Research article Special Issues

The third-power moment of the Riesz mean error term of symmetric square $ L $-function

  • Received: 04 February 2021 Accepted: 09 June 2021 Published: 23 June 2021
  • MSC : 11F30, 11N37

  • Let $ f(z) $ be a holomorphic Hecke eigenform of weight $ k $ with respect to the full modular group $ SL(2, Z) $, and let $ \Delta_{\rho}(x; sym^{2}f) $ be the error term of the Riesz mean of the symmetric square $ L $-function $ L(s, sym^{2}f) $. In this paper, using a Voronoï type formula for $ \Delta_{\rho}(x; sym^{2}f) $, we consider the third-power moment of $ \Delta_{\rho}(x; sym^{2}f) $ and derive the asymptotic formula for

    $ \int_{1}^{T}\Delta_{\rho}^{3}(x;sym^{2}f)dx. $

    Citation: Rui Zhang, Xiaofei Yan. The third-power moment of the Riesz mean error term of symmetric square $ L $-function[J]. AIMS Mathematics, 2021, 6(9): 9436-9445. doi: 10.3934/math.2021548

    Related Papers:

  • Let $ f(z) $ be a holomorphic Hecke eigenform of weight $ k $ with respect to the full modular group $ SL(2, Z) $, and let $ \Delta_{\rho}(x; sym^{2}f) $ be the error term of the Riesz mean of the symmetric square $ L $-function $ L(s, sym^{2}f) $. In this paper, using a Voronoï type formula for $ \Delta_{\rho}(x; sym^{2}f) $, we consider the third-power moment of $ \Delta_{\rho}(x; sym^{2}f) $ and derive the asymptotic formula for

    $ \int_{1}^{T}\Delta_{\rho}^{3}(x;sym^{2}f)dx. $



    加载中


    [1] D. Bump, D. Ginzburg, Symmetric square $L$-functions on $ {\rm GL}(r)$, Ann. Math., 136 (1992), 137–205. doi: 10.2307/2946548
    [2] O. Fomenko, The behavior of Riesz means of the Coefficients of a symmetric square $L$-function, J. Math. Sci., 143 (2007), 3174–3181. doi: 10.1007/s10958-007-0201-7
    [3] J. Hafner, On the representation of the summatory functions of a class of arithmetical functions, Springer Berlin Heidelberg, (1981), 148–165.
    [4] X. Han, X. Yan, D. Zhang, On fourier coefficients of the symmetric square $L$-function at piatetski-shapiro prime twins, Mathematics, 9 (2021), 1254. doi: 10.3390/math9111254
    [5] J. Huang, H. Liu, Divisor problems related to Hecke eigenvalues in three dimensions, J. Math., 2021 (2021), 1–12.
    [6] J. Huang, H. Liu, F. Xu, Two-dimensional divisor problems related to symmetric $L$-functions, Symmetry, 13 (2021), 359. doi: 10.3390/sym13020359
    [7] H. Iwaniec, W. Luo, P. Sarnak, Low lying zeros of families of L-functions, Publ. Math. IHES, 91 (2000), 55–131. doi: 10.1007/BF02698741
    [8] Y. J. Jiang, G. S. Lü, X. F. Yan, Mean value theorem connected with Fourier coefficients of Hecke-Maass forms for $SL(m, \mathbb{Z})$, Math. Proc. Cambridge Philos. Soc., 161 (2016), 339–356. doi: 10.1017/S030500411600027X
    [9] H. Liu, S. Li, D. Zhang, Power moments of automorphic $L$-function attached to Maass forms, Int. J. Number Theory, 12 (2016), 427–443. doi: 10.1142/S1793042116500251
    [10] H. Lao, On comparing Hecke eigenvalues of cusp forms, Acta Math. Hungar., 160 (2020), 58–71. doi: 10.1007/s10474-019-00996-5
    [11] H. Lao, On the fourth moment of coefficients of symmetric square $L$-function, Chin. Ann. Math. Ser. B, 33 (2012), 877–888. doi: 10.1007/s11401-012-0746-8
    [12] H. Lao, M. McKee, Y. Ye, Asymptotics for cuspidal representations by functoriality from $GL(2)$, J. Number Theory, 164 (2016), 323–342. doi: 10.1016/j.jnt.2016.01.008
    [13] H. Liu, Mean value estimates of the coefficients of product $L$-functions, Acta Math. Hungar., 156 (2018), 102–111. doi: 10.1007/s10474-018-0839-2
    [14] H. Liu, R. Zhang, Some problems involving Hecke eigenvalues, Acta Math. Hungar., 159 (2019), 287–298. doi: 10.1007/s10474-019-00913-w
    [15] K. Liu, H. Wang, Higher power moments of the Riesz mean error term of symmetric square $L$-function, J. Number Theory, 131 (2011), 2247–2261. doi: 10.1016/j.jnt.2011.05.015
    [16] P. Song, W. Zhai, D. Zhang, Power moments of Hecke eigenvalues for congruence group, J. Number Theory, 198 (2019), 139–158. doi: 10.1016/j.jnt.2018.10.006
    [17] K. Tsang, Higher-power moments of $\Delta(x)$, $E(t)$ and $P(x)$, Proc. London Math. Soc., 65 (1992), 65–84.
    [18] Y. Tanigawa, D. Zhang, W. Zhai, On the Rankin-Selberg problem: Higher power moments of the Riesz mean error term, Sci. China Ser. A, 51 (2008), 148–160. doi: 10.1007/s11425-007-0130-4
    [19] H. Wang, On the Riesz means of coefficients of $m$th symmetric power $L$-functions, Lith. Math. J., 50 (2010), 474–488. doi: 10.1007/s10986-010-9100-6
    [20] Y. Ye, D. Zhang, Zero density for automorphic $L$-functions, J. Number Theory, 133 (2013), 3877–3901. doi: 10.1016/j.jnt.2013.05.012
    [21] W. Zhai, On higher-power moments of $\Delta(x)$ (II), Acta Arith., 114 (2004), 35–54. doi: 10.4064/aa114-1-3
    [22] D. Zhang, Y. Lau, Y. Wang, Remark on the paper "On products of Fourier coefficients of cusp forms", Arch. Math., 108 (2017), 263–269. doi: 10.1007/s00013-016-0996-x
    [23] D. Zhang, Y. Wang, Higher-power moments of Fourier coefficients of holomorphic cusp forms for the congruence subgroup $\Gamma_0(N)$, Ramanujan J., 47 (2018), 685–700. doi: 10.1007/s11139-018-0051-6
    [24] D. Zhang, Y. Wang, Ternary quadratic form with prime variables attached to Fourier coefficients of primitive holomorphic cusp form, J. Number Theory, 176 (2017), 211–225. doi: 10.1016/j.jnt.2016.12.018
    [25] D. Zhang, W. Zhai, On the distribution of Hecke eigenvalues over Piatetski-Shapiro prime twins, Acta Math. Sin. (Engl. Ser.), 2021. DOI: 10.1007/s10114-021-0174-3.
    [26] R. Zhang, X. Han, D. Zhang, Power moments of the Riesz mean error term of symmetric square $L$-function in short intervals, Symmetry, 12 (2020), 2036. doi: 10.3390/sym12122036
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2361) PDF downloads(132) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog