Research article

On two new contractions and discontinuity on fixed points

  • Received: 12 September 2021 Accepted: 21 October 2021 Published: 01 November 2021
  • MSC : 47H10, 54H25

  • This paper deals with a well known open problem raised by Kannan (Bull. Calcutta Math. Soc., 60: 71–76, 1968) and B. E. Rhoades (Contemp. Math., 72: 233–245, 1988) on the existence of general contractions which have fixed points, but do not force the continuity at the fixed point. We propose some new affirmative solutions to this question using two new contractions called $ (\psi, \varphi) $-$ \mathcal{A} $-contraction and $ (\psi, \varphi) $-$ \mathcal{A^{\prime}} $-contraction inspired by the results of H. Garai et al. (Applicable Analysis and Discrete Mathematics, 14(1): 33–54, 2020) and P. D. Proinov (J. Fixed Point Theory Appl. (2020) 22: 21). Some new fixed point and common fixed point results in compact metric spaces and also in complete metric spaces are proved in which the corresponding contractive mappings are not necessarily continuous at their fixed points. Moreover, we show that new solutions to characterize the completeness of metric spaces. Several examples are provided to verify the validity of our main results.

    Citation: Mi Zhou, Naeem Saleem, Xiao-lan Liu, Nihal Özgür. On two new contractions and discontinuity on fixed points[J]. AIMS Mathematics, 2022, 7(2): 1628-1663. doi: 10.3934/math.2022095

    Related Papers:

  • This paper deals with a well known open problem raised by Kannan (Bull. Calcutta Math. Soc., 60: 71–76, 1968) and B. E. Rhoades (Contemp. Math., 72: 233–245, 1988) on the existence of general contractions which have fixed points, but do not force the continuity at the fixed point. We propose some new affirmative solutions to this question using two new contractions called $ (\psi, \varphi) $-$ \mathcal{A} $-contraction and $ (\psi, \varphi) $-$ \mathcal{A^{\prime}} $-contraction inspired by the results of H. Garai et al. (Applicable Analysis and Discrete Mathematics, 14(1): 33–54, 2020) and P. D. Proinov (J. Fixed Point Theory Appl. (2020) 22: 21). Some new fixed point and common fixed point results in compact metric spaces and also in complete metric spaces are proved in which the corresponding contractive mappings are not necessarily continuous at their fixed points. Moreover, we show that new solutions to characterize the completeness of metric spaces. Several examples are provided to verify the validity of our main results.



