Research article

Finite-time anti-synchronization for delayed inertial neural networks via the fractional and polynomial controllers of time variable

  • Received: 15 January 2021 Accepted: 25 April 2021 Published: 25 May 2021
  • MSC : 34K24

  • This paper focuses on the finite-time anti-synchronization for a class of delayed master-slave inertial neural networks. By means of using the property of quadratic inequality of one variable and designing the fractional and polynomial controllers of time variable, two sufficient conditions to assure the finite-time anti-synchronization for the master-slave delayed inertial neural networks are established. Our controllers designed related to time variable t and the study method on the finite-time anti-synchronization are different from these in the existing papers.

    Citation: Ailing Li, Xinlu Ye. Finite-time anti-synchronization for delayed inertial neural networks via the fractional and polynomial controllers of time variable[J]. AIMS Mathematics, 2021, 6(8): 8173-8190. doi: 10.3934/math.2021473

    Related Papers:

  • This paper focuses on the finite-time anti-synchronization for a class of delayed master-slave inertial neural networks. By means of using the property of quadratic inequality of one variable and designing the fractional and polynomial controllers of time variable, two sufficient conditions to assure the finite-time anti-synchronization for the master-slave delayed inertial neural networks are established. Our controllers designed related to time variable t and the study method on the finite-time anti-synchronization are different from these in the existing papers.



