In this paper, we consider the common Re-nonnegative definite (Re-nnd) and Re-positive definite (Re-pd) solutions to a pair of linear matrix equations $ A_1XA_1^\ast = C_1, \ A_2XA_2^\ast = C_2 $ and present some necessary and sufficient conditions for their solvability as well as the explicit expressions for the general common Re-nnd and Re-pd solutions when the consistent conditions are satisfied.
Citation: Yinlan Chen, Lina Liu. The common Re-nonnegative definite and Re-positive definite solutions to the matrix equations $ A_1XA_1^\ast = C_1 $ and $ A_2XA_2^\ast = C_2 $[J]. AIMS Mathematics, 2022, 7(1): 384-397. doi: 10.3934/math.2022026
In this paper, we consider the common Re-nonnegative definite (Re-nnd) and Re-positive definite (Re-pd) solutions to a pair of linear matrix equations $ A_1XA_1^\ast = C_1, \ A_2XA_2^\ast = C_2 $ and present some necessary and sufficient conditions for their solvability as well as the explicit expressions for the general common Re-nnd and Re-pd solutions when the consistent conditions are satisfied.
[1] | L. Wu, The Re-positive definite solutions to the matrix inverse problem $AX = B$, Linear Algebra Appl., 174 (1992), 145–151. doi: 10.1016/0024-3795(92)90048-F. doi: 10.1016/0024-3795(92)90048-F |
[2] | L. Wu, B. Cain, The Re-nonnegative definite solutions to the matrix inverse problem $AX = B$, Linear Algebra Appl., 236 (1996), 137–146. doi: 10.1016/0024-3795(94)00142-1. doi: 10.1016/0024-3795(94)00142-1 |
[3] | J. Groß, Explicit solutions to the matrix inverse problem $AX = B$, Linear Algebra Appl., 289 (1999), 131–134. doi: 10.1016/S0024-3795(97)10008-8. doi: 10.1016/S0024-3795(97)10008-8 |
[4] | Q. W. Wang, C. L. Yang, The Re-nonnegative definite solutions to the matrix equation $AXB = C$, Comment. Math. Univ. Ca., 39 (1998), 7–13. |
[5] | D. S. Cvetković-Iliíc, Re-nnd solutions of the matrix equation $AXB = C$, J. Aust. Math. Soc., 84 (2008), 63–72. doi: doi:10.1017/S1446788708000207. |
[6] | Y. G. Tian, Maximization and minimization of the rank and inertia of the Hermitian matrix expression $A-BX-(BX)^*$ with applications, Linear Algebra Appl., 434 (2011), 2109–2139. doi: 10.1016/j.laa.2010.12.010. doi: 10.1016/j.laa.2010.12.010 |
[7] | Y. X. Yuan, K. Z. Zuo, The Re-nonnegative definite and Re-positive definite solutions to the matrix equation $AXB = D$, Appl. Math. Comput., 256 (2015), 905–912. doi: 10.1016/j.amc.2015.01.098. doi: 10.1016/j.amc.2015.01.098 |
[8] | X. F. Liu, Comments on "The common Re-nnd and Re-pd solutions to the matrix equations $AX = C$ and $XB = D$", Appl. Math. Comput., 236 (2014), 663–668. doi: 10.1016/j.amc.2014.03.074. doi: 10.1016/j.amc.2014.03.074 |
[9] | Y. X. Yuan, H. T. Zhang, L. Liu, The Re-nnd and Re-pd solutions to the matrix equations $AX = C$, $XB = D$, Linear and Multilinear Algebra, 69 (2021), 1645–1656. doi: 10.1080/03081087.2020.1845596. doi: 10.1080/03081087.2020.1845596 |
[10] | X. Zhang, The general common Hermitian nonnegative-definite solution to the matrix equations $AXA^\ast = B$ and $CXC^\ast = D$, Linear Multilinear A., 52 (2004), 49–60. doi: 10.1080/0308108031000122498. doi: 10.1080/0308108031000122498 |
[11] | X. Zhang, M. Y. Cheng, The general common nonnegative definite and positive definite solutions to the matrix equations $AXA^\ast = BB^\ast$ and $CXC^\ast = DD^\ast$, Appl. Math. Lett., 17 (2004), 543–547. doi: 10.1016/S0893-9659(04)90123-1. doi: 10.1016/S0893-9659(04)90123-1 |
[12] | X. Zhang, The general common Hermitian nonnegative-definite solution to the matrix equations $AXA^\ast = BB^\ast$ and $CXC^\ast = DD^\ast$ with applications in statistics, J. Multivariate Anal., 93 (2005), 257–266. doi: 10.1016/j.jmva.2004.04.009. doi: 10.1016/j.jmva.2004.04.009 |
[13] | I. I. Kyrchei, Determinantal representations of solutions and Hermitian solutions to some system of two-sided quaternion matrix equations. J. Math., 2018, (2018), 6294672. doi: 10.1155/2018/6294672. |
[14] | G. J. Song, S. W. Yu, Nonnegative definite and Re-nonnegative definite solutions to a system of matrix equations with statistical applications, AppL. Math. Comput., 338 (2018), 828–841. doi: 10.1016/j.amc.2018.06.045. doi: 10.1016/j.amc.2018.06.045 |
[15] | H. T. Zhang, H. R. Zhang, L. Liu, Y. X. Yuan, A simple method for solving matrix equations $AXB = D$ and $GXH = C$, AIMS Mathematics, 6 (2021), 2579–2589. doi: 10.3934/math.2021156. doi: 10.3934/math.2021156 |
[16] | Y. G. Tian, The solvability of two linear matrix equations, Linear Multilinear A., 48 (2000), 123–147. doi: 10.1080/03081080008818664. doi: 10.1080/03081080008818664 |
[17] | K. Yasuda, R. E. Skelton, Assigning controllability and observability Gramians in feedback control, JGCD, 14 (1991), 878–885. doi: 10.2514/3.20727. doi: 10.2514/3.20727 |
[18] | Y. H. Liu, Y. G. Tian, Max-min problems on the ranks and inertias of the matrix expressions $A-BXC \pm(BXC)^\ast$ with applications, J. Optim. Theory Appl., 148 (2011), 593–622. doi: 10.1007/s10957-010-9760-8. doi: 10.1007/s10957-010-9760-8 |
[19] | L. Zhang, The solvability conditions for the inverse problem of symmetric nonnegative definite matrices, Math. Numer. Sinica, 11 (1989), 337–343. |
[20] | H. Dai, The stability of solutions for two classes of inverse problems of matrices, Numerical Mathematics–A Journal of Chinese Universities, 16 (1994), 87–96. |
[21] | A. Ben-Israel, T. N. E. Greville, Generalized inverses: Theory and applications New York: Springer, 2003. |
[22] | C. C. Paige, M. A. Saunders, Towards a generalized singular value decompostion, SIAM J. Numer. Anal., 18 (1981), 398–405. doi: 10.1137/0718026. doi: 10.1137/0718026 |
[23] | A. Albert, Condition for positive and nonnegative definite in terms of pseudoinverse, SIAM J. Appl. Math., 17 (1969), 434–440. doi: 10.1137/0117041. doi: 10.1137/0117041 |