In this paper, it is proved that if a non-Hopf real hypersurface in a nonflat complex space form of complex dimension two satisfies Ki and Suh's condition (J. Korean Math. Soc., 32 (1995), 161–170), then it is locally congruent to a ruled hypersurface or a strongly $ 2 $-Hopf hypersurface. This extends Ki and Suh's theorem to real hypersurfaces of dimension greater than or equal to three.
Citation: Wenjie Wang. A characterization of ruled hypersurfaces in complex space forms in terms of the Lie derivative of shape operator[J]. AIMS Mathematics, 2021, 6(12): 14054-14063. doi: 10.3934/math.2021813
In this paper, it is proved that if a non-Hopf real hypersurface in a nonflat complex space form of complex dimension two satisfies Ki and Suh's condition (J. Korean Math. Soc., 32 (1995), 161–170), then it is locally congruent to a ruled hypersurface or a strongly $ 2 $-Hopf hypersurface. This extends Ki and Suh's theorem to real hypersurfaces of dimension greater than or equal to three.
[1] | J. Berndt, Real hypersurfaces with constant principal curvatures in complex hyperbolic space, J. Reine Angew. Math., 395 (1989), 132–141. |
[2] | J. Berndt, J. C. Diaz-Ramos, Real hypersurfaces with constant principal curvatures in complex hyperbolic spaces, J. London Math. Soc., 74 (2006), 778–798. doi: 10.1112/S0024610706023295 |
[3] | J. Berndt, J. C. Díaz-Ramos, Real hypersurfaces with constant principal curvatures in the complex hyperbolic plane, P. Am. Math. Soc., 135 (2007), 3349–3357. doi: 10.1090/S0002-9939-07-09012-0 |
[4] | T. E. Cecil, P. J. Ryan, Geometry of hypersurfaces, Springer Monographs in Mathematics, Springer, New York, 2015. |
[5] | J. C. Díaz-Ramos, M. Domínguez-Vázquez, Non-Hopf real hypersurfaces with constant principal curvatures in complex space forms, Indiana U. Math. J., 60 (2011), 859–882. doi: 10.1512/iumj.2011.60.4293 |
[6] | J. C. Díaz-Ramos, M. Domínguez-Vázquez, C. Vidal-Castiñeira, Strongly $2$-Hopf hypersurfaces in complex projective and hyperbolic planes, Ann. Mat. Pur. Appl., 197 (2018), 469–486. doi: 10.1007/s10231-017-0687-7 |
[7] | M. Domínguez-Vázquez, Real hypersurfaces with constant principal curvatures in complex space forms, Differ. Geom. Appl., 29 (2011), S65–S70. doi: 10.1016/j.difgeo.2011.04.009 |
[8] | T. A. Ivey, P. J. Ryan, Hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$ with two distinct principal curvatures, Glasgow Math. J., 58 (2016), 137–152. doi: 10.1017/S0017089515000105 |
[9] | V. H. Ki, S. J. Kim, S. B. Lee, Some characterizations of a real hypersurface of type $A$, Kyungpook Math. J., 31 (1991), 205–221. |
[10] | U. H. Ki, Y. J. Suh, Characterizations of some real hypersurfaces in a complex space form in terms of Lie derivative, J. Korean Math. Soc., 32 (1995), 161–170. |
[11] | M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, T. Am. Math. Soc., 296 (1986), 137–149. doi: 10.1090/S0002-9947-1986-0837803-2 |
[12] | M. Kimura, Sectional curvature of holomorphic planes on a real hypersurface in $P^n(C)$, Math. Ann., 276 (1987), 487–497. doi: 10.1007/BF01450843 |
[13] | M. Kon, Non-Hopf hypersurfaces in $2$-dimensional complex space forms, Tokyo J. Math., 39 (2016), 343–387. |
[14] | M. Lohnherr, H. Reckziegel, On ruled real hypersurfaces in complex space forms, Geometriae Dedicata, 74 (1999), 267–286. doi: 10.1023/A:1005000122427 |
[15] | S. Maeda, H. Tanabe, A characterization of the homogeneous ruled real hypersurface in a complex hyperbolic space in terms of the first curvature of some integral curves, Arch. Math., 105 (2015), 593–599. doi: 10.1007/s00013-015-0839-1 |
[16] | S. Montiel, A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata, 20 (1986), 245–261. doi: 10.1007/BF00164402 |
[17] | R. Niebergall, P. J. Ryan, Real hypersurfaces in complex space forms, Cambridge Univ. Press, Cambridge, 32 (1997), 233–305. |
[18] | M. Okumura, On some real hypersurfaces of a complex projective space, T. Am. Math. Soc., 212 (1975), 355–364. doi: 10.1090/S0002-9947-1975-0377787-X |
[19] | K. Panagiotidou, P. J. Xenos, Real hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$ whose structure Jacobi operator is Lie $\mathbb{D}$-parallel, Note Mat., 32 (2012), 89–99. |
[20] | R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures, J. Math. Soc. Japan, 27 (1975), 43–53. |
[21] | Y. Tashiro, S. Tachibana, On Fubinian and $C$-Fubinian manifolds, Kodai Math. Semin. Rep., 15 (1963), 176–183. |
[22] | Q. M. Wang, Real hypersurfaces with constant principal curvatures in complex projective spaces (I), Sci. China Ser. A, 26 (1983), 1017–1024. |
[23] | Y. Wang, Minimal and harmonic Reeb vector fields on trans-Sasakian $3$-manifolds, J. Korean Math. Soc., 55 (2018), 1321–1336. |
[24] | Y. Wang, Cyclic $\eta$-parallel shape and Ricci operators on real hypersurfaces in two-dimensional nonflat complex space forms, Pac. J. Math., 302 (2019), 335–352. doi: 10.2140/pjm.2019.302.335 |
[25] | Y. Wang, Real hypersurfaces in $\mathbb{C}P^2$ with constant Reeb sectional curvature, Differ. Geom. Appl., 73 (2020), 101683. doi: 10.1016/j.difgeo.2020.101683 |
[26] | Y. Wang, Three dimensional 2-Hopf hypersurfaces with harmonic curvature, J. Math. Anal. Appl., 499 (2021), 125005. doi: 10.1016/j.jmaa.2021.125005 |