    加载中


    [1] K. L. Babcock, R. M. Westervelt, Stability and dynamics of simple electronic neural networks with added inertia, Physica D, 23 (1986), 464–469. doi: 10.1016/0167-2789(86)90152-1
    [2] S. P. Wen, H. Q. Wei, Z. G. Zeng, T. W. Huang, Memristive fully convolutional network: an accurate hardware image-segmentor in deep learning, IEEE Trans. Emerg. Topics Comput. Intell., 2 (2018), 324–334. doi: 10.1109/TETCI.2018.2829911
    [3] D. E. Angelaki, M. J. Correia, Models of membrane resonance in pigeon semicircular canal type II hair cells, Biol. Cybern., 65 (1991), 1–10. doi: 10.1007/BF00197284
    [4] J. Ashmore, D. Attwell, Models for electrical tuning in hair cells, Proc. R. Soc. Lond. Ser. B, 226 (1985), 325–344. doi: 10.1098/rspb.1985.0098
    [5] M. Ospeck, M. V. Egufluz, M. O. Magnasco, Evidence of a Hopf bifurcation in frog hair cells, Biophys J., 80 (2001), 2597–2607. doi: 10.1016/S0006-3495(01)76230-3
    [6] D. W. Wheeler, W. C. Schieve, Stability and chaos in an inertial two-neuron system, Physica D, 105 (1997), 267–284. doi: 10.1016/S0167-2789(97)00008-0
    [7] Z. Q. Zhang, Z. Y. Quan, Global exponential stability via inequality technique for inertial BAM neural networks with time delays, Neurocomputing, 151 (2015), 1316–1326. doi: 10.1016/j.neucom.2014.10.072
    [8] H. Y. Liao, Z. Q. Zhang, L. Ren, W. L. Peng, Global asymptotic stability of periodic solutions for inertial delayed BAM neural networks via novel computing method of degree and inequality techniques, Chaos Soliton. Fract., 104 (2017), 785–797. doi: 10.1016/j.chaos.2017.09.035
    [9] S. H. Yu, Z. Q. Zhang, New global exponential stability conditions for inertial Cohen-Grossberg neural networks with time delays, Neurocomputing, 151 (2015), 1446–1454. doi: 10.1016/j.neucom.2014.10.043
    [10] Z. Q. Zhang, L. Ren, New sufficient conditions on global asymptotic synchronization of inertial delayed neural networks by using integrating inequality techniques, Nonlinear Dynam., 95 (2019), 905–917. doi: 10.1007/s11071-018-4603-5
    [11] L. Y. Duan, J. G. Jian, B. X. Wang, Global exponential dissipativity of neutral-type BAM inertial neural networks with mixed time-varying delays, Neurocomputing, 378 (2020), 399–412. doi: 10.1016/j.neucom.2019.10.082
    [12] Q. Tang, J. G. Jian, Global exponential dissipativity of neutral-type BAM inertial neural networks with mixed time-varying delays, Neurocomputing, 338 (2019), 181–190. doi: 10.1016/j.neucom.2019.01.096
    [13] C. X. Huang, L. S. Yang, B. W. Liu, New results on periodicity of non-autonomous inertial neural networks involving non-reduced order method, Neural Process. Lett., 50 (2019), 595–606. doi: 10.1007/s11063-019-10055-3
    [14] C. Aouiti, E. A. Assali, I. B. Gharbia, Y. E. Foutayeni, Existence and exponential stability of piecewise pseudo almost periodic solution of neutral-type inertial neural networks with mixed delay and impulsive perturbations, Neurocomputing, 357 (2019), 292–309. doi: 10.1016/j.neucom.2019.04.077
    [15] M. S. Zhang, D. S. Wang, Robust dissipativity analysis for delayed memristor-based inertial neural network, Neurocomputing, 366 (2019), 340–351. doi: 10.1016/j.neucom.2019.08.004
    [16] L. F. Hua, H. Zhu, K. B. Shi, S. M. Zhong, Y. Q. Tang, Y. J. Liu, Novel Finite-Time Reliable Control Design for Memristor-Based Inertial Neural Networks With Mixed Time-Varying Delays, IEEE T. Circuits I, 68 (2021), 1599–1609.
    [17] L. F. Hua, S. M. Zhong, K. B. Shi, X. J. Zhang, Further results on finite-time synchronization of delayed inertial memristive neural networks via a novel analysis method, Neural Netw., 127 (2020), 47–57. doi: 10.1016/j.neunet.2020.04.009
    [18] L. L. Wang, T. P. Chen, Finite-time anti-synchronization of neural networks with time-varying delays, Neurocomputing, 275 (2018), 1595–1600. doi: 10.1016/j.neucom.2017.09.097
    [19] Z. Q. Zhang, T. Zheng, S. H. Yu, Finite-time anti-synchronization of neural networks with time-varying delays via inequality skills, Neurocomputing, 356 (2019), 60–68. doi: 10.1016/j.neucom.2019.05.012
    [20] X. W. Liu, Z. H. Li, Finite time anti-synchronization of complex-valued neural networks with bounded asynchronous time-varying delays, Neurocomputing, 387 (2020), 129–138. doi: 10.1016/j.neucom.2020.01.035
    [21] M. M. Yuan, W. P. Wang, X. Luo, L. L. Liu, W. B. Zhao, Finite-time anti-synchronization of memristive stochastic BAM neural networks with probabilistic time-varying delays, Chaos Soliton. Fract., 13 (2018), 244–260.
    [22] W. P. Wang, L. X. Li, H. P. Peng, J. G. Kurths, J. H. Xiao, Y. X. Yang, Finite-time anti-synchronization control of memristive neural networks with stochastic perturbations, Neural Process. Lett., 43 (2016), 49–63. doi: 10.1007/s11063-014-9401-6
    [23] X. Sui, Y. Q. Yang, F. Wang, L. Z. Zhao, Finite-time anti-synchronization of time-varying delayed neural networks via feedback control with intermittent adjustment, Adv. Differ. Equ., 2017 (2017), 1–16. doi: 10.1186/s13662-016-1057-2
    [24] J. Hou, Y. L. Huang, E. F. Yang, Finite-time anti-synchronization of multi-weighted coupled neural networks with and without coupled delays, Neural Process. Lett., 50 (2019), 2871–2898. doi: 10.1007/s11063-019-10069-x
    [25] Z. Q. Zhang, A. L. Li, S. H. Yu, Finite-time synchronization for delayed complex-valued neural networks via integrating inequality method, Neurocomputing, 318 (2018), 248–260. doi: 10.1016/j.neucom.2018.08.063
    [26] Z. Q. Zhang, J. D. Cao, Novel finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method, IEEE T. Neur. Net. Lear., 30 (2019), 1476–1485. doi: 10.1109/TNNLS.2018.2868800
    [27] Z. Q. Zhang, M. Chen, A. L. Li, Further study on finite-time synchronization for delayed inertial neural networks via inequality skills, Neurocomputing, 373 (2020), 15–23. doi: 10.1016/j.neucom.2019.09.034
    [28] J. G. Jian, L. Y. Duan, Finite-time synchronization for fuzzy neutral-type inertial neural networks with time-varying coefficients and proportional delays, Fuzzy Set. Syst., 381 (2020), 51–67. doi: 10.1016/j.fss.2019.04.004
    [29] A. Abdurahman, H, J, Jiang, Z. D. Teng, Finite-time synchronization for fuzzy cellular neural networks with time-varying delays, Fuzzy Set. Syst., 297 (2016), 96–111. doi: 10.1016/j.fss.2015.07.009
    [30] X. Cai, J. Wang, S. M. Zhong, K. B. Shi, Y. Q. Tang, Fuzzy quantized sampled-data control for extended dissipative analysis of T-S fuzzy system and its application to WPGSs, J. Franklin Inst., 358 (2021), 1350–1375. doi: 10.1016/j.jfranklin.2020.12.002
    [31] C. Zhao, S. M. Zhong, Q. S. Zhong, K. B. Shi, Synchronization of Markovian complex networks with input mode delay and Markovian directed communication via distributed dynamic event-triggered control, Nonlinear Anal. Hybri., 36 (2020), 100883. doi: 10.1016/j.nahs.2020.100883
    [32] X. Cai, S. M. Zhong, J. Wang, K. B. Shi, Robust H control for uncertain delayed T-S fuzzy systems with stochastic packet dropouts, Appl. Math. Comput., 385 (2020), 125432.
    [33] K. B. Shi, J. Wang, S. M. Zhong, Y. Y. Tang, J. Cheng, Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control, Fuzzy Set. Syst., 394 (2020), 40–64. doi: 10.1016/j.fss.2019.09.001
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2461) PDF downloads(128) Cited by(7)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog