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1. Introduction

For convenience, the notations used in this paper are given in Table 1.
A lot of papers have been published for solving the Re-nnd and Re-pd solutions to some matrix

equations. For example, the Re-nnd and Re-pd solutions to AX = C have been considered by Wu [1],
Wu and Cain [2] and Groß [3]. The Re-nnd and Re-pd solutions to AXB = C have been discussed
by Wang and Yang [4], Cvetković-Iliı́c [5], Tian [6] and Yuan and Zuo [7]. The common Re-nnd
and Re-pd solutions to AX = C and XB = D have been investigated by Liu [8] and Yuan et al., [9].
Although there are some results [10–12] concerning the Hermitian nonnegative definite and positive
definite solutions of the following matrix equations

A1XA∗1 = C1, A2XA∗2 = C2, (1)

where A1 ∈ C
m×n, A2 ∈ C

p×n,C1 ∈ C
m×m and C2 ∈ C

p×p, the research results on the Re-nnd and Re-pd
solutions to the Eq (1) are quite limited so far. Recently, determinantal representations of solutions
and Hermitian solutions to Eq (1) have been considered by Kyrchei [13]. Song and Yu [14] studied
the common Re-nnd and Re-pd solutions of (1) firstly by utilizing the maximal and minimal inertias
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of the linear Hermitian matrix function and the generalized inverses of matrices, and established some
necessary and sufficient conditions for the existence of Re-nnd and Re-pd solutions of Eq (1).

The purpose of this paper is to provide an alternative approach to solve Eq (1). The necessary and
sufficient conditions for the solvability along with the expressions for the Re-nnd and Re-pd solutions
to the Eq (1) are presented with the help of the Moore-Penrose inverses and the spectral decompositions
of matrices.

Table 1. Table of notations.

Notations Meaning
A† Moore-Penrose inverse of the matrix A
A∗ conjugate transpose of the matrix A
A ≥ 0 A is Hermitian nonnegative definite
A > 0 A is Hermitian positive definite
1
2 (A + A∗) ≥ 0 A is Re-nonnegative definite (Re-nnd)
1
2 (A + A∗) > 0 A is Re-positive definite (Re-pd)
Cm×n set of all m × n complex matrices
PL orthogonal projector on the subspace L
R(A) range space of the complex matrix A
N(A) null space of the complex matrix A
In n × n identity matrix
EA = Im − AA†, ∀ A ∈ Cm×n

FA = In − A†A, ∀ A ∈ Cm×n

2. Some lemmas

Some lemmas are needed in the following.

Lemma 1. [15, 16] Let A1 ∈ C
m×n, B1 ∈ C

p×q, A2 ∈ C
l×n, B2 ∈ C

p×k and C1 ∈ C
m×q, C2 ∈ C

l×k. Then
the pair of equations A1XB1 = C1, A2XB2 = C2 have a common solution X if and only if

A1A†1C1B†1B1 = C1, A2A†2C2B†2B2 = C2, PT (A†1C1B†1 − A†2C2B†2)PS = 0,

where T = R(A∗1) ∩ R(A∗2), S = R(B1) ∩ R(B2). In this case, the general common solution to the
equations can be expressed as

X = X0 + FAV1 + V2EB + FA1V3EB2 + FA2V4EB1 ,

where
X0 = A†2C2B†2 − FA2Ψ

†A†1A1D − EΨA†1A1DB1B†1Ξ
†EB2 ,

A =

[
A1

A2

]
, B = [B1, B2],Ψ = A†1A1FA2 ,Ξ = EB2 B1B†1,D = A†2C2B†2 − A†1C1B†1, and V1,V2,V3,V4 are

arbitrary matrices.

