Research article Special Issues

Initial value problems should not be associated to fractional model descriptions whatever the derivative definition used

  • Received: 29 May 2021 Accepted: 15 July 2021 Published: 05 August 2021
  • MSC : 26A33, 34A12

  • The paper shows that the Caputo definition of fractional differentiation is problematic if it is used in the definition of a time fractional model and if initial conditions are taken into account. The demonstration is done using simple examples (or counterexamples). The analysis is extended to the Riemann-Liouville and Grünwald-Letnikov definitions. These results thus question the validity of results produced in the field of time fractional model analysis in which initial conditions are involved.

    Citation: Jocelyn SABATIER, Christophe FARGES. Initial value problems should not be associated to fractional model descriptions whatever the derivative definition used[J]. AIMS Mathematics, 2021, 6(10): 11318-11329. doi: 10.3934/math.2021657

    Related Papers:

  • The paper shows that the Caputo definition of fractional differentiation is problematic if it is used in the definition of a time fractional model and if initial conditions are taken into account. The demonstration is done using simple examples (or counterexamples). The analysis is extended to the Riemann-Liouville and Grünwald-Letnikov definitions. These results thus question the validity of results produced in the field of time fractional model analysis in which initial conditions are involved.



    加载中


    [1] C. F. Lorenzo, T. T. Hartley, Initialized fractional calculus, Int. J. Appl. Math. 3 (2000), 249-265.
    [2] C. F. Lorenzo, T. T. Hartley, Initialization in fractional order systems, In: Proceedings of the European Conference On Control ECC, Porto, Portugal, 4-7 September 2001, 1471-1476.
    [3] M. D. Ortigueira, On the initial conditions in continuous-time fractional linear systems, Signal Process, 83 (2003), 2301-2309. doi: 10.1016/S0165-1684(03)00183-X
    [4] M. Fukunaga, N. Shimizu, Role of prehistories in the initial value problems of fractional viscoelastic equations, Non. Dyn. 38 (2004), 207-220.
    [5] J. Sabatier, M. Merveillaut, R. Malti, A. Oustaloup, On a Representation of Fractional Order Systems: Interests for the Initial Condition Problem, In: Proceedings of the 3rd ed IFAC FDA Workshop, Ankara, Turkey, 2008.
    [6] J. Sabatier, M. Merveillaut, R. Malti, A. Oustaloup, How to impose physically coherent initial conditions to a fractional system? Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 1318-1326.
    [7] M. D. Ortigueira, F. Coito, System initial conditions vs derivative initial conditions. Comput. Math. Appl., 59 (2010), 1782-1789.
    [8] J. Sabatier, C. Farges, Comments on the description and initialization of fractional partial differential equations using Riemann-liouville's and caputo's definitions, J. Comput. Appl. Math., 339 (2018), 30-39. doi: 10.1016/j.cam.2018.02.030
    [9] A. M. Balint, S. Balint, Mathematical description of the groundwater flow and that of the impurity spread, which use temporal caputo or Riemann-liouville fractional partial derivatives, is non-objective, Fractal Fract., 4 (2020), 36.
    [10] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, 1993.
    [11] C. Li, D. Qian, Y. Chen, On Riemann-Liouville and Caputo Derivatives, Discrete Dyn. Nat. Soc., 2021 (2011), 1-15.
    [12] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, New York Dover Publications, 1964.
    [13] Z. Bai, S. Zhang, S. Sun, C. Yin, Monotone iterative method for fractional differential equations, Electron. J. Diff. Eq., 2016 (2016), 1-8. doi: 10.1186/s13662-015-0739-5
    [14] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229-248. doi: 10.1006/jmaa.2000.7194
    [15] H. Chena, F. Holland, M. Stynes, An analysis of the Grünwald-Letnikov scheme for initial-value problems with weakly singular solutions, Appl. Numer. Math., 139 (2019), 52-61. doi: 10.1016/j.apnum.2019.01.004
