Research article Special Issues

Hermite-Hadamard inequality involving Caputo-Fabrizio fractional integrals and related inequalities via $ s $-convex functions in the second sense

  • Received: 08 May 2022 Revised: 09 July 2022 Accepted: 15 July 2022 Published: 19 August 2022
  • MSC : 05C38, 15A15, 26A33, 26D10, 26D15

  • In this paper, firstly, Hermite-Hadamard inequality via s-convex functions in the second sense using Caputo-Fabrizio fractional integral operator is established. We also compare our results with the existing ones. It is also shown that the obtained results are a generalization of the existing results. Finally, we give their applications to special means.

    Citation: Anjum Mustafa Khan Abbasi, Matloob Anwar. Hermite-Hadamard inequality involving Caputo-Fabrizio fractional integrals and related inequalities via $ s $-convex functions in the second sense[J]. AIMS Mathematics, 2022, 7(10): 18565-18575. doi: 10.3934/math.20221020

    Related Papers:

  • In this paper, firstly, Hermite-Hadamard inequality via s-convex functions in the second sense using Caputo-Fabrizio fractional integral operator is established. We also compare our results with the existing ones. It is also shown that the obtained results are a generalization of the existing results. Finally, we give their applications to special means.



    加载中


    [1] D. Mitrinovíc, I. Lackovíc, Hermite and convexity, Aeq. Math., 28 (1985), 229–232. http://dx.doi.org/10.1007/BF02189414 doi: 10.1007/BF02189414
    [2] M. Gürbüz, A. Akdemir, S. Rashid, E. Set, Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities, J. Inequal. Appl., 2020 (2020), 172. http://dx.doi.org/10.1186/s13660-020-02438-1 doi: 10.1186/s13660-020-02438-1
    [3] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [4] S. Das, Functional fractional calculus, Berlin: Springer, 2011. http://dx.doi.org/10.1007/978-3-642-20545-3
    [5] A. Kilbas, H. Srivastava, J. Trujillo, Theory and application of fractional differential equations, Amsterdam: Elsevier, 2006.
    [6] U. Kirmaci, M. Klaričić Bakula, M. Özdemir, J. Pečaric, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput., 193 (2007), 26–35. http://dx.doi.org/10.1016/j.amc.2007.03.030 doi: 10.1016/j.amc.2007.03.030
    [7] M. Alomari, M. Darus, U. Kirmaci, Some inequalities of Hermite-Hadamard type for s-convex functions, Acta Math. Sci., 31 (2011), 1643–1652. http://dx.doi.org/10.1016/S0252-9602(11)60350-0 doi: 10.1016/S0252-9602(11)60350-0
    [8] S. Dragomir, S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense, Demonstr. Math., 32 (1999), 687–696. http://dx.doi.org/10.1515/dema-1999-0403 doi: 10.1515/dema-1999-0403
    [9] M. Dokuyucu, D. Baleanu, E. Celik, Analysis of Keller-Segel model with Atangana-Baleanu fractional derivative, Filomat, 32 (2018), 5633–5643. http://dx.doi.org/10.2298/FIL1816633D doi: 10.2298/FIL1816633D
    [10] M. Dokuyucu, E. Celik, H. Bulut, H. Baskonus, Cancer treatment model with the Caputo-Fabrizio fractional derivative, Eur. Phys. J. Plus, 133 (2018), 92. http://dx.doi.org/10.1140/epjp/i2018-11950-y doi: 10.1140/epjp/i2018-11950-y
    [11] S. Arshad, O. Defterli, D. Baleanu, A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model, Appl. Math. Comput., 374 (2020), 125061. http://dx.doi.org/10.1016/j.amc.2020.125061 doi: 10.1016/j.amc.2020.125061
    [12] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 109705. http://dx.doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
    [13] D. Baleanu, H. Mohammadi, S. Rezapour, A mathematical theoretical study of a particular system of Caputo-Fabrizio fractional differential equations for the rubella disease model, Adv. Differ. Equ., 2020 (2020), 184. http://dx.doi.org/10.1186/s13662-020-02614-z doi: 10.1186/s13662-020-02614-z
    [14] K. Eiman, M. Sarwar, D. Baleanu, Study on Krasnoselskii's fixed point theorem for Caputo-Fabrizio fractional differential equations, Adv. Differ. Equ., 2020 (2020), 178. http://dx.doi.org/10.1186/s13662-020-02624-x doi: 10.1186/s13662-020-02624-x
    [15] H. Yaldız, A. Akdemir, Katugampola fractional integrals within the class of convex functions, Turkish Journal of Forest Science, 3 (2018), 40–50.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1264) PDF downloads(95) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog