(l1)+ξ(l2)2+2(1−β)β(l2−l1)ξ(k)−B(β)β(l2−l1)((CFl1Iξ)(k)+(CFIl2ξ)(k))|≤l2−l12∫10|1−2t||ξ′(tl1+(1−t)l2)|dt, |
Using s-convexity of |ξ′| we get
|ξ(l1)+ξ(l2)2+2(1−β)β(l2−l1)ξ(k)−B(β)β(l2−l1)((CFl1Iξ)(k)+(CFIl2ξ)(k))|≤l2−l12∫10|1−2t|(ts|ξ′(l1)|+(1−t)s|ξ′(l2)|)dt, |
=l2−l12(2−s+s(s+1)(s+2))(|ξ′(l1)|+|ξ′(l2)|). |
Remark 3.1. Setting s=1 in Theorem 3.1, we recapture Theorem 5 in [2].
Next theorem gives new upper bound of the left-Hadamard inequality for s-convex function via Caputto-Fabrizio fractional integral.
Theorem 3.2. Let I be a real interval such that ł1,ł2∈I∘; the interior of I with ł1<ł2. Let ξ:I⊆R→R be a positive differentiable mapping on I0 and |ξ′|q is s-convex on [l1,l2], where p>1,p−1+q−1=1. If ξ′∈L([l1,l2]) and β∈[0,1], then we have the following inequality:
|ξ(l1)+ξ(l2)2+2(1−β)β(l2−l1)ξ(k)−B(β)β(l2−l1)((CFl1Iβξ)(k)+(CFIβl2ξ)(k))|≤(l2−l12)(11+p)1p(|ξ′(l1)|q+|ξ′(l2)|qs+1)1q. | (3.2) |
Proof. Using similar arguments as the proof of Theorem 3.1, but this time we use Hölder inequality and s-convexity of |ξ′|q we have
|ξ(l1)+ξ(l2)2+2(1−β)β(l2−l1)ξ(k)−B(β)β(l2−l1)((CFl1Iβξ)(k)+(CFIβl2ξ)(k))|≤l2−l12∫10|1−2t||ξ′(tl1+(1−t)l2)|dt,≤l2−l12(∫10|1−2t|pdt)1p(∫10|ξ′(tl1+(1−t)l2)|qdt)1q,≤l2−l12(∫10|1−2t|pdt)1p(∫10ts|ξ′(l1)|qdt+∫10(1−t)s|ξ′(l2)|qdt)1q,=l2−l12(11+p)1p(|ξ′(l1)|q+|ξ′(l2)|qs+1)1q. |
Remark 3.2. For s = 1 we get Theorem 6 of [2].
In this section, first we recall some mathematical means of two real numbers, and then present application of previous results on these means of real numbers.
(ⅰ) The arithmetic mean
A=A(w1,w2)=w1+w22,w1,w2∈R. |
(ⅱ) The generalized logarithmic mean
L=Lnn(w1,w2)=wn+12−wn+11(n+1)(w2−w1),n∈R−{−1,0},w1,w2∈R,w1≠w2. |
Proposition 1. Let w1,w2∈R+, w1<w2, 0<s<1, then
|A(ws1,ws2)−Lss(w1,w2)|≤s(w2−w12)(2−s+s(s+1)(s+2))(|w1|s−1+|w2|s−1). | (4.1) |
Proof. By setting ξ(z)=zs with β=1 and B(β)=1 in Theorem 3.1 we get required result.
Proposition 2. Let w1,w2∈R+ with w1<w2, and 0<s<1 and for all q>1, we have
|A(ws1,ws2)−Lss(w1,w2)|≤s(w2−w12)(11+p)1p(1s+1)1q[|w1|(s−1)q+|w2|(s−1)q]1q. | (4.2) |
Proof. By setting ξ(z)=zs with β=1 and B(β)=1 in Theorem 3.2 we get required result.
The theory of convex functions is considered an important tool in the theory of optimization. Fractional calculus has a wide range of applications in Engineering and Applied Sciences. Caputo-Fabrizio fractional integral, with a non-singular kernel, is one of the major operators which is used to develop different mathematical models. In this paper, Hermite-Hadamard type inequalities for s-convex functions in the second sense via Caputo-Fabrizio integral operator are established. The obtained results are generalizations. In literature, the existing results become particular cases for these results which are given in remarks. The results of this paper may stimulate further research for the researchers working in this field.
This research article is supported by the National University of Sciences and Technology (NUST), Islamabad, Pakistan.
The authors declare that they have no competing interests.
[1] |
D. Mitrinovíc, I. Lackovíc, Hermite and convexity, Aeq. Math., 28 (1985), 229–232. http://dx.doi.org/10.1007/BF02189414 doi: 10.1007/BF02189414
![]() |
[2] |
M. Gürbüz, A. Akdemir, S. Rashid, E. Set, Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities, J. Inequal. Appl., 2020 (2020), 172. http://dx.doi.org/10.1186/s13660-020-02438-1 doi: 10.1186/s13660-020-02438-1
![]() |
[3] |
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
![]() |
[4] | S. Das, Functional fractional calculus, Berlin: Springer, 2011. http://dx.doi.org/10.1007/978-3-642-20545-3 |
[5] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and application of fractional differential equations, Amsterdam: Elsevier, 2006. |
[6] |
U. Kirmaci, M. Klaričić Bakula, M. Özdemir, J. Pečaric, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput., 193 (2007), 26–35. http://dx.doi.org/10.1016/j.amc.2007.03.030 doi: 10.1016/j.amc.2007.03.030
![]() |
[7] |
M. Alomari, M. Darus, U. Kirmaci, Some inequalities of Hermite-Hadamard type for s-convex functions, Acta Math. Sci., 31 (2011), 1643–1652. http://dx.doi.org/10.1016/S0252-9602(11)60350-0 doi: 10.1016/S0252-9602(11)60350-0
![]() |
[8] |
S. Dragomir, S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense, Demonstr. Math., 32 (1999), 687–696. http://dx.doi.org/10.1515/dema-1999-0403 doi: 10.1515/dema-1999-0403
![]() |
[9] |
M. Dokuyucu, D. Baleanu, E. Celik, Analysis of Keller-Segel model with Atangana-Baleanu fractional derivative, Filomat, 32 (2018), 5633–5643. http://dx.doi.org/10.2298/FIL1816633D doi: 10.2298/FIL1816633D
![]() |
[10] |
M. Dokuyucu, E. Celik, H. Bulut, H. Baskonus, Cancer treatment model with the Caputo-Fabrizio fractional derivative, Eur. Phys. J. Plus, 133 (2018), 92. http://dx.doi.org/10.1140/epjp/i2018-11950-y doi: 10.1140/epjp/i2018-11950-y
![]() |
[11] |
S. Arshad, O. Defterli, D. Baleanu, A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model, Appl. Math. Comput., 374 (2020), 125061. http://dx.doi.org/10.1016/j.amc.2020.125061 doi: 10.1016/j.amc.2020.125061
![]() |
[12] |
D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 109705. http://dx.doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
![]() |
[13] |
D. Baleanu, H. Mohammadi, S. Rezapour, A mathematical theoretical study of a particular system of Caputo-Fabrizio fractional differential equations for the rubella disease model, Adv. Differ. Equ., 2020 (2020), 184. http://dx.doi.org/10.1186/s13662-020-02614-z doi: 10.1186/s13662-020-02614-z
![]() |
[14] |
K. Eiman, M. Sarwar, D. Baleanu, Study on Krasnoselskii's fixed point theorem for Caputo-Fabrizio fractional differential equations, Adv. Differ. Equ., 2020 (2020), 178. http://dx.doi.org/10.1186/s13662-020-02624-x doi: 10.1186/s13662-020-02624-x
![]() |
[15] | H. Yaldız, A. Akdemir, Katugampola fractional integrals within the class of convex functions, Turkish Journal of Forest Science, 3 (2018), 40–50. |
1. | Ammara Nosheen, Maria Tariq, Khuram Ali Khan, Nehad Ali Shah, Jae Dong Chung, On Caputo Fractional Derivatives and Caputo–Fabrizio Integral Operators via (s, m)-Convex Functions, 2023, 7, 2504-3110, 187, 10.3390/fractalfract7020187 | |
2. | Moin-ud-Din Junjua, Ather Qayyum, Arslan Munir, Hüseyin Budak, Muhammad Mohsen Saleem, Siti Suzlin Supadi, A Study of Some New Hermite–Hadamard Inequalities via Specific Convex Functions with Applications, 2024, 12, 2227-7390, 478, 10.3390/math12030478 | |
3. | Nouf Abdulrahman Alqahtani, Shahid Qaisar, Arslan Munir, Muhammad Naeem, Hüseyin Budak, Error Bounds for Fractional Integral Inequalities with Applications, 2024, 8, 2504-3110, 208, 10.3390/fractalfract8040208 | |
4. | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem, New inequalities via Caputo-Fabrizio integral operator with applications, 2023, 8, 2473-6988, 19391, 10.3934/math.2023989 | |
5. | Khuram Ali Khan, Iqra Ikram, Ammara Nosheen, Ndolane Sene, Y. S. Hamed, Midpoint-type integral inequalities for ( s , m )-convex functions in the third sense involving Caputo fractional derivatives and Caputo–Fabrizio integrals , 2024, 32, 2769-0911, 10.1080/27690911.2024.2401854 | |
6. | Waqar Afzal, Mujahid Abbas, Waleed Hamali, Ali M. Mahnashi, M. De la Sen, Hermite–Hadamard-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Godunova–Levin and (h1, h2)-Convex Functions, 2023, 7, 2504-3110, 687, 10.3390/fractalfract7090687 | |
7. | Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators, 2023, 11, 2227-7390, 1953, 10.3390/math11081953 | |
8. | Jie Li, Yong Lin, Serap Özcan, Muhammad Shoaib Saleem, Ahsan Fareed Shah, A study of Hermite-Hadamard inequalities via Caputo-Fabrizio fractional integral operators using strongly $(s, m)$-convex functions in the second sense, 2025, 2025, 1029-242X, 10.1186/s13660-025-03266-x |