The extraction of analytical solution of uncertain fractional Langevin differential equations involving two independent fractional-order is frequently complex and difficult. As a result, developing a proper and comprehensive technique for the solution of this problem is very essential. In this article, we determine the explicit and analytical fuzzy solution for various classes of the fuzzy fractional Langevin differential equations (FFLDEs) with two independent fractional-orders both in homogeneous and non-homogeneous cases. The potential solution of FFLDEs is also extracted using the fuzzy Laplace transformation technique. Furthermore, the solution of FFLDEs is defined in terms of bivariate and trivariate Mittag-Leffler functions both in the general and special forms. FFLDEs are a new topic having many applications in science and engineering then to grasp the novelty of this work, we connect FFLDEs with RLC electrical circuit to visualize and support the theoretical results.
Citation: Muhammad Akram, Ghulam Muhammad, Tofigh Allahviranloo, Ghada Ali. New analysis of fuzzy fractional Langevin differential equations in Caputo's derivative sense[J]. AIMS Mathematics, 2022, 7(10): 18467-18496. doi: 10.3934/math.20221016
The extraction of analytical solution of uncertain fractional Langevin differential equations involving two independent fractional-order is frequently complex and difficult. As a result, developing a proper and comprehensive technique for the solution of this problem is very essential. In this article, we determine the explicit and analytical fuzzy solution for various classes of the fuzzy fractional Langevin differential equations (FFLDEs) with two independent fractional-orders both in homogeneous and non-homogeneous cases. The potential solution of FFLDEs is also extracted using the fuzzy Laplace transformation technique. Furthermore, the solution of FFLDEs is defined in terms of bivariate and trivariate Mittag-Leffler functions both in the general and special forms. FFLDEs are a new topic having many applications in science and engineering then to grasp the novelty of this work, we connect FFLDEs with RLC electrical circuit to visualize and support the theoretical results.
[1] | D. Dubios, H. Prade, Towards fuzzy differential calculus part 3: Differentiation, Fuzzy Set. Syst., 8 (1982), 225–233. |
[2] | M. L. Puri, D. A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552–558. https://doi.org/10.1016/0022-247X(83)90169-5 doi: 10.1016/0022-247X(83)90169-5 |
[3] | R. G. Jr, W. Voxman, Elementary fuzzy calculus, Fuzzy Set. Syst., 18 (1986), 31–43. https://doi.org/10.1016/0165-0114(86)90026-6 doi: 10.1016/0165-0114(86)90026-6 |
[4] | S. Seikkala, On the fuzzy initial value problem, Fuzzy Set. Syst., 24 (1987), 319–330. https://doi.org/10.1016/0165-0114(87)90030-3 doi: 10.1016/0165-0114(87)90030-3 |
[5] | M. Friedman, M. Ming, A. Kandel, Fuzzy derivatives and fuzzy Cauchy problems using LP metric, In Fuzzy Logic Foundations and Industrial Applications, Springer, Boston, 8 (1996), 57–72. https://doi.org/10.1007/978-1-4613-1441-7_3 |
[6] | Z. Yue, W. Guangyuan, Time domain methods for the solutions of $N$-order fuzzy differential equations, Fuzzy Set. Syst., 94 (1998), 77–92. https://doi.org/10.1016/S0165-0114(96)00235-7 doi: 10.1016/S0165-0114(96)00235-7 |
[7] | B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Set. Syst., 151 (2005), 581–599. https://doi.org/10.1016/j.fss.2004.08.001 doi: 10.1016/j.fss.2004.08.001 |
[8] | M. M. Raja, V. Vijayakumar, Optimal control results for Sobolev-type fractional mixed Volterra-Fredholm type integrodifferential equations of order $1 < r < 2$ with sectorial operators, Opt. Contr. Appl. Met., 2022. https://doi.org/10.1002/oca.2892 doi: 10.1002/oca.2892 |
[9] | M. M. Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, N. Sakthivel, K. Kaliraj, Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order $r\in(1, 2)$, Opt. Contr. Appl. Met., 2022. https://doi.org/10.1002/oca.2867 doi: 10.1002/oca.2867 |
[10] | Y. K. Ma, M. M. Raja, V. Vijayakumar, A. Shukla, W. Albalawi, K. S. Nisar, Existence and continuous dependence results for fractional evolution integrodifferential equations of order $r\in(1, 2)$, Alex. Eng. J., 61 (2022), 9929–9939. https://doi.org/10.1016/j.aej.2022.03.010 doi: 10.1016/j.aej.2022.03.010 |
[11] | Y. K. Ma, M. M. Raja, K. S. Nisar, A. Shukla, V. Vijayakumar, Results on controllability for Sobolev type fractional differential equations of order $1< r< 2$ with finite delay, AIMS Math., 7 (2022), 10215–10233. https://doi.org/10.3934/math.2022568 doi: 10.3934/math.2022568 |
[12] | M. M. Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, H. M. Baskonus, On the approximate controllability results for fractional integrodifferential systems of order $1< r< 2$ with sectorial operators, J. Comput. Appl. Math., 415 (2022), 114492. https://doi.org/10.1016/j.cam.2022.114492 doi: 10.1016/j.cam.2022.114492 |
[13] | R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal.-Theor., 72 (2010), 2859–2862. https://doi.org/10.1016/j.na.2009.11.029 doi: 10.1016/j.na.2009.11.029 |
[14] | J. U. Jeong, Existence results for fractional order fuzzy differential equations with infinite delay, Int. Math. Forum, 5 (2010), 3221–3230. |
[15] | S. Arshad, V. Lupulescu, On the fractional differential equations with uncertainty, Nonlinear Anal.-Theor., 74 (2011), 3685–3693. https://doi.org/10.1016/j.na.2011.02.048 doi: 10.1016/j.na.2011.02.048 |
[16] | S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci., 17 (2012), 1372–1381. https://doi.org/10.1016/j.cnsns.2011.07.005 doi: 10.1016/j.cnsns.2011.07.005 |
[17] | M. Mazandarani, A. V. Kamyad, Modified fractional Euler method for solving fuzzy fractional initial value problem, Commun. Nonlinear Sci., 18 (2013), 12–21. https://doi.org/10.1016/j.cnsns.2012.06.008 doi: 10.1016/j.cnsns.2012.06.008 |
[18] | S. Salahshour, T. Allahviranloo, S. Abbasbandy, D. Baleanu, Existence and uniqueness results for fractional differential equations with uncertainty, Adv. Differ. Equ., 2012 (2012), 1–12. https://doi.org/10.1186/1687-1847-2012-112 doi: 10.1186/1687-1847-2012-112 |
[19] | S. Arshad, On existence and uniqueness of solution of fuzzy fractional differential equations, Iran. J. Fuzzy Syst., 10 (2013), 137–151. |
[20] | T. Allahviranloo, A. Armand, Z. Gouyandeh, Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, J. Intell. Fuzzy Syst., 26 (2014), 1481–1490. https://doi.org/10.3233/IFS-130831 doi: 10.3233/IFS-130831 |
[21] | T. Allahviranloo, Fuzzy fractional differential operators and equations: Fuzzy fractional differential equations, Studies in fuzziness and soft computing series, Springer Nature, Switzerland, 2020. https://doi.org/10.1007/978-3-030-51272-9 |
[22] | A. Khastan, J. J. Nieto, R. Rodríguez-López, Schauder fixed-point theorem in semilinear spaces and its application to fractional differential equations with uncertainty, Fixed Point Theory A., 2014 (2014), 1–14. https://doi.org/10.1186/1687-1812-2014-21 doi: 10.1186/1687-1812-2014-21 |
[23] | N. V. Hoa, V. Lupulescu, D. O'Regan, Solving interval-valued fractional initial value problems under Caputo $gH$-fractional differentiability, Fuzzy Set. Syst., 309 (2017), 1–34. https://doi.org/10.1016/j.fss.2016.09.015 doi: 10.1016/j.fss.2016.09.015 |
[24] | H. V. Ngo, V. Lupulescu, D. O'Regan, A note on initial value problems for fractional fuzzy differential equations, Fuzzy Set. Syst., 347 (2018), 54–69. https://doi.org/10.1016/j.fss.2017.10.002 doi: 10.1016/j.fss.2017.10.002 |
[25] | S. Melliani, E. Arhrrabi, M. H. Elomari, L. S. Chadli, Ulam-Hyers-Rassias stability for fuzzy fractional integrodifferential equations under Caputo gH-differentiability, Int. J. Optim. Appl., 2021, 51. https://doi.org/10.1007/s40306-017-0207-2 doi: 10.1007/s40306-017-0207-2 |
[26] | H. Vu, N. V. Hoa, Uncertain fractional differential equations on a time scale under granular differentiability concept, Comput. Appl. Math., 38 (2019), 1–22. https://doi.org/10.1007/s40314-019-0873-x doi: 10.1007/s40314-019-0873-x |
[27] | S. Ezadi, T. Allahviranloo, Artificial neural network approach for solving fuzzy fractional order initial value problems under gH-differentiability, Math. Method. Appl. Sci., 2020. https://doi.org/10.1002/mma.7287 doi: 10.1002/mma.7287 |
[28] | M. Saqib, M. Akram, S. Bashir, T. Allahviranloo, Numerical solution of bipolar fuzzy initial value problem, J. Intell. Fuzzy Syst., 40 (2021), 1309–1341. https://doi.org/10.3233/JIFS-201619 doi: 10.3233/JIFS-201619 |
[29] | M. Akram, M. Saqib, S. Bashir, T. Allahviranloo, An efficient numerical method for solving $m$-polar fuzzy initial value problems, Comput. Appl. Math., 41 (2022), 157. https://doi.org/10.1007/s40314-022-01841-2 doi: 10.1007/s40314-022-01841-2 |
[30] | M. Akram, M. Ali, T. Allahviranloo, A method for solving bipolar fuzzy complex linear systems with real and complex coefficients, Soft Comput., 26 (2022), 2157–2178. https://doi.org/10.1007/s00500-021-06672-7 doi: 10.1007/s00500-021-06672-7 |
[31] | M. Akram, T. Allahviranloo, W. Pedrycz, M. Ali, Methods for solving LR-bipolar fuzzy linear systems, Soft Comput., 25 (2021), 85–108. https://doi.org/10.1007/s00500-020-05460-z doi: 10.1007/s00500-020-05460-z |
[32] | A. N. A. Koam, M. Akram, G. Muhammad, N. Hussain, LU decomposition scheme for solving m-polar fuzzy system of linear equations, Math. Probl. Eng., 2020 (2020), 8384593. https://doi.org/10.1155/2020/8384593 doi: 10.1155/2020/8384593 |
[33] | M. Ghaffari, T. Allahviranloo, S. Abbasbandy, M. Azhini, On the fuzzy solutions of time-fractional problems, Iran. J. Fuzzy Syst., 18 (2021), 51–66. https://doi.org/10.22111/IJFS.2021.6081 doi: 10.22111/IJFS.2021.6081 |
[34] | M. Keshavarz, T. Allahviranloo, Fuzzy fractional diffusion processes and drug release, Fuzzy Set. Syst., 436 (2022), 82–101. https://doi.org/10.1016/j.fss.2021.04.001 doi: 10.1016/j.fss.2021.04.001 |
[35] | M. Keshavarz, T. Allahviranloo, S. Abbasbandy, M. H. Modarressi, A study of fuzzy methods for solving system of fuzzy differential equations, New Math. Nat. Comput., 17 (2021), 1–27. https://doi.org/10.1142/S1793005721500010 doi: 10.1142/S1793005721500010 |
[36] | D. Qiu, The generalized Hukuhara differentiability of interval-valued function is not fully equivalent to the one-sided differentiability of its end point functions, Fuzzy Set. Syst., 419 (2021), 158–168. https://doi.org/10.1016/j.fss.2020.07.012 doi: 10.1016/j.fss.2020.07.012 |
[37] | H. Wang, R. Rodriguez-Lopez, On the existence of solutions to boundary value problems for interval-valued differential equations under gH-differentiability, Inform. Sci., 553 (2021), 225–246. https://doi.org/10.1016/j.ins.2020.10.052 doi: 10.1016/j.ins.2020.10.052 |
[38] | P. Langevin, Sur la théorie du mouvement brownien, Compt. Rendus, 146 (1908), 530–533. |
[39] | M. Z. Ahmad, M. K. Hassan, S. Abbasbanday, Solving fuzzy fractional differential equations using Zadeh's extension principle, The Scientific World J., 2013 (2013). https://doi.org/10.1155/2013/454969 doi: 10.1155/2013/454969 |
[40] | R. L. Magin, Fractional calculus in bioengineering, Begell House Publisher, Connecticut, 2006. https://doi.org/10.1615/CritRevBiomedEng.v32.i1.10 |
[41] | T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 1971. |
[42] | M. Akram, T. Ihsan, T. Allahviranloo, Solving Pythagorean fuzzy fractional differential equations using Laplace transform, Granular Comput., 2022. https://doi.org/10.1007/s41066-022-00344-z doi: 10.1007/s41066-022-00344-z |
[43] | D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional dynamics and control, Springer Science & Business Media, 2011. |
[44] | V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, Cambridge, 2009. |
[45] | R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys., 29 (1966), 255–284. |
[46] | E. Lutz, Fractional Langevin equation, Phys. Rev. E, 64 (2001), 1–4. https://doi.org/10.1142/9789814340595_0012 doi: 10.1142/9789814340595_0012 |
[47] | Y. Adjabi, M. E. Samei, M. M. Matar, J. Alzabut, Langevin differential equation in frame of ordinary and Hadamard fractional derivatives under three point boundary conditions, AIMS Math., 6 (2021), 2796–2843. https://doi.org/10.3934/math.2021171 doi: 10.3934/math.2021171 |
[48] | B. Ahmad, A. Alsaedi, S. Salem, On a nonlocal integral boundary value problem of nonlinear Langevin equation with different fractional orders, Adv. Differ. Equ., 2019 (2019), 57. https://doi.org/10.1186/s13662-019-2003-x doi: 10.1186/s13662-019-2003-x |
[49] | B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal., 13 (2012), 599–606. https://doi.org/10.1016/j.nonrwa.2011.07.052 doi: 10.1016/j.nonrwa.2011.07.052 |
[50] | H. Baghani, Existence and uniqueness of solutions to fractional Langevin equations involving two fractional orders, J. Fix. Point Theory A., 20 (2018), 1–7. https://doi.org/10.1007/s11784-018-0540-7 doi: 10.1007/s11784-018-0540-7 |
[51] | Z. Kiyamehr, H. Baghani, Existence of solutions of BVPs for fractional Langevin equations involving Caputo fractional derivatives, J. Appl. Anal., 27 (2021), 47–55. https://doi.org/10.1515/jaa-2020-2029 doi: 10.1515/jaa-2020-2029 |
[52] | A. Salem, Existence results of solutions for anti-periodic fractional Langevin equation, J. Appl. Anal. Comput., 10 (2020), 2557–2574. https://doi.org/10.11948/20190419 doi: 10.11948/20190419 |
[53] | T. Kaczorek, Positive different orders fractional $2$D linear systems, Acta Mech. Automatica, 2 (2008), 51–58. |
[54] | S. S. Devi, K. Ganesan, Modelling electric circuit problem with fuzzy differential equations, J. Phys. Conf. Ser., 1377 (2019), 012024. https://doi.org/10.1088/1742-6596/1377/1/012024 doi: 10.1088/1742-6596/1377/1/012024 |
[55] | A. Ahmadova, N. I. Mahmudov, Langevin differential equations with general fractional orders and their applications to electric circuit theory, J. Comput. Appl. Math., 388 (2021), 113299. https://doi.org/10.1016/j.cam.2020.113299 doi: 10.1016/j.cam.2020.113299 |
[56] | K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Springer, Berlin, 2004. |
[57] | I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999. |
[58] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon & Breach Science Publishers, Yverdon, 1993. |
[59] | A. Fernandez, C. K$\ddot{u}$rt, M. A. $\ddot{O}$zarslan, A naturally emerging bivariate Mittag-Leffler function and associated fractional-calculus operators, Comput. Appl. Math., 39 (2020), 1–27. https://doi.org/10.1007/s40314-020-01224-5 doi: 10.1007/s40314-020-01224-5 |
[60] | A. Ahmadova, I. T. Huseynov, A. Fernandez, N. I. Mahmudov, Trivariate Mittag-Leffler functions used to solve multi-order systems of fractional differential equations, Commun. Nonlinear Sci., 97 (2021), 105735. https://doi.org/10.1016/j.cnsns.2021.105735 doi: 10.1016/j.cnsns.2021.105735 |
[61] | T. Allahviranloo, M. B. Ahmadi, Fuzzy Laplace transforms, Soft Comput., 14 (2010) 235. https://doi.org/10.1007/s00500-008-0397-6 doi: 10.1007/s00500-008-0397-6 |