    加载中


    [1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations intgrales, Fund. Math., 3 (1922), 133–183. doi: 10.3233/BME-2008-0556. doi: 10.3233/BME-2008-0556
    [2] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76.
    [3] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226 (1977), 257–290. doi: 10.1090/S0002-9947-1977-0433430-4. doi: 10.1090/S0002-9947-1977-0433430-4
    [4] B. E. Rhoades, Contractive definitions and continuity, Contemp. Math., 72 (1988), 233–245. doi: 10.1142/9789814415521-0017. doi: 10.1142/9789814415521-0017
    [5] R. P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl., 240 (199), 284–289. doi: 10.1016/j.jmaa.2016.02.053.
    [6] R. K. Bisht, R. P. Pant, A remark on discontinuity at fixed points, J. Math. Anal. Appl., 445 (2017), 1239–1242. doi: 10.1016/j.jmaa.2016.02.053
    [7] R. K. Bisht, R. P. Pant, Contractive definitions and discontinuity at fixed point, Appl. Gen. Topol., 18 (2017), 173–182. doi: 10.4995/agt.2017.6713. doi: 10.4995/agt.2017.6713
    [8] R. K. Bisht, V. Rakočević, Generalized Meir-Keeler type contractions and discontinuity at fixed point, Fixed Point Theory, 19 (2018), 57–64. doi: 10.24193/fpt-ro.2018.1.06. doi: 10.24193/fpt-ro.2018.1.06
    [9] R. K. Bisht, V. Rakočević, Fixed points of convex and generalized convex contractions, Rend. Circ. Mat. Palerm., 69 (2020), 21–28. doi: 10.1007/s12215-018-0386-2. doi: 10.1007/s12215-018-0386-2
    [10] R. K. Bisht, N. Özgür, Geometric properties of discontinuous fixed point set of $(\epsilon-\delta)$ contractions and applications to neural networks, Aequationes Math., 94 (2020), 847–863. doi: 10.1007/s00010-019-00680-7. doi: 10.1007/s00010-019-00680-7
    [11] U. Çelik, , N. Özgür, A new solution to the discontinuity problem on metric spaces, Turkish J. Math., 44 (2020), 1115–1126. doi: 10.3906/mat-1912-80. doi: 10.3906/mat-1912-80
    [12] N. Y. Özgür, N. Taş, Some fixed-circle theorems and discontinuity at fixed circle, AIP Conf. Proc., 1926 (2018), 020048. doi: 10.1063/1.5020497. doi: 10.1063/1.5020497
    [13] N. Y. Özgür, N. Taş, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc., 42 (2019), 1433–1449. doi: 10.1007/s40840-017-0555-z. doi: 10.1007/s40840-017-0555-z
    [14] R. P. Pant, N. Y. Özgür, N. Taş, On discontinuity problem at fixed point, Bull. Malays. Math. Sci. Soc., 43 (2020), 499–517. doi:10.1007/s40840-018-0698-6. doi: 10.1007/s40840-018-0698-6
    [15] R. P. Pant, N. Y. Özgür, N. Taş, Discontinuity at fixed points with applications, Bull. Belg. Math. Soc. Simon Stevin, 25 (2019), 571–589. doi: 10.36045/bbms/1576206358. doi: 10.36045/bbms/1576206358
    [16] M. Rashid, I. Batool, N. Mehmood, Discontinuous mappings at their fixed points and common fixed points with applications, J. Math. Anal., 9 (2018), 90–104.
    [17] N. Taş, N. Y. Özgür, A new contribution to discontinuity at fixed point, Fixed Point Theory, 20 (2019), 715–728. doi: 10.24193/fpt-ro.2019.2.47. doi: 10.24193/fpt-ro.2019.2.47
    [18] N. Taş, N. Y. Özgür, N. Mlaiki, New types of $F_c $-contractions and the fixed circle problem, Mathematics, 6 (2018), 188. doi: 10.3390/math6100188. doi: 10.3390/math6100188
    [19] D. Zheng, P. Wang, Weak $\Theta$-$\varphi$-contractions and discontinuity, J. Nonlinear Sci. Appl., 10 (2017), 2318–2323. doi: 10.22436/jnsa.010.05.04. doi: 10.22436/jnsa.010.05.04
    [20] N. Özgür, N. Taş, New discontinuity reuslts at fixed point on metric spaces, J. Fixed Point Theory Appl., 22 (2020), 28. doi: 10.1007/s11784-021-00863-3. doi: 10.1007/s11784-021-00863-3
    [21] R. P. Pant, N. Özgür, N. Taş, A. Pant, C. Mahesh Joshi, New results on discontinuity at fixed point, J. Fixed Point Theory Appl., 22 (2020), 39. doi: 10.1007/s11784-020-0765-0. doi: 10.1007/s11784-020-0765-0
    [22] H. Garai, L. K. Dey, Y. J. Cho, On contractive mappings and discontinuity at fixed points, Appl. Anal. Discrete Math., 14 (2020), 33–54. doi: 10.2298/AADM181018007G. doi: 10.2298/AADM181018007G
    [23] D. Wardowski, V. N. Dung, Fixed points of $F$-weak contractions on complete metric spaces, Demonstr. Math., 47 (2014), 146–155. doi: 10.2478/dema-2014-0012. doi: 10.2478/dema-2014-0012
    [24] W. M. Alfaqih, M. Imdad, R. Gubran, An observation on $F$- weak contractions and discontinuity at the fixed point with an application, J. Fixed Point Theory Appl., 22 (2020), 66. doi: 10.1007/s11784-020-00801-9. doi: 10.1007/s11784-020-00801-9
    [25] P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl., 22 (2020), 21. doi: 10.1007/s11784-020-0756-1. doi: 10.1007/s11784-020-0756-1
    [26] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. doi: 10.1186/1687-1812-2012-94. doi: 10.1186/1687-1812-2012-94
    [27] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 38 (2014), 1–8. doi: 10.1186/1029-242X-2014-38. doi: 10.1186/1029-242X-2014-38
    [28] F. Skof, Teoremi di punto fisso per applicazioni negli spazi metrici, Atti. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 111 (1977), 323–329.
    [29] N. A. Secelean, Weak $F$-contractions and some fixed point results, Bull. Iran. Math. Soc., 42 (2016), 779–798.
    [30] H. Piri, P. Kumam, Some fixed point theorems concerning $F$-contraction in complete metric spaces, Fixed Point Theory Appl., 2014 (2014), 210. doi: 10.1186/1687-1812-2014-210. doi: 10.1186/1687-1812-2014-210
    [31] F. Vetro, $F$-contractions of Hardy-Rogers type and application to multistage decesion process, Nonlinear Anal. Model. Control, 21 (2016), 531–546. doi: 10.15388/NA.2016.4.7 doi: 10.15388/NA.2016.4.7
    [32] N. A. Secelean, D. Wardowski, $\psi F$-contractions: Not necessarily nonexspansive Picard operators, Results Math., 70 (2016), 415–431. doi: 10.1007/s00025-016-0570-7. doi: 10.1007/s00025-016-0570-7
    [33] A. Lukács, S. Kajántó, Fixed point results for various type $F$-contractions in completes $b$-metric spaces, Fixed Point Theory, 19 (2018), 321–334. doi: 10.24193/fpt-ro.2018.1.25 doi: 10.24193/fpt-ro.2018.1.25
    [34] E. Karapınar, A. Fulga, R. P. Agarwal, A survey: $F$- contractions with related fixed point results, J. Fixed Point Theory Appl., 22 (2020), 69. doi: 10.1007/s11784-020-00803-7. doi: 10.1007/s11784-020-00803-7
    [35] N. Hussain, G. Ali, I. Iqbal, B. Samet, The Existence of solutions to nonlinear matrix equations via fixed points of multivalued $F$-contractions, Mathematics, 8 (2020), 212. doi: 10.3390/math8020212. doi: 10.3390/math8020212
    [36] M. Nazam, N. Hussain, A. Hussain, M. Arshad, Fixed point theorems for weakly $\beta$-admissible pair of $F$-contractions with application, Nonlinear Anal. Model. Control, 24 (2019), 898–918. doi: 10.15388/NA.2019.6.4. doi: 10.15388/NA.2019.6.4
    [37] I. Iqbal, N. Hussainb, N. Sultana, Fixed points of multivalued non-linear $F$-contractions with application to solution of matrix equations, Filomat, 31 (2017), 3319–3333. doi: 10.2298/FIL1711319I. doi: 10.2298/FIL1711319I
    [38] L. B. Cirić, On contraction type mappings, Math. Balkanica, 1 (1971), 52–57.
    [39] A. Pant, R. P. Pant, Fixed points and continuity of contractive maps, Filomat, 31 (2017), 3501–3506. doi: 10.2298/FIL1711501P. doi: 10.2298/FIL1711501P
    [40] T. L. Hicks, B. E. Rhoades, A Banach type fixed-point theorem, Math. Japon., 24 (1979/80), 327–330.
    [41] L. V. Nguyen, On fixed points of asymptotically regular mappings, Rend. Circ. Mat. Palermo(2), 70 (2021), 709–719. doi: 10.1007/s12215-020-00527-0. doi: 10.1007/s12215-020-00527-0
    [42] W. A. Kirk, Caristi's fixed point theorem and metric convexity, Colloq. Math., 36 (1976), 81–86. doi: 10.4064/cm-36-1-81-86. doi: 10.4064/cm-36-1-81-86
    [43] P. V. Subrahmanyam, Completeness and fixed points, Monatsh. Math., 80 (1975), 325–330. doi: 10.1007/BF01472580. doi: 10.1007/BF01472580
    [44] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Am. Math. Soc., 136 (2008), 1861–1869. doi: 10.1090/S0002-9939-07-09055-7. doi: 10.1090/S0002-9939-07-09055-7
    [45] E. Karapınar, Recent Advances on the Results for Nonunique Fixed in Various Spaces, Axioms, 8 (2019), 72. doi: 10.3390/axioms8020072. doi: 10.3390/axioms8020072
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2160) PDF downloads(148) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog