Let $ f(z) $ be a holomorphic Hecke eigenform of weight $ k $ with respect to the full modular group $ SL(2, Z) $, and let $ \Delta_{\rho}(x; sym^{2}f) $ be the error term of the Riesz mean of the symmetric square $ L $-function $ L(s, sym^{2}f) $. In this paper, using a Voronoï type formula for $ \Delta_{\rho}(x; sym^{2}f) $, we consider the third-power moment of $ \Delta_{\rho}(x; sym^{2}f) $ and derive the asymptotic formula for
$ \int_{1}^{T}\Delta_{\rho}^{3}(x;sym^{2}f)dx. $
Citation: Rui Zhang, Xiaofei Yan. The third-power moment of the Riesz mean error term of symmetric square $ L $-function[J]. AIMS Mathematics, 2021, 6(9): 9436-9445. doi: 10.3934/math.2021548
Let $ f(z) $ be a holomorphic Hecke eigenform of weight $ k $ with respect to the full modular group $ SL(2, Z) $, and let $ \Delta_{\rho}(x; sym^{2}f) $ be the error term of the Riesz mean of the symmetric square $ L $-function $ L(s, sym^{2}f) $. In this paper, using a Voronoï type formula for $ \Delta_{\rho}(x; sym^{2}f) $, we consider the third-power moment of $ \Delta_{\rho}(x; sym^{2}f) $ and derive the asymptotic formula for
$ \int_{1}^{T}\Delta_{\rho}^{3}(x;sym^{2}f)dx. $
[1] | D. Bump, D. Ginzburg, Symmetric square $L$-functions on $ {\rm GL}(r)$, Ann. Math., 136 (1992), 137–205. doi: 10.2307/2946548 |
[2] | O. Fomenko, The behavior of Riesz means of the Coefficients of a symmetric square $L$-function, J. Math. Sci., 143 (2007), 3174–3181. doi: 10.1007/s10958-007-0201-7 |
[3] | J. Hafner, On the representation of the summatory functions of a class of arithmetical functions, Springer Berlin Heidelberg, (1981), 148–165. |
[4] | X. Han, X. Yan, D. Zhang, On fourier coefficients of the symmetric square $L$-function at piatetski-shapiro prime twins, Mathematics, 9 (2021), 1254. doi: 10.3390/math9111254 |
[5] | J. Huang, H. Liu, Divisor problems related to Hecke eigenvalues in three dimensions, J. Math., 2021 (2021), 1–12. |
[6] | J. Huang, H. Liu, F. Xu, Two-dimensional divisor problems related to symmetric $L$-functions, Symmetry, 13 (2021), 359. doi: 10.3390/sym13020359 |
[7] | H. Iwaniec, W. Luo, P. Sarnak, Low lying zeros of families of L-functions, Publ. Math. IHES, 91 (2000), 55–131. doi: 10.1007/BF02698741 |
[8] | Y. J. Jiang, G. S. Lü, X. F. Yan, Mean value theorem connected with Fourier coefficients of Hecke-Maass forms for $SL(m, \mathbb{Z})$, Math. Proc. Cambridge Philos. Soc., 161 (2016), 339–356. doi: 10.1017/S030500411600027X |
[9] | H. Liu, S. Li, D. Zhang, Power moments of automorphic $L$-function attached to Maass forms, Int. J. Number Theory, 12 (2016), 427–443. doi: 10.1142/S1793042116500251 |
[10] | H. Lao, On comparing Hecke eigenvalues of cusp forms, Acta Math. Hungar., 160 (2020), 58–71. doi: 10.1007/s10474-019-00996-5 |
[11] | H. Lao, On the fourth moment of coefficients of symmetric square $L$-function, Chin. Ann. Math. Ser. B, 33 (2012), 877–888. doi: 10.1007/s11401-012-0746-8 |
[12] | H. Lao, M. McKee, Y. Ye, Asymptotics for cuspidal representations by functoriality from $GL(2)$, J. Number Theory, 164 (2016), 323–342. doi: 10.1016/j.jnt.2016.01.008 |
[13] | H. Liu, Mean value estimates of the coefficients of product $L$-functions, Acta Math. Hungar., 156 (2018), 102–111. doi: 10.1007/s10474-018-0839-2 |
[14] | H. Liu, R. Zhang, Some problems involving Hecke eigenvalues, Acta Math. Hungar., 159 (2019), 287–298. doi: 10.1007/s10474-019-00913-w |
[15] | K. Liu, H. Wang, Higher power moments of the Riesz mean error term of symmetric square $L$-function, J. Number Theory, 131 (2011), 2247–2261. doi: 10.1016/j.jnt.2011.05.015 |
[16] | P. Song, W. Zhai, D. Zhang, Power moments of Hecke eigenvalues for congruence group, J. Number Theory, 198 (2019), 139–158. doi: 10.1016/j.jnt.2018.10.006 |
[17] | K. Tsang, Higher-power moments of $\Delta(x)$, $E(t)$ and $P(x)$, Proc. London Math. Soc., 65 (1992), 65–84. |
[18] | Y. Tanigawa, D. Zhang, W. Zhai, On the Rankin-Selberg problem: Higher power moments of the Riesz mean error term, Sci. China Ser. A, 51 (2008), 148–160. doi: 10.1007/s11425-007-0130-4 |
[19] | H. Wang, On the Riesz means of coefficients of $m$th symmetric power $L$-functions, Lith. Math. J., 50 (2010), 474–488. doi: 10.1007/s10986-010-9100-6 |
[20] | Y. Ye, D. Zhang, Zero density for automorphic $L$-functions, J. Number Theory, 133 (2013), 3877–3901. doi: 10.1016/j.jnt.2013.05.012 |
[21] | W. Zhai, On higher-power moments of $\Delta(x)$ (II), Acta Arith., 114 (2004), 35–54. doi: 10.4064/aa114-1-3 |
[22] | D. Zhang, Y. Lau, Y. Wang, Remark on the paper "On products of Fourier coefficients of cusp forms", Arch. Math., 108 (2017), 263–269. doi: 10.1007/s00013-016-0996-x |
[23] | D. Zhang, Y. Wang, Higher-power moments of Fourier coefficients of holomorphic cusp forms for the congruence subgroup $\Gamma_0(N)$, Ramanujan J., 47 (2018), 685–700. doi: 10.1007/s11139-018-0051-6 |
[24] | D. Zhang, Y. Wang, Ternary quadratic form with prime variables attached to Fourier coefficients of primitive holomorphic cusp form, J. Number Theory, 176 (2017), 211–225. doi: 10.1016/j.jnt.2016.12.018 |
[25] | D. Zhang, W. Zhai, On the distribution of Hecke eigenvalues over Piatetski-Shapiro prime twins, Acta Math. Sin. (Engl. Ser.), 2021. DOI: 10.1007/s10114-021-0174-3. |
[26] | R. Zhang, X. Han, D. Zhang, Power moments of the Riesz mean error term of symmetric square $L$-function in short intervals, Symmetry, 12 (2020), 2036. doi: 10.3390/sym12122036 |