The extraction of analytical solution of uncertain fractional Langevin differential equations involving two independent fractional-order is frequently complex and difficult. As a result, developing a proper and comprehensive technique for the solution of this problem is very essential. In this article, we determine the explicit and analytical fuzzy solution for various classes of the fuzzy fractional Langevin differential equations (FFLDEs) with two independent fractional-orders both in homogeneous and non-homogeneous cases. The potential solution of FFLDEs is also extracted using the fuzzy Laplace transformation technique. Furthermore, the solution of FFLDEs is defined in terms of bivariate and trivariate Mittag-Leffler functions both in the general and special forms. FFLDEs are a new topic having many applications in science and engineering then to grasp the novelty of this work, we connect FFLDEs with RLC electrical circuit to visualize and support the theoretical results.
Citation: Muhammad Akram, Ghulam Muhammad, Tofigh Allahviranloo, Ghada Ali. New analysis of fuzzy fractional Langevin differential equations in Caputo's derivative sense[J]. AIMS Mathematics, 2022, 7(10): 18467-18496. doi: 10.3934/math.20221016
[1] | Yinwan Cheng, Chao Yang, Bing Yao, Yaqin Luo . Neighbor full sum distinguishing total coloring of Halin graphs. AIMS Mathematics, 2022, 7(4): 6959-6970. doi: 10.3934/math.2022386 |
[2] | Shabbar Naqvi, Muhammad Salman, Muhammad Ehtisham, Muhammad Fazil, Masood Ur Rehman . On the neighbor-distinguishing in generalized Petersen graphs. AIMS Mathematics, 2021, 6(12): 13734-13745. doi: 10.3934/math.2021797 |
[3] | Xiaoxue Hu, Jiangxu Kong . An improved upper bound for the dynamic list coloring of 1-planar graphs. AIMS Mathematics, 2022, 7(5): 7337-7348. doi: 10.3934/math.2022409 |
[4] | Baolin Ma, Chao Yang . Distinguishing colorings of graphs and their subgraphs. AIMS Mathematics, 2023, 8(11): 26561-26573. doi: 10.3934/math.20231357 |
[5] | Zongpeng Ding . Skewness and the crossing numbers of graphs. AIMS Mathematics, 2023, 8(10): 23989-23996. doi: 10.3934/math.20231223 |
[6] | Zongrong Qin, Dingjun Lou . The k-subconnectedness of planar graphs. AIMS Mathematics, 2021, 6(6): 5762-5771. doi: 10.3934/math.2021340 |
[7] | Xin Xu, Xu Zhang, Jiawei Shao . Planar Turán number of double star S3,4. AIMS Mathematics, 2025, 10(1): 1628-1644. doi: 10.3934/math.2025075 |
[8] | Yunfeng Tang, Huixin Yin, Miaomiao Han . Star edge coloring of K2,t-free planar graphs. AIMS Mathematics, 2023, 8(6): 13154-13161. doi: 10.3934/math.2023664 |
[9] | Ana Klobučar Barišić, Antoaneta Klobučar . Double total domination number in certain chemical graphs. AIMS Mathematics, 2022, 7(11): 19629-19640. doi: 10.3934/math.20221076 |
[10] | Gohar Ali, Martin Bača, Marcela Lascsáková, Andrea Semaničová-Feňovčíková, Ahmad ALoqaily, Nabil Mlaiki . Modular total vertex irregularity strength of graphs. AIMS Mathematics, 2023, 8(4): 7662-7671. doi: 10.3934/math.2023384 |
The extraction of analytical solution of uncertain fractional Langevin differential equations involving two independent fractional-order is frequently complex and difficult. As a result, developing a proper and comprehensive technique for the solution of this problem is very essential. In this article, we determine the explicit and analytical fuzzy solution for various classes of the fuzzy fractional Langevin differential equations (FFLDEs) with two independent fractional-orders both in homogeneous and non-homogeneous cases. The potential solution of FFLDEs is also extracted using the fuzzy Laplace transformation technique. Furthermore, the solution of FFLDEs is defined in terms of bivariate and trivariate Mittag-Leffler functions both in the general and special forms. FFLDEs are a new topic having many applications in science and engineering then to grasp the novelty of this work, we connect FFLDEs with RLC electrical circuit to visualize and support the theoretical results.
Differential equations of arbitrary order have been shown to be useful in the study of models of many phenomena in various fields such as: Electrochemistry and material science, they are in fact described by differential equations of fractional order [9,10,15,16,25,26,27,28,29]. For more details, we refer the reader to the books of Hilfer [30], Podlubny [31], Kilbas et al. [34], Miller and Ross [2] and to the following research papers [1,2,3,4,5,6,7,8,11,12,14,16,17,19,20,24,31,35,36,37,38,39,40,41,42]. In this work, we discuss the existence and uniqueness of the solutions for multi-point boundary value problems of nonlinear fractional differential equations with two Riemann-Liouville fractionals:
{Dαx(t)=∑mi=1fi(t,x(t),y(t),φ1x(t),ϕ1y(t)),α∈]1,2],t∈[0,T]Dβy(t)=∑mi=1gi(t,x(t),y(t),φ2x(t),ϕ2y(t)),β∈]1,2],t∈[0,T]I2−αx(0)=0, Dα−2x(T)=θIα−1(x(η)), 0<η<T,I2−βy(0)=0, Dβ−2x(T)=ωIβ−1(x(γ)), 0<γ<T, | (1.1) |
where D(.), I(.) denote the Riemann-Liouville derivative and integral of fractional order (.), respectively, fi, gi:[0,T]×R4→R, i=1,⋯,m are continuous functions on [0,T] and
(φ1x)(t)=∫t0A′1(t,s)x(s)ds, (ϕ1y)(t)=∫t0B′1(t,s)y(s)ds, |
(φ2x)(t)=∫t0A′2(t,s)x(s)ds, (ϕ1y)(t)=∫t0B′2(t,s)y(s)ds, |
with Ai and Bi being continuous functions on [0,1]×[0,1]. However, it is rare to find a work in nonlinear term fi depends on fractional derivative of unknown functions x(t),y(t),φ1x(t),ϕ1y(t) and solutions for multi-order fractional differential equations on the infinite interval [0,T). Motivated by [8,11,12,13,14] and the references therein, we consider the existence and unicity of solution for multi-order fractional differential equations on infinite interval [0,T).
The rest of this paper is organized as follow. In section 2, we present some preliminaries and lemmas. Section 3 is dedicated to showing the existence of a solution for problem (1.1). Finally, section 4 illustrated the proposed results with two examples.
Remark 1.1. This work generalizes the work of Houas and Benbachir [14] on different boundary conditions and for another type of integral.
This section covers the basic concepts of Riemann-Liouville type fractional calculus that will be used throughout this paper.
Definition 2.1. [31,32] The Riemann-Liouville fractional integral operator of order α≥0, of a function f:(0,∞)→R is defined as
{Jαf(t)=1Γ(α)∫t0(t−τ)α−1f(τ)dτ,J0f(t)=f(t), |
where Γ(α):=∫∞0e−uuα−1du.
Definition 2.2. [31,32] The Riemann-Liouville fractional derivative of order α>0, of a continuous function h:(0,∞)→R is defined as
Dαh(t)=1Γ(n−α)(ddt)n∫t0(t−τ)n−α−1h(τ)dτ=(ddt)nIn−αh(τ), |
where n=[α]+1.
For α<0, we use the convention that Dαh=J−αh. Also for 0≤ρ<α, it is valid that DρJαh=hα−ρ. We note that for ε>−1 and ε≠α−1,α−2,...,α−n, we have
Dαtε=Γ(ε+1)Γ(ε−α+1)tε−α,Dαtα−i=0, i=1,2,...,n. |
In particular, for the constant function h(t)=1, we obtain
Dα1=1Γ(1−α)t−α,α∉N. |
For α∈N, we obtain, of course, Dα1=0 because of the poles of the gamma function at the points 0,−1,−2,... For α>0, the general solution of the homgeneous equation Dαh(t)=0 in C(0,T)∩L(0,T) is
h(t)=c0tα−n+c1tα−n−1+......+cn−2tα−2+cn−1tα−1, |
where ci,i=1,2,....,n−1, are arbitrary real constants. Further, we always have DαIαh=h, and
DαIαh(t)=h(t)+c0tα−n+c1tα−n−1+......+cn−2tα−2+cn−1tα−1. |
Lemma 2.1. [33] Let E be Banach space. Assume that T:E⟶E is a completely continuous operator. If the set V={x∈E:x=μTx, 0<μ<1} is bounded, then T has a fixed point in E.
To define the solution for problem (1.1). We consider the following lemma.
Lemma 2.2. Suppose that (Hi)i=1,…,m⊂C([0,1],R), and consider the problem
Dαh(t)−m∑i=1Hi(t)=0, t∈j, 1<α<2, m∈N∗, | (2.1) |
with the conditions
I2−αh(0)=0, Dα−2h(T)=θIα−1(h(η)), 0<η<T. | (2.2) |
Then we have
h(t)=1Γ(α)m∑i=1∫t0(t−τ)α−1Hi(τ)dτ+tα−1ψ(m∑i=1∫T0(T−τ)Hi(τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2Hi(τ)dτ) |
with ψ=θΓ(α)Γ(2α−1)η2α−2−Γ(α)T.
Proof. We have
h(t)=m∑i=1IαHi(t)+c0tα−2+c1tα−1, |
where ci∈R, i=0,1.
We obtain
I2−αh(τ)=m∑i=1I2Hi(τ)+c0I2−ατα−2+c1I2−ατα−1=m∑i=1I2Hi(τ)+c0+c1τ,Iα−1h(τ)=m∑i=1I2α−1Hi(τ)+c0Iα−1τα−2+c1Iα−1τα−1=m∑i=1I2α−1Hi(τ)+c0Γ(α−1)Γ(2α−2)τ2α−3+c1Γ(α)Γ(2α−1)τ2α−2,Dα−2h(τ)=m∑i=1I2Hi(τ)+c0Γ(α−1)+c1Γ(α)τ. |
Using the given conditions: I2−αh(0)=0, we find that c0=0, and since Dα−2h(T)−θIα−1(h(η))=0, we have
m∑i=1I2hi(T)+c1Γ(α)T−θ[m∑i=1I2α−1hi(η)+c1Γ(α)Γ(2α−1)η2α−2]=0, |
then
c1[Γ(α)Γ(2α−1)η2α−2−Γ(α)T]=m∑i=1I2hi(T)−θm∑i=1I2α−1hi(η) |
and
c1=1ψ(m∑i=1I2Hi(T)−θm∑i=1I2α−1Hi(η))=1ψ(m∑i=1∫T0(T−τ)Hi(τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2Hi(τ)dτ) |
with
ψ=θΓ(α)Γ(2α−1)η2α−2−Γ(α)T. |
Finally, the solution of (2.1) and (2.2) is
h(t)=1Γ(α)m∑i=1∫t0(t−τ)α−1Hi(τ)dτ+tα−1ψ(m∑i=1∫T0(T−τ)Hi(τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2Hi(τ)dτ). |
We denote by
E={x,y∈C([0,T],R);φix,ϕiy∈C([0,T],R) i=1,2}, |
and the Banach space of all continuous functions from [0,T] to R endowed with a topology of uniform convergence with the norm defined by
||(x,y)||E=max(||x||,||y||,||φ1x||,||ϕ1y||,||φ2x||,||ϕ2y||), |
where
||x||=supt∈j|φix(t)|,||y||=supt∈j|y(t)|,||ϕix||=supt∈j|φix(t)|,||ϕiy||=supt∈j|ϕiy(t)|. |
In this section, we prove some existence and uniqueness results to the nonlinear fractional coupled system (1.1).
For the sake of convenience, we impose the following hypotheses:
(H1) For each i=1,2,⋯,m, the functions fi and gi :[0,T]×R4⟶R are continuous.
(H2) There exist nonnegative real numbers ξik,φik,k=1,2,3,4,i=1,2,⋯,m, such that for all t∈[0,T] and all (x1,x2,x3,x4), (y1,y2,y3,y4)∈R4, we have
|fi(t,x1,x2,x3,x4)−fi(t,y1,y2,y3,y4)|≤4∑k=1 ξik|xk−yk|, |
and
|gi(t,x1,x2,x3,x4)−gi(t,y1,y2,y3,y4)|≤4∑k=1 χik|xk−yk|. |
(H3) There exist nonnegative constants (Li) and (Ki) i=1,...,m, such that: For each t∈[0,T] and all (x1,x2,x3,x4)∈R4,
|fi(t,x1,x2,x3,x4)|≤Li,|gi(t,x1,x2,x3,x4)|≤Ki,i=1,...,m. |
We also consider the following quantities:
A1=TαΓ(α+1)m∑i=1(ξi1+ξi2+ξi3+ξi4),A2=TβΓ(β+1)m∑i=1(χi1+χi2+χi3+χi4),A3=maxt,s∈[0,1]||A′1(t,s)||×A1,A4=maxt,s∈[0,1]||A′2(t,s)||×A1,A5=maxt,s∈[0,1]||B′1(t,s)||×A2,A6=maxt,s∈[0,1]||B′2(t,s)||×A2,ν1=[TαΓ(α+1)+1ψ(Tα+12+θT3α−2(2α−1)2Γ(2α−1))],ν2=[TβΓ(β+1)+1ψ′(Tβ+12+ωT3β−2(2β−1)2Γ(2β−1))],ν3=maxt,s∈[0,1]|A′1(t,s)|ν1,ν4=maxt,s∈[0,1]|A′2(t,s)|ν1,ν5=maxt,s∈[0,1]|B′1(t,s)|ν2,ν6=maxt,s∈[0,1]|B′2(t,s)|ν2. |
The first result is based on Banach contraction principle. We have
Theorem 3.1. Assume that (H2) holds. If the inequality
max(A1,A2,A3,A4,A5,A6)<1, | (3.1) |
is valid, then the system (1.1) has a unique solution on [0,T].
Proof. We define the operator T:E⟶E by
T(x,y)(t)=(T1(x,y)(t),T2(x,y)(t)),t∈[0,T], |
such that
T1(x,y)(t)=1Γ(α)m∑i=1∫t0(t−τ)α−1Hi(τ)dτ+tα−1ψ(m∑i=1∫T0(T−τ)Hi(τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2Hi(τ)dτ) | (3.2) |
and
T2(x,y)(t)=1Γ(β)m∑i=1∫t0(t−τ)β−1Gi(τ)dτ+tβ−1ψ′(m∑i=1∫T0(T−τ)Gi(τ)dτ−ωΓ(2β)m∑i=1∫γ0(γ−τ)2β−2Gi(τ)dτ) | (3.3) |
where
Hi(τ)=fi(τ,x(τ),y(τ),φ1x(τ),ϕ1y(τ)) |
and
Gi(τ)=gi(τ,x(τ),y(τ),φ2x(τ),ϕ2y(τ)). |
We obtain
φiT1(x,y)(t)=∫t0Ai(t,s)T1(x,y)(s)ds, ϕiT2(x,y)(t)=∫t0Bi(t,s)T2(x,y)(s)ds |
where i=1,2.
We shall now prove that T is contractive.
Let T1(x1,y1),T2(x2,y2)∈E. Then, for each t∈[0,T], we have
|T1(x1,y1)−T1(x2,y2)|≤[1Γ(α)m∑i=1∫t0(t−τ)α−1dτ+tα−1ψ(m∑i=1∫T0(T−τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2dτ)]×maxτ∈[0,T]m∑i=1|(fi(τ,x1(τ),y1(τ),φ1x1(τ),ϕ1y1(τ))−fi(τ,x2(τ),y2(τ),φ1x2(τ),ϕ1y2(τ)))|≤TαΓ(α+1)maxτ∈[0,T]m∑i=1|(fi(τ,x1(τ),y1(τ),φ1x1(τ),ϕ1y1(τ))−fi(τ,x2(τ),y2(τ),φ1x2(τ),ϕ1y2(τ)))|. |
By (H2), it follows that
||T1(x1,y1)−T1(x2,y2)||≤TαΓ(α+1)m∑i=1(ξi1+ξi2+ξi3+ξi4)×max(||x1−x2||,||y1−y2||,||φ1(x1−x2)||,||φ2(x1−x2)||,||ϕ1(y1−y2)||,||ϕ2(y1−y2)||). |
Hence,
||T1(x1,y1)−T1(x2,y2)||≤A1||x1−x2,y1−y2||E. | (3.4) |
With the same arguments as before, we can show that
||T2(x1,y1)−T2(x2,y2)||≤A2||x1−x2,y1−y2||E. | (3.5) |
On the other hand, we have
||φ1(T1(x1,y1)−T1(x2,y2))||≤∫t0||A′1(t,s)||||T1(x1,y1)−T1(x2,y2)||ds≤maxt,s∈[0,1]||A′1(t,s)||×A1||x1−x2,y1−y2||E. |
Hence,
||φ1(T1(x1,y1)−T1(x2,y2))||≤A3||x1−x2,y1−y2||E | (3.6) |
and
||φ2(T1(x1,y1)−T1(x2,y2))||≤A4||x1−x2,y1−y2||E. | (3.7) |
Also, we have
||ϕ1(T2(x1,y1)−T2(x2,y2))||≤A5||x1−x2,y1−y2||E | (3.8) |
and
||ϕ2(T2(x1,y1)−T2(x2,y2))||≤A6||x1−x2,y1−y2||E. | (3.9) |
Thanks to (3.4)–(3.9), we get
||T(x1,y1)−T(x2,y2)||≤max(A1,A2,A3,A4,A5,A6)×||(x1−x2,y1−y2)||E. | (3.10) |
Thanks to (3.10), we conclude that T is a contractive operator. Therefore, by Banach fixed point theorem, T has a unique fixed point which is the solution of the system (1.1).
Our second main result is based on Lemma 2.1. We have
Theorem 3.2. Assume that the hypotheses (H1) and (H3) are satisfied. Then, system (1.1) has at least a solution on [0,T].
Proof. The operator T is continuous on E in view of the continuity of fi and gi (hypothesis (H1)).
Now, we show that T is completely continuous:
(i) First, we prove that T maps bounded sets of E into bounded sets of E. Taking λ>0, and (x,y)∈Ωλ={(x,y)∈E;||(x,y)||≤λ}, then for each t∈[0,T], we have:
|T1(x,y)|≤[1Γ(α)∫t0(t−τ)α−1dτ+tα−1ψ(∫T0(T−τ)dτ−θΓ(2α)∫η0(η−τ)2α−2dτ)]×supt∈[0,T]m∑i=1|fi(t,x(t),y(t),φ1x(t),ϕ1y(t))|≤[TαΓ(α+1)+1ψ(Tα+12+θT3α−2(2α−1)2Γ(2α−1))]×supt∈[0,T]m∑i=1|fi(t,x(t),y(t),φ1x(t),ϕ1y(t))|, |
Thanks to (H3), we can write
||T1(x,y)||≤[TαΓ(α+1)+1ψ(Tα+12+θT3α−2(2α−1)2Γ(2α−1))]m∑i=1Li. |
Thus,
||T1(x,y)||≤ν1m∑i=1Li. | (3.11) |
As before, we have
||T2(x,y)||≤ν2m∑i=1Ki. | (3.12) |
On the other hand, for all j=1,2, we get
|ϕjT1(x,y)(t)|=|∫t0A′j(t,s)T1(x,y)(s)ds|≤maxt,s∈[0,1]|A′j(t,s)|ν1m∑i=1Li. |
This implies that
||ϕ1T1(x,y)(t)||≤ν3m∑i=1Li, | (3.13) |
||ϕ2T1(x,y)(t)||≤ν4m∑i=1Li. | (3.14) |
Similarly, we have
||φ1T2(x,y)(t)||≤ν5m∑i=1Ki, | (3.15) |
||φ2T2(x,y)(t)||≤ν6m∑i=1Ki. | (3.16) |
It follows from (3.11)–(3.16) that:
||T(x,y)||E≤max(ν1m∑i=1Li,ν2m∑i=1Ki,ν3m∑i=1Li,ν4m∑i=1Li,,ν5m∑i=1,ν6m∑i=1). |
Thus,
||T(x,y)||E<∞. |
(ii) Second, we prove that T is equi-continuous:
For any 0≤t1<t2≤T and (x,y)∈Ωλ, we have
|T1(x,y)(t2)−T1(x,y)(t1)|≤[1Γ(α)∫t10(t2−τ)α−1−(t1−τ)α−1dτ+1Γ(α)∫t2t1(t2−τ)α−1dτ+tα−12−tα−11ψ(T22−θη2α−1Γ(2α−1)2Γ(2α−1))]×supt∈[0,T]m∑i=1|fi(t,x(t),y(t),φ1x(t),ϕ1y(t))|≤[2Γ(α+1)(t2−t1)α−1+(tα−12−tα−11)[T22ψ−θη2α−1ψΓ(2α−1)2Γ(2α−1)+1Γ(α+1)]]×m∑i=1Li. |
Therefore,
||T1(x,y)(t2)−T1(x,y)(t1)||E[2Γ(α+1)(t2−t1)α−1+(tα−12−tα−11)[T22ψ+1Γ(α+1)]]×m∑i=1Li. | (3.17) |
We also have
||T2(x,y)(t2)−T2(x,y)(t1)||E[2Γ(β+1)(t2−t1)β−1+(tβ−12−tβ−11)[T22ψ′+1Γ(β+1)]]×m∑i=1Ki. | (3.18) |
On the other hand,
|ϕiT1(x,y)(t2)−ϕiT1(x,y)(t1)|≤[maxs∈[0,1]|A′i(t2,s)−A′i(t1,s)|+(t2−t1)maxs∈[0,1]|A′i(t1,s)|]×sups∈[0,1]|T1(x,y)(s)|. |
Consequently, for all i=1,2, we obtain
||ϕiT1(x,y)(t2)−ϕiT1(x,y)(t1)||≤[maxs∈[0,1]|A′i(t2,s)−A′i(t1,s)|+(t2−t1)maxs∈[0,1]|A′i(t1,s)|]ν1m∑i=1Li. | (3.19) |
Similarly,
||φiT1(x,y)(t2)−φiT1(x,y)(t1)||≤[maxs∈[0,1]|B′i(t2,s)−B′i(t1,s)|+(t2−t1)maxs∈[0,1]|B′i(t1,s)|]ν2m∑i=1Ki. | (3.20) |
where i=1,2. Using (3.17)–(3.20), we deduce that
||T(x,y)(t2)−T(x,y)(t1)||E⟶0 |
as t2→t1.
Combining (i) and (ii), we conclude that T is completely continuous.
(iii) Finally, we shall prove that the set F defined by
F={(x,y)∈E,(x,y)=ρT(x,y), 0<ρ<1} |
is bounded.
Let (x,y)∈F, then (x,y)=ρT(x,y), for some 0<ρ<1. Thus, for each t∈[0,T], we have:
x(t)=ρT1(x,y)(t), y(t)=ρT2(x,y)(t). | (3.21) |
Thanks to (H3) and using (3.11) and (3.12), we deduce that
||x||≤ρν1m∑i=1Li, ||y||≤ρν2m∑i=1Ki. | (3.22) |
Using (3.13)–(3.16), it yields that
{||ϕ1x||≤ρν3∑mi=1Li||ϕ2x||≤ρν4∑mi=1Li||φ1y||≤ρν5∑mi=1Ki||φ2y||≤ρν6∑mi=1Ki. | (3.23) |
It follows from (3.22) and (3.23) that
||T(x,y)||E≤ρmax(ν1∑mi=1Li,ν2∑mi=1Ki,ν3∑mi=1Li,ν4∑mi=1Li,,ν5∑mi=1,ν6∑mi=1). |
Consequently,
||(x,y)||E<∞. |
This shows that F is bounded. By Lemma (2.1), we deduce that T has a fixed point, which is a solution of (1.1).
To illustrate our main results, we treat the following examples.
Example 4.1. Consider the following system:
{D32x(t)=cos(πt)(x+y+φ1x(t)+ϕ1y(t))10π(x+y+φ1x(t)+ϕ1y(t))+132π2e(cosx(t)+cosy(t)+φ1x(t)+ϕ1y(t)4π),D32y(t)=18π3(t+1)(x+y+φ2x(t)+ϕ2y(t)3+x+y+φ2x(t)+ϕ2y(t))+1(10π+et)e(t+1)(sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)2+sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)),I12x(0)=0, D−12x(T)=I12(x(1)),I12y(0)=0, D−12y(T)=I12(y(1)). | (4.1) |
We have
α=32, β=32, T=1, θ=1, ω=1, γ=1, m=2, η=1. |
Also,
f1(t,x(t),y(t),φ1x(t),ϕ1y(t))=cos(πt)(x+y+φ1x(t)+ϕ1y(t))10π(1+x+y+φ1x(t)+ϕ1y(t)), | (4.2) |
f2(t,x(t),y(t),φ1x(t),ϕ1y(t))=132π2e(cosx(t)+cosy(t)+φ1x(t)+ϕ1y(t)4π). | (4.3) |
For t∈[0,1] and (x1,y1,φ1x1,ϕ1y1),(x2,y2,φ1x2,ϕ1y2)∈R4, we have
|f1(t,x1,y1,φ1x1,ϕ1y1)−f1(t,x2,y2,φ1x2,ϕ1y2)|≤|cos(πt)|10π|x1+y1+φ1x1+ϕ1y11+x1+y1+φ1x1+ϕ1y1−x2+y2+φ1x2+ϕ1y2)1+x2+y2+φ1x2+ϕ1y2)|≤110π(|x1−x2|+|y1−y2|+|φ1x1−φ1x2|+|ϕ1y1−ϕ1y2|) | (4.4) |
and
|f2(t,x1,y1,φ1x1,ϕ1y1)−f2(t,x2,y2,φ1x2,ϕ1y2)|≤132πe(|x1−x2|+|y1−y2|+|φ1x1−φ1x2|+|ϕ1y1−ϕ1y2|). | (4.5) |
So, we can take
ξ11=ξ12=ξ13=ξ14=110π, |
ξ21=ξ22=ξ23=ξ24=132πe. |
We also have
g1(t,x(t),y(t),φ2x(t),ϕ2y(t))=18π3(t+1)(x+y+φ2x(t)+ϕ2y(t)3+x+y+φ2x(t)+ϕ2y(t)) |
and
g2(t,x(t),y(t),φ2x(t),ϕ2y(t))=1(10π+et)et+1(sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)2+sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)) | (4.6) |
For t∈[0,1] and (x1,y1,φ2x1,ϕ2y1),(x2,y2,φ2x2,ϕ2y2)∈R4, we can write
|g1(t,x1,y1,φ2x1,ϕ2y1)−g1(t,x2,y2,φ2x2,ϕ2y2)|≤18π3(|x1−x2|+|y1−y2|+|φ2x1−φ2x2|+|ϕ2y1−ϕ2y2|), | (4.7) |
and
|g2(t,x1,y1,φ2x1,ϕ2y1)−g2(t,x2,y2,φ2x2,ϕ2y2)|≤110πe2(|x1−x2|+|y1−y2|+|φ2x1−φ2x2|+|ϕ2y1−ϕ2y2|). | (4.8) |
Hence,
χ11=χ12=χ13=χ14=18π3, |
χ21=χ22=χ23=χ24=110πe2. |
Therefore,
A1=0.0589009676,A2=0.0250930393. |
Suppose
A′i=B′i=1, i=1,2, |
so,
A1=A3=A4,A2=A5=A6. |
Thus,
max(A1,A2,A3,A4,A5,A6)<1, | (4.9) |
and by Theorem 3.1, we conclude that the system (4.1) has a unique solution on [0,1].
Example 4.2.
{D32x(t)=π(t+1)sin(φ1x(t)+ϕ1y(t))2−cos(x(t)+y(t))+et2π+cos(x(t)+φ1x(t))+sin(sin(y(t)+ϕ1y(t)), t∈[0,1],D43y(t)=e2sin(x(t)+y(t))2π+cos(φ2x(t)+ϕ2y(t))+3t2cosy(t)et3+1−cos(x(t)+y(t)−φ2x(t)−ϕ2y(t)), t∈[0,1],I12x(0)=0, D−12x(T)=I12(x(1)),I23y(0)=0, D−23y(T)=I13(y(1)). | (4.10) |
We have
α=32, β=43, T=1, θ=1, ω=1, γ=1, m=2, η=1. |
Since
|f1(t,x(t),y(t),φ1x(t),ϕ1y(t))|=|π(t+1)sin(φ1x(t)+ϕ1y(t))2−cos(x(t)+y(t))|≤2π,|f2(t,x(t),y(t),φ1x(t),ϕ1y(t))|=|et2π+cos(x(t)+φ1x(t))+sin(sin(y(t)+ϕ1y(t))|≤e2π+2,|g1(t,x(t),y(t),φ2x(t),ϕ2y(t))|=|e2sin(x(t)+y(t))2π+cos(φ2x(t)+ϕ2y(t))|≤e22π+1,|g2(t,x(t),y(t),φ2x(t),ϕ2y(t))|=|3t2cosy(t)et3+1−cos(x(t)+y(t)−φ2x(t)−ϕ2y(t))|≤3e−1. |
The functions f1, f2, g1 and g2 are continuous and bounded on [0,1]×R4. So, by Theorem 3.2, the system (4.10) has at least one solution on [0,1].
We have proved the existence of solutions for fractional differential equations with integral and multi-point boundary conditions. The problem is solved by applying some fixed point theorems. We also provide examples to make our results clear.
The authors declare that they have no conflicts of interest in this paper.
[1] | D. Dubios, H. Prade, Towards fuzzy differential calculus part 3: Differentiation, Fuzzy Set. Syst., 8 (1982), 225–233. |
[2] |
M. L. Puri, D. A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552–558. https://doi.org/10.1016/0022-247X(83)90169-5 doi: 10.1016/0022-247X(83)90169-5
![]() |
[3] |
R. G. Jr, W. Voxman, Elementary fuzzy calculus, Fuzzy Set. Syst., 18 (1986), 31–43. https://doi.org/10.1016/0165-0114(86)90026-6 doi: 10.1016/0165-0114(86)90026-6
![]() |
[4] |
S. Seikkala, On the fuzzy initial value problem, Fuzzy Set. Syst., 24 (1987), 319–330. https://doi.org/10.1016/0165-0114(87)90030-3 doi: 10.1016/0165-0114(87)90030-3
![]() |
[5] | M. Friedman, M. Ming, A. Kandel, Fuzzy derivatives and fuzzy Cauchy problems using LP metric, In Fuzzy Logic Foundations and Industrial Applications, Springer, Boston, 8 (1996), 57–72. https://doi.org/10.1007/978-1-4613-1441-7_3 |
[6] |
Z. Yue, W. Guangyuan, Time domain methods for the solutions of N-order fuzzy differential equations, Fuzzy Set. Syst., 94 (1998), 77–92. https://doi.org/10.1016/S0165-0114(96)00235-7 doi: 10.1016/S0165-0114(96)00235-7
![]() |
[7] |
B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Set. Syst., 151 (2005), 581–599. https://doi.org/10.1016/j.fss.2004.08.001 doi: 10.1016/j.fss.2004.08.001
![]() |
[8] |
M. M. Raja, V. Vijayakumar, Optimal control results for Sobolev-type fractional mixed Volterra-Fredholm type integrodifferential equations of order 1<r<2 with sectorial operators, Opt. Contr. Appl. Met., 2022. https://doi.org/10.1002/oca.2892 doi: 10.1002/oca.2892
![]() |
[9] |
M. M. Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, N. Sakthivel, K. Kaliraj, Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r∈(1,2), Opt. Contr. Appl. Met., 2022. https://doi.org/10.1002/oca.2867 doi: 10.1002/oca.2867
![]() |
[10] |
Y. K. Ma, M. M. Raja, V. Vijayakumar, A. Shukla, W. Albalawi, K. S. Nisar, Existence and continuous dependence results for fractional evolution integrodifferential equations of order r∈(1,2), Alex. Eng. J., 61 (2022), 9929–9939. https://doi.org/10.1016/j.aej.2022.03.010 doi: 10.1016/j.aej.2022.03.010
![]() |
[11] |
Y. K. Ma, M. M. Raja, K. S. Nisar, A. Shukla, V. Vijayakumar, Results on controllability for Sobolev type fractional differential equations of order 1<r<2 with finite delay, AIMS Math., 7 (2022), 10215–10233. https://doi.org/10.3934/math.2022568 doi: 10.3934/math.2022568
![]() |
[12] |
M. M. Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, H. M. Baskonus, On the approximate controllability results for fractional integrodifferential systems of order 1<r<2 with sectorial operators, J. Comput. Appl. Math., 415 (2022), 114492. https://doi.org/10.1016/j.cam.2022.114492 doi: 10.1016/j.cam.2022.114492
![]() |
[13] |
R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal.-Theor., 72 (2010), 2859–2862. https://doi.org/10.1016/j.na.2009.11.029 doi: 10.1016/j.na.2009.11.029
![]() |
[14] | J. U. Jeong, Existence results for fractional order fuzzy differential equations with infinite delay, Int. Math. Forum, 5 (2010), 3221–3230. |
[15] |
S. Arshad, V. Lupulescu, On the fractional differential equations with uncertainty, Nonlinear Anal.-Theor., 74 (2011), 3685–3693. https://doi.org/10.1016/j.na.2011.02.048 doi: 10.1016/j.na.2011.02.048
![]() |
[16] |
S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci., 17 (2012), 1372–1381. https://doi.org/10.1016/j.cnsns.2011.07.005 doi: 10.1016/j.cnsns.2011.07.005
![]() |
[17] |
M. Mazandarani, A. V. Kamyad, Modified fractional Euler method for solving fuzzy fractional initial value problem, Commun. Nonlinear Sci., 18 (2013), 12–21. https://doi.org/10.1016/j.cnsns.2012.06.008 doi: 10.1016/j.cnsns.2012.06.008
![]() |
[18] |
S. Salahshour, T. Allahviranloo, S. Abbasbandy, D. Baleanu, Existence and uniqueness results for fractional differential equations with uncertainty, Adv. Differ. Equ., 2012 (2012), 1–12. https://doi.org/10.1186/1687-1847-2012-112 doi: 10.1186/1687-1847-2012-112
![]() |
[19] | S. Arshad, On existence and uniqueness of solution of fuzzy fractional differential equations, Iran. J. Fuzzy Syst., 10 (2013), 137–151. |
[20] |
T. Allahviranloo, A. Armand, Z. Gouyandeh, Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, J. Intell. Fuzzy Syst., 26 (2014), 1481–1490. https://doi.org/10.3233/IFS-130831 doi: 10.3233/IFS-130831
![]() |
[21] | T. Allahviranloo, Fuzzy fractional differential operators and equations: Fuzzy fractional differential equations, Studies in fuzziness and soft computing series, Springer Nature, Switzerland, 2020. https://doi.org/10.1007/978-3-030-51272-9 |
[22] |
A. Khastan, J. J. Nieto, R. Rodríguez-López, Schauder fixed-point theorem in semilinear spaces and its application to fractional differential equations with uncertainty, Fixed Point Theory A., 2014 (2014), 1–14. https://doi.org/10.1186/1687-1812-2014-21 doi: 10.1186/1687-1812-2014-21
![]() |
[23] |
N. V. Hoa, V. Lupulescu, D. O'Regan, Solving interval-valued fractional initial value problems under Caputo gH-fractional differentiability, Fuzzy Set. Syst., 309 (2017), 1–34. https://doi.org/10.1016/j.fss.2016.09.015 doi: 10.1016/j.fss.2016.09.015
![]() |
[24] |
H. V. Ngo, V. Lupulescu, D. O'Regan, A note on initial value problems for fractional fuzzy differential equations, Fuzzy Set. Syst., 347 (2018), 54–69. https://doi.org/10.1016/j.fss.2017.10.002 doi: 10.1016/j.fss.2017.10.002
![]() |
[25] |
S. Melliani, E. Arhrrabi, M. H. Elomari, L. S. Chadli, Ulam-Hyers-Rassias stability for fuzzy fractional integrodifferential equations under Caputo gH-differentiability, Int. J. Optim. Appl., 2021, 51. https://doi.org/10.1007/s40306-017-0207-2 doi: 10.1007/s40306-017-0207-2
![]() |
[26] |
H. Vu, N. V. Hoa, Uncertain fractional differential equations on a time scale under granular differentiability concept, Comput. Appl. Math., 38 (2019), 1–22. https://doi.org/10.1007/s40314-019-0873-x doi: 10.1007/s40314-019-0873-x
![]() |
[27] |
S. Ezadi, T. Allahviranloo, Artificial neural network approach for solving fuzzy fractional order initial value problems under gH-differentiability, Math. Method. Appl. Sci., 2020. https://doi.org/10.1002/mma.7287 doi: 10.1002/mma.7287
![]() |
[28] |
M. Saqib, M. Akram, S. Bashir, T. Allahviranloo, Numerical solution of bipolar fuzzy initial value problem, J. Intell. Fuzzy Syst., 40 (2021), 1309–1341. https://doi.org/10.3233/JIFS-201619 doi: 10.3233/JIFS-201619
![]() |
[29] |
M. Akram, M. Saqib, S. Bashir, T. Allahviranloo, An efficient numerical method for solving m-polar fuzzy initial value problems, Comput. Appl. Math., 41 (2022), 157. https://doi.org/10.1007/s40314-022-01841-2 doi: 10.1007/s40314-022-01841-2
![]() |
[30] |
M. Akram, M. Ali, T. Allahviranloo, A method for solving bipolar fuzzy complex linear systems with real and complex coefficients, Soft Comput., 26 (2022), 2157–2178. https://doi.org/10.1007/s00500-021-06672-7 doi: 10.1007/s00500-021-06672-7
![]() |
[31] |
M. Akram, T. Allahviranloo, W. Pedrycz, M. Ali, Methods for solving LR-bipolar fuzzy linear systems, Soft Comput., 25 (2021), 85–108. https://doi.org/10.1007/s00500-020-05460-z doi: 10.1007/s00500-020-05460-z
![]() |
[32] |
A. N. A. Koam, M. Akram, G. Muhammad, N. Hussain, LU decomposition scheme for solving m-polar fuzzy system of linear equations, Math. Probl. Eng., 2020 (2020), 8384593. https://doi.org/10.1155/2020/8384593 doi: 10.1155/2020/8384593
![]() |
[33] |
M. Ghaffari, T. Allahviranloo, S. Abbasbandy, M. Azhini, On the fuzzy solutions of time-fractional problems, Iran. J. Fuzzy Syst., 18 (2021), 51–66. https://doi.org/10.22111/IJFS.2021.6081 doi: 10.22111/IJFS.2021.6081
![]() |
[34] |
M. Keshavarz, T. Allahviranloo, Fuzzy fractional diffusion processes and drug release, Fuzzy Set. Syst., 436 (2022), 82–101. https://doi.org/10.1016/j.fss.2021.04.001 doi: 10.1016/j.fss.2021.04.001
![]() |
[35] |
M. Keshavarz, T. Allahviranloo, S. Abbasbandy, M. H. Modarressi, A study of fuzzy methods for solving system of fuzzy differential equations, New Math. Nat. Comput., 17 (2021), 1–27. https://doi.org/10.1142/S1793005721500010 doi: 10.1142/S1793005721500010
![]() |
[36] |
D. Qiu, The generalized Hukuhara differentiability of interval-valued function is not fully equivalent to the one-sided differentiability of its end point functions, Fuzzy Set. Syst., 419 (2021), 158–168. https://doi.org/10.1016/j.fss.2020.07.012 doi: 10.1016/j.fss.2020.07.012
![]() |
[37] |
H. Wang, R. Rodriguez-Lopez, On the existence of solutions to boundary value problems for interval-valued differential equations under gH-differentiability, Inform. Sci., 553 (2021), 225–246. https://doi.org/10.1016/j.ins.2020.10.052 doi: 10.1016/j.ins.2020.10.052
![]() |
[38] | P. Langevin, Sur la théorie du mouvement brownien, Compt. Rendus, 146 (1908), 530–533. |
[39] |
M. Z. Ahmad, M. K. Hassan, S. Abbasbanday, Solving fuzzy fractional differential equations using Zadeh's extension principle, The Scientific World J., 2013 (2013). https://doi.org/10.1155/2013/454969 doi: 10.1155/2013/454969
![]() |
[40] | R. L. Magin, Fractional calculus in bioengineering, Begell House Publisher, Connecticut, 2006. https://doi.org/10.1615/CritRevBiomedEng.v32.i1.10 |
[41] | T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 1971. |
[42] |
M. Akram, T. Ihsan, T. Allahviranloo, Solving Pythagorean fuzzy fractional differential equations using Laplace transform, Granular Comput., 2022. https://doi.org/10.1007/s41066-022-00344-z doi: 10.1007/s41066-022-00344-z
![]() |
[43] | D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional dynamics and control, Springer Science & Business Media, 2011. |
[44] | V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, Cambridge, 2009. |
[45] | R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys., 29 (1966), 255–284. |
[46] |
E. Lutz, Fractional Langevin equation, Phys. Rev. E, 64 (2001), 1–4. https://doi.org/10.1142/9789814340595_0012 doi: 10.1142/9789814340595_0012
![]() |
[47] |
Y. Adjabi, M. E. Samei, M. M. Matar, J. Alzabut, Langevin differential equation in frame of ordinary and Hadamard fractional derivatives under three point boundary conditions, AIMS Math., 6 (2021), 2796–2843. https://doi.org/10.3934/math.2021171 doi: 10.3934/math.2021171
![]() |
[48] |
B. Ahmad, A. Alsaedi, S. Salem, On a nonlocal integral boundary value problem of nonlinear Langevin equation with different fractional orders, Adv. Differ. Equ., 2019 (2019), 57. https://doi.org/10.1186/s13662-019-2003-x doi: 10.1186/s13662-019-2003-x
![]() |
[49] |
B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal., 13 (2012), 599–606. https://doi.org/10.1016/j.nonrwa.2011.07.052 doi: 10.1016/j.nonrwa.2011.07.052
![]() |
[50] |
H. Baghani, Existence and uniqueness of solutions to fractional Langevin equations involving two fractional orders, J. Fix. Point Theory A., 20 (2018), 1–7. https://doi.org/10.1007/s11784-018-0540-7 doi: 10.1007/s11784-018-0540-7
![]() |
[51] |
Z. Kiyamehr, H. Baghani, Existence of solutions of BVPs for fractional Langevin equations involving Caputo fractional derivatives, J. Appl. Anal., 27 (2021), 47–55. https://doi.org/10.1515/jaa-2020-2029 doi: 10.1515/jaa-2020-2029
![]() |
[52] |
A. Salem, Existence results of solutions for anti-periodic fractional Langevin equation, J. Appl. Anal. Comput., 10 (2020), 2557–2574. https://doi.org/10.11948/20190419 doi: 10.11948/20190419
![]() |
[53] | T. Kaczorek, Positive different orders fractional 2D linear systems, Acta Mech. Automatica, 2 (2008), 51–58. |
[54] |
S. S. Devi, K. Ganesan, Modelling electric circuit problem with fuzzy differential equations, J. Phys. Conf. Ser., 1377 (2019), 012024. https://doi.org/10.1088/1742-6596/1377/1/012024 doi: 10.1088/1742-6596/1377/1/012024
![]() |
[55] |
A. Ahmadova, N. I. Mahmudov, Langevin differential equations with general fractional orders and their applications to electric circuit theory, J. Comput. Appl. Math., 388 (2021), 113299. https://doi.org/10.1016/j.cam.2020.113299 doi: 10.1016/j.cam.2020.113299
![]() |
[56] | K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Springer, Berlin, 2004. |
[57] | I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999. |
[58] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon & Breach Science Publishers, Yverdon, 1993. |
[59] |
A. Fernandez, C. K¨urt, M. A. ¨Ozarslan, A naturally emerging bivariate Mittag-Leffler function and associated fractional-calculus operators, Comput. Appl. Math., 39 (2020), 1–27. https://doi.org/10.1007/s40314-020-01224-5 doi: 10.1007/s40314-020-01224-5
![]() |
[60] |
A. Ahmadova, I. T. Huseynov, A. Fernandez, N. I. Mahmudov, Trivariate Mittag-Leffler functions used to solve multi-order systems of fractional differential equations, Commun. Nonlinear Sci., 97 (2021), 105735. https://doi.org/10.1016/j.cnsns.2021.105735 doi: 10.1016/j.cnsns.2021.105735
![]() |
[61] |
T. Allahviranloo, M. B. Ahmadi, Fuzzy Laplace transforms, Soft Comput., 14 (2010) 235. https://doi.org/10.1007/s00500-008-0397-6 doi: 10.1007/s00500-008-0397-6
![]() |