Lemma 2. [17, 18] Let B ∈ Cn×m,C ∈ Cp×n and A = A∗ ∈ Cn×n. Then the matrix equation

BXC + (BXC)∗ = A, (2)
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has a solution X ∈ Cm×p if and only if

EBAEB = 0, FCAFC = 0, [B,C∗][B,C∗]†A = A. (3)

In this case, all the solutions X ∈ Cm×p satisfying Eq (2) are given by

X = B†
(
Θ + FLS XFLBB†

)
C† + M − B†BMCC†,

where L = FC BB†, M ∈ Cm×p, S X ∈ C
n×n are arbitrary matrices with S ∗X = −S X and Θ is given by

Θ = 1
2 A(2In − BB†) + 1

2 (Φ − Φ∗)BB† with Φ = 2L†FCA +
(
In − L†FC

)
AL†L.

Lemma 3. [19,20] Let A ∈ Cm×n and D ∈ Cm×n, and let the singular value decomposition of A be A =

Ũ
[
Σ 0
0 0

]
Ṽ∗, where Σ = diag(σ1, ..., σr) > 0, r = rank(A), Ũ = [Ũ1, Ũ2] ∈ Cm×m, Ṽ = [Ṽ1, Ṽ2] ∈ Cn×n

are unitary matrices with Ũ1 ∈ C
m×r, Ṽ1 ∈ C

n×r. Then:
(a) The matrix equation AY = D has a Hermitian nonnegative definite solution Y ∈ Cn×n if and only if
DA∗ ≥ 0, R(D) = R(DA∗), in this case, the general Hermitian nonnegative definite solution is

Y = Y0 + FAHFA,

where Y0 = A†D + FA(A†D)∗ + FAD∗(DA∗)†DFA, and H ∈ Cn×n is an arbitrary Hermitian nonnegative
definite matrix.
(b) The matrix equation AY = D has a Hermitian positive definite solution Y ∈ Cn×n if and only if
AA†D = D, Ũ∗1DA∗Ũ1 > 0, in this case, the general Hermitian positive definite solution is

Y = Y0 + FAHFA,

where Y0 = A†D + FA(A†D)∗ + FAD∗(DA∗)†DFA, and H ∈ Cn×n is an arbitrary Hermitian positive
definite matrix.

3. Re-nnd and Re-pd solutions to Eq (1)

In this section we propose a general theory elaborating how to solve the common Re-nnd and Re-pd
solutions of Eq (1). From Lemma 1, Eq (1) has a common solution X ∈ Cn×n if and only if

A1A†1C1A1A†1 = C1, A2A†2C2A2A†2 = C2, PT
(
A†1C1(A∗1)† − A†2C2(A∗2)†

)
PT = 0, (4)

where T = R(A∗1) ∩ R(A∗2). In this case, the general common solution of Eq (1) is

X = X0 + FAV1 + V2FA + FA1V3FA2 + FA2V4FA1 , (5)

where X0 is a particular common solution of Eq (1), which is given by

X0 = A†2C2(A∗2)† − FA2Ψ
†A†1A1D − EΨA†1A1DA†1A1(Ψ∗)†FA2 , (6)

A =

[
A1

A2

]
,Ψ = A†1A1FA2 ,D = A†2C2(A∗2)† − A†1C1(A∗1)†, and V1,V2,V3,V4 are arbitrary matrices. By

Eq (5), we have

X + X∗ = X0 + X∗0 + FAV12 + V∗12FA + FA1V34FA2 + FA2V
∗
34FA1 , H, (7)
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where V12 = V1 + V∗2 ,V34 = V3 + V∗4 . Clearly, X is Re-nnd (Re-pd) if and only if H ≥ 0 (H > 0). By
applying Lemma 2, we know that Eq (7) with respect to V12 is solvable if and only if

A†AFA1V34FA2 A†A + A†AFA2V
∗
34FA1 A†A = A†A(H − X0 − X∗0)A†A. (8)

In this case, the general solution is

V12 =
1
2

FA
(
H − X0 − X∗0 − FA1V34FA2 − FA2V

∗
34FA1

)
(In + A†A) + FAS 12FA + A†AM12, (9)

where M12 ∈ C
n×n and S 12 ∈ C

n×n are arbitrary matrices with S ∗12 = −S 12.

Notice that

R(FA) = R(In − A†A) = N(A†A) = N(A) = N(A1) ∩ N(A2),
R(FA1) = N(A1), R(FA2) = N(A2).

Therefore,

FA1 FA = FA = FAFA1 , FA2 FA = FA = FAFA2 ,

A†AFA1 = (In − FA)FA1 = FA1 − FA, A†AFA2 = (In − FA)FA2 = FA2 − FA,

which implies that

A†AFA1 = FA1 A†A, A†AFA2 = FA2 A†A,

(FA1 − FA)2 = FA1 − FA, (FA2 − FA)2 = FA2 − FA.

Namely, A†AFA1 and A†AFA2 are the orthogonal projectors (see [21, p.80, Ex.63]):

A†AFA1 = PR(A∗)∩N(A1) , PT1 , A†AFA2 = PR(A∗)∩N(A2) , PS1 , (10)

from which it is easily deduced that

A†APT1 = PT1 = PT1 A†A, A†APS1 = PS1 = PS1 A†A. (11)

From Lemma 2, Eq (8) with respect to V34 is solvable if and only if the following three equations
hold simultaneously:

(In − PT1)A
†AHA†A(In − PT1) = (In − PT1)A

†A(X0 + X∗0)A†A(In − PT1), (12)
(In − PS1)A

†AHA†A(In − PS1) = (In − PS1)A
†A(X0 + X∗0)A†A(In − PS1), (13)

[PT1 , PS1][PT1 , PS1]
†A†A(H − X0 − X∗0)A†A = A†A(H − X0 − X∗0)A†A. (14)

In the following, we will deduce the necessary and sufficient conditions on H ≥ 0 (H > 0) such that
Eqs (12)–(14) are solvable. Let

[PT1 , PS1][PT1 , PS1]
† = PT1+S1 , PL. (15)

Then, by using the relations of (10) and (11) we get

A†APL = PL = PLA†A, (16)
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PLPT1 = PT1 = PT1 PL, PLPS1 = PS1 = PS1 PL. (17)

By (15), the Eq (14) can be equivalently written as

(In − PL)A†AHA†A = (In − PL)A†A(X0 + X∗0)A†A. (18)

Now, let the spectral decomposition of A†A be

A†A = U
[

Ia 0
0 0

]
U∗ = U1U∗1, (19)

where a = rank(A†A) = rank(A) and U = [U1,U2] is a unitary matrix with U1 ∈ C
n×a. It follows from

(11), (16), (17) and (19) that

PT1 = U
[

P1 0
0 0

]
U∗, (20)

PS1 = U
[

P2 0
0 0

]
U∗, (21)

PL = U
[

P0 0
0 0

]
U∗, (22)

where P2
1 = P1 = P∗1, P

2
2 = P2 = P∗2, P

2
0 = P0 = P∗0 and P0P1 = P1, P0P2 = P2. By applying the

relations of (19) and (22), Eq (18) can be further simplified as

(Ia − P0)H11 = (Ia − P0)U∗1(X0 + X∗0)U1, (23)

where

U∗HU =

[
H11 H12

H∗12 H22

]
. (24)

From Lemma 3, Eq (23) has a Hermitian nonnegative definite solution H11 ∈ C
a×a if and only if

(Ia − P0)U∗1(X0 + X∗0)U1(Ia − P0) ≥ 0,
R

(
(Ia − P0)U∗1(X0 + X∗0)U1

)
= R

(
(Ia − P0)U∗1(X0 + X∗0)U1(Ia − P0)

)
,

(25)

in this case, by simple calculations, we can obtain the general Hermitian nonnegative definite solution
of Eq (23) is

H11 = H110 + P0KP0, (26)

where D0 = U∗1(X0 + X∗0)U1 and

H110 = D0 − P0D0P0 + P0D0(Ia − P0) [(Ia − P0)D0(Ia − P0)]† (Ia − P0)D0P0, (27)

and K ∈ Ca×a is an arbitrary Hermitian nonnegative definite matrix.
Suppose that the spectral decomposition of Ia − P0 is

Ia − P0 = W
[

Ig 0
0 0

]
W∗ = W1W∗

1 , (28)
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where g = rank(Ia − P0) and W = [W1,W2] ∈ Ca×a is a unitary matrix with W1 ∈ C
a×g. From Lemma 3,

Eq (23) has a Hermitian positive definite solution H11 ∈ C
a×a if and only if

W∗
1U∗1(X0 + X∗0)U1W1 > 0, (29)

in this case, the general Hermitian positive definite solution is

H11 = H110 + P0KP0, (30)

where H110 is given by (27) and K ∈ Ca×a is an arbitrary Hermitian positive definite matrix.
By the ralations of (19)–(21) and (24), the Eqs (12) and (13) can be equivalently written as

(Ia − P1)H11(Ia − P1) = (Ia − P1)U∗1(X0 + X∗0)U1(Ia − P1), (31)
(Ia − P2)H11(Ia − P2) = (Ia − P2)U∗1(X0 + X∗0)U1(Ia − P2). (32)

Substituting (30) into (31) and (32), and noting that P0P1 = P1 = P1P0, P0P2 = P2 = P2P0, we
obtain that

(P0 − P1)K(P0 − P1) = (P0 − P1)B(P0 − P1), (33)
(P0 − P2)K(P0 − P2) = (P0 − P2)B(P0 − P2), (34)

where
B = D0 − D0(Ia − P0) [(Ia − P0)D0(Ia − P0)]† (Ia − P0)D0. (35)

Direct verifications shows that P0 − P1 and P0 − P2 are orthogonal projectors. Hence, there exist
unitary matrices G ∈ Ca×a and Q ∈ Ca×a such that

P0 − P1 = G
[

Ie 0
0 0

]
G∗ = G1G∗1, (36)

P0 − P2 = Q
[

I f 0
0 0

]
Q∗ = Q1Q∗1, (37)

where e = rank(P0 − P1), f = rank(P0 − P2), and G1 ∈ C
a×e,Q1 ∈ C

a× f are column unitary matrices.
By substituting the relations of (36) and (37) into (33) and (34), we arrive at the following equations:

G∗1KG1 = G∗1BG1, Q∗1KQ1 = Q∗1BQ1. (38)

Note that G1 ∈ C
a×e and Q1 ∈ C

a× f are column unitary matrices, it follows from [22] that the
generalized singular value decomposition of the matrix pair [G1,Q1] is of the following form:

G1 = MΣ1E∗, Q1 = MΣ2F∗, (39)

where M ∈ Ca×a is a nonsingular matrix and E ∈ Ce×e, F ∈ C f× f are unitary matrices, and

Σ1 =


I 0
0 Γ

0 0
0 0


e − s

s
k − e
a − k

e − s s

,
Σ2 =


0 0
∆ 0
0 I
0 0


e − s

s
k − e
a − k

s f − s

,
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k = rank ([G1,Q1]) = e + f − s, and

Γ = diag(γ1, · · · , γs), ∆ = diag(δ1, · · · , δs)

with
1 > γ1 ≥ · · · ≥ γs > 0, 0 < δ1 ≤ · · · ≤ δs < 1, γ2

i + δ2
i = 1, i = 1, · · · , s.

Substituting (39) into (38) and Partitioning M∗BM into the following form:

M∗BM =


B11 B12 B13 B14

B∗12 B22 B23 B24

B∗13 B∗23 B33 B34

B∗14 B∗24 B∗34 B44


e − s

s
k − e
a − k

e − s s k − e a − k

. (40)

Then, by applying an established result in [9], we obtain
(a) Eq (38) has a common Hermitian nonnegative definite solution K if and only if[

B11 B12

B∗12 B22

]
≥ 0,

[
B22 B23

B∗23 B33

]
≥ 0.

In this case, the general Hermitian nonnegative definite solution of (38) can be expressed as

K = (M∗)−1
[

F(K13) F(K13)S
S ∗F(K13) T + S ∗F(K13)S

]
M−1, (41)

where

F(K13) ,


B11 B12 K13

B∗12 B22 B23

K∗13 B∗23 B33

 , (42)

with
K13 = B12B†22B23 +

(
B11 − B12B†22B∗12

) 1
2 N

(
B33 − B∗23B†22B23

) 1
2
, (43)

and S ∈ Ck×(a−k) is an arbitrary matrix, T ∈ C(a−k)×(a−k) is an arbitrary Hermitian nonnegative definite
matrix and N ∈ C(e−s)×(k−e) is an arbitrary contraction matrix (i.e., the largest singular value of the
matrix N is not greater than 1).

(b) Eq (38) has a common Hermitian positive definite solution K if and only if[
B11 B12

B∗12 B22

]
> 0,

[
B22 B23

B∗23 B33

]
> 0.

In this case, the general Hermitian positive definite solution of (38) can be expressed as

K = (M∗)−1
[

F(K13) S
S ∗ T + S ∗ (F(K13))−1 S

]
M−1, (44)

where F(K13) is defined by (42) with

K13 = B12B−1
22 B23 +

(
B11 − B12B−1

22 B∗12

) 1
2 N

(
B33 − B∗23B−1

22 B23

) 1
2
, (45)
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and S ∈ Ck×(a−k) is an arbitrary matrix, T ∈ C(a−k)×(a−k) is an arbitrary Hermitian positive definite matrix
and N ∈ C(e−s)×(k−e) is an arbitrary strict contraction matrix (i.e., the largest singular value of the matrix
N is less than 1).

Once we achieve the Hermitian nonnegative definite (positive definite) solution K of Eq (38), the
matrix H11 in (30) is completely specified. Also, when H11 ≥ 0, by (24) and Theorem 1 of [23], we
can determine the expression of the matrix H ≥ 0 by

H = U
[

H11 H11E
E∗H11 E∗H11E + F

]
U∗, (46)

and when H11 > 0, by (24) and Theorem 1 of [23], we can determine the expression of the matrix
H > 0 by

H = U
[

H11 H12

H∗12 H∗12H−1
11 H12 + R

]
U∗, (47)

where E,H12, F and R are arbitrary matrices with F ≥ 0 and R > 0.
By using (19)–(21), the Eq (8) can be simplified as

P1V (34)
11 P2 + P2

(
V (34)

11

)∗
P1 = U∗1(H − X0 − X∗0)U1, (48)

where

U∗V34U =

[
V (34)

11 V (34)
12

V (34)
21 V (34)

22

]
.

When the conditions (12)–(14) hold, From Lemma 2, all the solutions V (34)
11 ∈ C

a×a satisfying Eq (48)
are given by

V (34)
11 = P1 [Θ + FLS 34FLP1] P2 + M34 − P1M34P2, (49)

where L = P1 −P2P1, M34 ∈ C
a×a, S 34 ∈ C

a×a are arbitrary matrices with S ∗34 = −S 34 and Θ is given by

Θ =
1
2

U∗1(H − X0 − X∗0)U1(2Ia − P1) +
1
2

(Φ − Φ∗)P1,

with
Φ = 2L†(Ia − P2)U∗1(H − X0 − X∗0)U1 +

(
In − L†(Ia − P2)

)
U∗1(H − X0 − X∗0)U1L†L,

and H being given by (47).
In summary of the discussion above, we have proved the following results.

Theorem 1. For given matrices A1 ∈ C
m×n, A2 ∈ C

p×n,C1 ∈ C
m×m and C2 ∈ C

p×p, let A =

[
A1

A2

]
,Ψ =

A†1A1FA2 ,D = A†2C2(A∗2)† − A†1C1(A∗1)†,T = R(A∗1) ∩ R(A∗2) and let X0, PT1 , PS1 and PL be given by
(6), (10) and (15), respectively. Suppose that the spectral decompositions of A†A, Ia − P0, P0 − P1 and
P0 −P2 are respectively given by (19), (28), (36) and (37) with P1, P2 and P0 being given by (20)–(22).
Let D0 = U∗1(X0 + X∗0)U1 and B be given by (35). Furthermore, assume that the generalized singular
value decomposition of the matrix pair [G1,Q1] is given by (39), and the partition of the matrix M∗BM
is given by (40). Then:
(a) The Eq (1) has a common Re-nnd solution if and only if

A1A†1C1A1A†1 = C1, A2A†2C2A2A†2 = C2, PT
(
A†1C1(A∗1)† − A†2C2(A∗2)†

)
PT = 0, (4)
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(Ia − P0)U∗1(X0 + X∗0)U1(Ia − P0) ≥ 0,

R
(
(Ia − P0)U∗1(X0 + X∗0)U1

)
= R

(
(Ia − P0)U∗1(X0 + X∗0)U1(Ia − P0)

)
,

(25)

[
B11 B12

B∗12 B22

]
≥ 0,

[
B22 B23

B∗23 B33

]
≥ 0. (50)

In this case, the general Re-nnd solution of (1) can be expressed as

X = X0 + FAV1 + (V12 − V∗1)FA + FA1V3FA2 + FA2(V34 − V∗3)FA1 , (51)

where

H = U
[

H11 H11E
E∗H11 E∗H11E + F

]
U∗,

V34 = U
[

V (34)
11 V (34)

12
V (34)

21 V (34)
22

]
U∗,

V12,V
(34)
11 and H11 are respectively given by (9), (49) and (26) with K being given by (41), and

V1,V3,V
(34)
12 ,V (34)

21 ,V (34)
22 , E and F are arbitrary matrices with F ≥ 0.

(b) The Eq (1) has a common Re-pd solution if and only if

A1A†1C1A1A†1 = C1, A2A†2C2A2A†2 = C2, PT
(
A†1C1(A∗1)† − A†2C2(A∗2)†

)
PT = 0, (4)

W∗
1U∗1(X0 + X∗0)U1W1 > 0, (29)[

B11 B12

B∗12 B22

]
> 0,

[
B22 B23

B∗23 B33

]
> 0. (52)

In this case, the general Re-pd solution of (1) can be expressed as

X = X0 + FAV1 + (V12 − V∗1)FA + FA1V3FA2 + FA2(V34 − V∗3)FA1 , (53)

where

H = U
[

H11 H12

H∗12 H∗12H−1
11 H12 + R

]
U∗,

V34 = U
[

V (34)
11 V (34)

12
V (34)

21 V (34)
22

]
U∗,

V12,V
(34)
11 and H11 are respectively given by (9), (49) and (30) with K being given by (44), and

V1,V3,V
(34)
12 ,V (34)

21 ,V (34)
22 ,H12 and R are arbitrary matrices with R > 0.

4. Numerical algorithm and numerical examples

According to Theorem 1, we can describe a numerical algorithm to solve Eq (1).
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Algorithm 1.

1). Input A1, A2,C1,C2.
2). If the conditions (4) are satisfied, go to 3; otherwise, Eq (1) has no solution, and stop.
3). Compute X0 by (6).
4). Compute PT1 , PS1 and PL by (10) and (15).
5). Compute the spectral decomposition of the matrix A†A by (19).
6). Compute P1, P2, P0 by (20) − (22), respectively.
7). Compute the spectral decomposition of the matrix Ia − P0 by (28).
8). (a) If the conditions (25) are satisfied, go to 9; otherwise, Eq (1) has no Re-nnd solutions, and

stop. (b) If the condition (29) is satisfied, go to 9; otherwise, Eq (1) has no Re-pd solutions, and
stop.

9). Compute B by (35).
10). Compute the spectral decomposition of the matrices P0−P1, P0−P2 by (36) and (37), respectively.
11). Compute Bi j, i, j = 1, 2, 3, 4 by (40).
12). (a) If the conditions (50) are satisfied, go to 13; otherwise, Eq (1) has no Re-nnd solutions, and

stop. (b) If the conditions (52) are satisfied, go to 13; otherwise, Eq (1) has no Re-pd solutions,
and stop.

13). Choosee matrices M12, S 12 and M34, S 34, and compute V12 and V (34)
11 by (9) and (49), respectively.

14). (a) Choose matrix S , Hermitian nonnegative definite matrix T and contraction matrix N, and
compute H11, K by (26) and (41), respectively.
(b) Choose matrix S , Hermitian positive definite matrix T and strict contraction matrix N, and
compute H11, K by (30) and (44), respectively.

15). (a) Choose matrices V1,V3,V
(34)
12 ,V (34)

21 ,V (34)
22 , E and F, and compute Re-nnd solutions by (51).

(b) Choose matrices V1,V3,V
(34)
12 ,V (34)

21 ,V (34)
22 ,H12 and R, and compute Re-pd solutions by (53).

Example 1. Let m = 8, n = 7, p = 6, and the matrices A1, A2,C1,C2 be given by

A1 =



0.1505 0.3784 −0.5594 0.1939 −0.2660 0.4028 0.2790
0.2672 0.0819 0.2731 0.2876 −0.3302 −0.4236 0.2238
−0.3406 −0.1090 0.0522 0.5436 −0.1926 0.5860 −0.1038

0.1986 0.1280 0.0197 −0.4028 0.3272 0.3400 0.1071
0.1530 0.1361 0.3086 0.1080 0.1966 −0.5378 0.0197
−0.1595 0.3274 −0.8908 −0.0056 0.0308 1.1375 0.0823
−0.2300 −0.0446 0.5236 0.2363 0.5448 −0.2771 −0.3015

0.2282 −0.2426 0.4956 −0.3762 −0.0149 0.0686 0.1080


,

A2 =



0.3437 −0.1868 0.0463 0.1660 0.6676 −0.1841 0.0578
0.5780 −0.2612 0.0910 0.6817 −0.6522 0.2167 −0.3638
0.0433 1.0768 −0.6168 −0.6039 0.4963 0.1074 −0.0272
−0.0546 0.2299 0.5315 0.1299 −0.4568 −0.2744 0.2075
−0.1846 −0.1516 0.5293 0.1725 −0.3328 0.2160 0.2213
−0.3050 0.1542 −0.1967 −0.4381 0.7181 0.5132 0.2174


,
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C1 =



1.6194 0.4017 1.1172 1.0461 0.1390 1.9358 0.1469 −0.0251
0.3975 0.8697 0.2367 0.1655 0.4800 −0.3411 0.1407 0.3210
1.1213 0.2385 0.8258 0.6943 0.0711 1.3894 0.1250 −0.0688
1.0472 0.1680 0.6923 1.2075 0.3225 1.4312 0.5419 0.1833
0.1358 0.4778 0.0720 0.3212 0.4447 −0.2584 0.3688 0.2969
1.9415 −0.3354 1.3861 1.4331 −0.2571 3.2019 0.1518 −0.3429
0.1477 0.1369 0.1291 0.5433 0.3654 0.1582 0.5433 0.2055
−0.0256 0.3222 −0.0702 0.1828 0.2981 −0.3453 0.2057 0.2709


,

C2 =



1.3478 0.5274 0.9819 0.2793 0.4614 0.9670
0.5263 1.8846 −0.3873 0.6385 0.6056 −0.6616
0.9819 −0.3880 2.2990 −0.1273 0.2424 2.0467
0.2798 0.6396 −0.1276 0.8107 0.6086 −0.2911
0.4625 0.6031 0.2418 0.6107 0.5554 0.1027
0.9684 −0.6663 2.0459 −0.2878 0.1040 2.0062


.

It is easy to verify that the conditions (4), (25) and (50) hold. According to Algorithm 1, by choosing
matrices M12 = 0, S 12 = 0,M34 = 0, S 34 = 0, S = 0,V1 = 0,V3 = 0,N = I3 and T = diag(1, 1, 0). We
can obtain a Re-nnd solution X of Eq (1) as follows:

X =



2.7294 2.2145 2.0416 2.1806 1.4082 2.1196 1.3577
2.2762 3.3339 2.2500 2.2724 2.0174 2.8962 1.8725
2.0656 2.0314 2.0039 1.7633 1.4075 1.6155 1.5488
2.1532 2.4969 1.7626 2.3181 1.2999 2.2186 1.5595
1.3659 2.0056 1.2573 1.4536 2.1437 1.9364 1.2512
2.1264 2.8759 1.6320 2.2022 1.9514 2.9011 1.5724
1.2936 2.1706 1.4247 1.6830 1.0376 1.5638 1.8132


.

The absolute errors are estimated by

‖A1XA∗1 −C1‖ = 1.2097 × 10−14, ‖A2XA∗2 −C2‖ = 1.4756 × 10−14,

and the eigenvalues of 1
2 (X + X∗) are (0.0000, 0.1176, 0.3090, 0.7064, 0.9076, 1.3411, 13.8617), which

implies that X is a Re-nnd matrix.

Example 2. Let m = 8, n = 7, p = 6, and the matrices A1, A2 be given as in Example 1, and C1,C2 be
given by

C1 =



1.7242 0.4144 1.0792 1.0928 0.1592 2.0375 0.1091 −0.0736
0.3775 0.8720 0.2338 0.1408 0.4908 −0.3724 0.1604 0.3041
1.1186 0.2201 0.8853 0.6967 0.0491 1.4232 0.1448 −0.0630
1.0714 0.1515 0.6933 1.2330 0.3025 1.4813 0.5153 0.1907
0.1416 0.4972 0.0488 0.3012 0.4774 −0.2840 0.3880 0.2596
2.0815 −0.3334 1.3653 1.5166 −0.2578 3.3675 0.0893 −0.3746
0.1344 0.1489 0.1476 0.5159 0.3870 0.1297 0.5848 0.1796
−0.1206 0.2766 −0.0162 0.1611 0.2384 −0.3914 0.2131 0.3403


,
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C2 =



1.3901 0.5725 0.7567 0.2303 0.4863 0.9310
0.5929 2.0041 −0.7776 0.5634 0.6684 −0.7256
0.8842 −0.5659 3.1518 0.0164 0.0683 2.1386
0.2280 0.5627 0.0364 0.8619 0.5975 −0.2604
0.4375 0.5973 0.1306 0.6040 0.6128 0.1264
0.9251 −0.7174 2.2510 −0.2616 0.0863 2.0681


.

It is easy to verify that the conditions (4), (29), (52) hold. According to Algorithm 1, by choosing
matrices M12 = 0, S 12 = 0,M34 = 0, S 34 = 0, S = 0,V1 = 0,V3 = 0,T = I3 and N = diag(0.5, 0.9). We
can obtain a Re-pd solution X of Eq (1) as follows:

X =



2.6683 2.0218 2.0422 2.1799 1.3933 2.1078 1.3243
2.3675 3.9741 2.2175 2.2237 2.0140 2.8619 1.9035
1.9666 2.1038 2.0869 1.6926 1.3193 1.6533 1.4578
2.1507 2.3774 1.7100 2.4628 1.4043 2.1940 1.6027
1.3413 2.0309 1.2486 1.4966 2.1548 1.9287 1.2183
2.1127 2.8483 1.6637 2.1831 1.9384 3.0000 1.5665
1.2164 2.0357 1.3582 1.7193 1.1233 1.5730 1.9679


.

The absolute errors are estimated by

‖A1XA∗1 −C1‖ = 1.4493 × 10−14, ‖A2XA∗2 −C2‖ = 1.5563 × 10−14,

and the eigenvalues of 1
2 (X + X∗) are (0.1237, 0.2834, 0.7033, 0.8109, 1.0267, 1.4143, 13.9510), which

implies that X is a Re-pd matrix.

5. Conclusions

In the previous sections, we studied the common Re-nonnegative definite and Re-positive definite
solutions of linear matrix equations (1). We established a set of necessary and sufficient conditions
for the existence of a general common Re-nonnegative definite solution, Re-positive definite solution
of (1) respectively. Moreover, we gave the explicit expressions for these general common solutions
when the consistent conditions are satisfied. At the end, we showed an algorithm and two examples to
illustrate the main results of this paper.
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