    [16] R. Garrappa, Numerical solution of fractional differential equations: A survey and a software tutorial, Mathematics, 6 (2018), 16-39. doi: 10.3390/math6020016
    [17] E. C. De Oliveira, J. A. Tenreiro Machado, A review of definitions for fractional derivatives and integral, Math. Probl. Eng., 2014 (2014), 1-6.
    [18] J. Sabatier, C. Farges, V. Tartaglione, Some alternative solutions to fractional models for modelling long memory behaviors, Mathematics, 8 (2020), 196-212. doi: 10.3390/math8020196
    [19] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A
    [20] J. Sabatier, Non-singular kernels for modelling power law type long memory behaviours and beyond, Cybern. Syst., 51 (2020), 383-401. doi: 10.1080/01969722.2020.1758470
    [21] M. Stynes, Fractional-order derivatives defined by continuous kernels are too restrictive, Appl. Math. Lett., 85 (2018), 22-26. doi: 10.1016/j.aml.2018.05.013
    [22] J. Sabatier, Fractional-order derivatives defined by continuous kernels: Are they really too restrictive? Fractal Fract., 4 (2020), 40-45.
    [23] J. Sabatier, Power law type long memory behaviors modeled with distributed time delay systems, Fractal Fract., 4 (2019), 1-12. doi: 10.3390/fractalfract4010001
    [24] V. Tartaglione, C. Farges, J. Sabatier, Nonlinear dynamical modeling of adsorption and desorption processes with power-law kinetics: Application to CO2 capture, Phys. Rev. E, 102 (2020), 052102. doi: 10.1103/PhysRevE.102.052102
    [25] J. Sabatier, Beyond the particular case of circuits with geometrically distributed components for approximation of fractional order models: Application to a new class of model for power law type long memory behaviour modelling, J. Adv. Res., 25 (2020), 243-255. doi: 10.1016/j.jare.2020.04.004
    [26] D. Hinrichsen, A. Pritchard, Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness, Texts in Applied Mathematics 48, (2005), Springer.
    [27] J. Sabatier, C. Farges, J. C. Trigeassou, Fractional systems state space description: Some wrong ideas and proposed solutions, J. Vib. Control, 20 (2014), 1076-1084. doi: 10.1177/1077546313481839
    [28] J. Sabatier, Fractional order models are doubly infinite dimensional models and thus of infinite memory: Consequences on initialization and some solutions, Symmetry, 13 (2021), 1099-1112. doi: 10.3390/sym13061099
    [29] S. Patnaik, F. Semperlotti, A generalized fractional-order elastodynamic theory for non-local attenuating media, P. Roy. Soc. A, 476 (2020), 200-214.
    [30] G. Cottone, M. Di Paola, M. Zingales, Elastic waves propagation in 1D fractional non-local continuum, Physica E, 42 (2009), 95-103. doi: 10.1016/j.physe.2009.09.006
    [31] S. Patnaik, S. Sidhardh, F. Semperlotti, Towards a unified approach to nonlocal elasticity via fractional-order mechanics, Int. J.Mech. Sci., 189 (2021), 105992. doi: 10.1016/j.ijmecsci.2020.105992
    [32] T. Jin, S. Gao, H. Xia, H. Ding, Reliability analysis for the fractional-order circuit system subject to the uncertain random fractional-order model with Caputo type, J. Adv. Res., 4 (2021), 8-20.
    [33] T. Jin, X. Yang, Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market, Math. Comput. Simul., 190 (2021), 203-221. doi: 10.1016/j.matcom.2021.05.018
    [34] K. Hosseini, M. Ilie, M. Mirzazadeh, A. Yusuf, T. A. Sulaiman, D. Baleanu, et al. An effective computational method to deal with a time-fractional nonlinear water wave equation in the Caputo sense, Math. Comput. Simul., 187 (2021), 248-260. doi: 10.1016/j.matcom.2021.02.021
    [35] M. Higazy, Y. S. Hamed, Dynamics, circuit implementation and control of new caputo fractional order chaotic 5-dimensions hyperjerk model, Alex. Eng. J., 60 (2021), 4177-4190.
    [36] M. Farman, M. Aslam, A. Akgül, A. Ahmad, Modeling of fractional-order COVID-19 epidemic model with quarantine and social distancing, Math. Methods Appl. Sci., 44 (2021), 9334-9350. doi: 10.1002/mma.7360
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2557) PDF downloads(189) Cited by(7)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog