In this paper we study nonlinear periodic systems driven by the vectorial $ p $-Laplacian with a nonsmooth locally Lipschitz potential function. Using variational methods based on nonsmooth critical point theory, some existence of periodic and subharmonic results are obtained, which improve and extend related works.
Citation: Yan Ning, Daowei Lu, Anmin Mao. Existence and subharmonicity of solutions for nonsmooth $ p $-Laplacian systems[J]. AIMS Mathematics, 2021, 6(10): 10947-10963. doi: 10.3934/math.2021636
In this paper we study nonlinear periodic systems driven by the vectorial $ p $-Laplacian with a nonsmooth locally Lipschitz potential function. Using variational methods based on nonsmooth critical point theory, some existence of periodic and subharmonic results are obtained, which improve and extend related works.
[1] | F. H. Clarke, Optimization and nonsmooth analysis, Classics in Applied Mathematics, Philadephia: Society for Industrial and Applied Mathematics, 1990. |
[2] | J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, New York: Springer-Verlag, 1989. |
[3] | G. Barletta, R. Livrea, N. S. Papageorgiou, A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian, Commun. Pure Appl. Anal., 13 (2014), 1075–1086. doi: 10.3934/cpaa.2014.13.1075 |
[4] | N. Aizmahin, T. Q. An, The existence of periodic solutions of non-autonomous second-order Hamilton systems, Nonliear Anal., 74 (2011), 4862–4867. doi: 10.1016/j.na.2011.04.060 |
[5] | T. Q. An, Multiple periodic solutions of Hamiltonian systems with prescribed energy, J. Differ. Equations, 236 (2007), 116–132. doi: 10.1016/j.jde.2007.01.013 |
[6] | T. Q. An, Subharmonic solutions of Hamiltonian systems and the Maslov-type index theory, J. Math. Anal. Appl., 331 (2007), 701–711. doi: 10.1016/j.jmaa.2006.09.011 |
[7] | L. Gasin'ski, N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear boundary value problems, Mathematical Analysis and Applications, Vol. 8, USA: CRC Press, 2005. |
[8] | S. C. Hu, N. S. Papageorgiou, Positive solutions and multiple solutions for periodic problems driven by scalar $p$-Laplacian, Math. Nachr., 279 (2006), 1321–1334. doi: 10.1002/mana.200310423 |
[9] | S. X. Luan, A. M. Mao, Periodic solutions for a class of non-autonomous Hamiltonian systems, Nonlinear Anal.: Theory Methods Appl., 61 (2005), 1413–1426. doi: 10.1016/j.na.2005.01.108 |
[10] | S. W. Ma, Y. X. Zhang, Existence of infinitely many periodic solutions for ordinary $p$-Laplacian systems, J. Math. Anal. Appl., 351 (2009), 469–479. doi: 10.1016/j.jmaa.2008.10.027 |
[11] | A. M. Mao, S. X. Luan, Periodic solutions of an infinite-dimensional Hamiltonian system, Appl. Math. Comput., 201 (2008), 800–804. |
[12] | Z. Y. Wang, Subharmonic solutions for nonautonomous second-order sublinear Hamiltonian systems with $p$-Laplacian, Electron. J. Differ. Equations, 138 (2011), 1–14. |
[13] | L. Gasin'ski, N. Papageorgiou, On the existence of multiple periodic solutions for equations driven by the $p$-Laplacian and with a nonsmooth potential, Proc. Edinburgh Math. Soc., 46 (2003), 229–249. doi: 10.1017/S0013091502000159 |
[14] | E. H. Papageorgiou, N. S. Papageorgiou, Existence of solutions and of multiple solutions for nonlinear nonsmooth periodic systems, Czech. Math. J., 54 (2004), 347–371. doi: 10.1023/B:CMAJ.0000042374.53530.7e |
[15] | N. S. Papageorgiou, S. R. A. Santos, V. Staicu, Three nontrivial solutions for the $p$-Laplacian with a nonsmooth potential, Nonlinear Anal., 68 (2008), 3812–3827. doi: 10.1016/j.na.2007.04.021 |
[16] | G. Q. Zhang, S. Y. Liu, Multiple periodic solutions for eigenvalue problems with a $p$-Laplacian and nonsmooth potential, Bull. Korean Math. Soc., 48 (2011), 213–221. doi: 10.4134/BKMS.2011.48.1.213 |
[17] | D. Pasca, C. L. Tang, Subharmonic solutions for nonautonomous sublinear second order differential inclusions systems with $p$-Laplacian, Nonlinear Anal., 69 (2008), 1083–1090. doi: 10.1016/j.na.2007.06.019 |
[18] | K. M. Teng, X. Wu, Existence and subharmonicity of solutions for nonlinear nonsmooth periodic systems with a $p$-Laplacian, Nonlinear Anal., 68 (2008), 3742–3756. doi: 10.1016/j.na.2007.04.016 |
[19] | R. Livrea, S. A. Marano, A min-max principle for non-differentiable functions with a weak compactness condition, Commun. Pure Appl. Anal., 8 (2009), 1019–1029. doi: 10.3934/cpaa.2009.8.1019 |
[20] | G. Barletta, S. A. Marano, Some remarks on critical point theory for locally Lipschitz functions, Glasgow Math. J., 45 (2003), 131–141. doi: 10.1017/S0017089502001088 |
[21] | Z. Denkowski, S. Migorski, N. S. Papageorgiou, An introduction to nonlinear analysis: Theory, Springer Science+Business Media, 2003. |
[22] | K. C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), 102–129. doi: 10.1016/0022-247X(81)90095-0 |
[23] | D. Motreanu, P. D. Panagiotopoulos, Minimax theorems and qualitative properties of the solutions of hemivariational inequalities, Nonconvex Optimization and its Applications, Vol. 29, Springer Science+Business Media, 1999. |
[24] | D. Motreanu, V. R$\check{a}$dulescu, Variational and non-variational methods in nonlinear analysis and boundary value problems, Nonconvex Optimization and its Applications, Vol. 67, Springer Science+Business Media, 2003. |
[25] | N. C. Kourogenis, N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear elliptic equations at resonance, Kodai Math. J., 23 (2000), 108–135. |
[26] | F. Papalini, Nonlinear periodic systems with the $p$-Laplacian: Existence and multiplicity results, Abstr. Appl. Anal., 2007 (2007), 80394. |
[27] | L. Z. Chen, Q. H. Zhang, G. Li, Existence results for periodic boundary value problems with convex and locally Lipschitz potentials, Adv. Math., 44 (2015), 421–430. |
[28] | Z. Y. Wang, J. Z. Xiao, On periodic solutions of subquadratic second order non-autonomous Hamiltonian systems, Appl. Math. Lett., 40 (2015), 72–77. doi: 10.1016/j.aml.2014.09.014 |