Research article

Modulational instability, multiple Exp-function method, SIVP, solitary and cross-kink solutions for the generalized KP equation

  • Received: 03 February 2021 Accepted: 25 April 2021 Published: 08 May 2021
  • MSC : 35A20, 35A24, 35A25, 35B10, 70K50

  • The multiple Exp-function method is employed for seeking the multiple soliton solutions to the generalized (3+1)-dimensional Kadomtsev-Petviashvili (gKP) equation, where contains one-wave, two-wave, and triple-wave solutions. The periodic wave including (exponential, $ \cosh $ hyperbolic, and $ \cos $ periodic), cross-kink containing (exponential, $ \sinh $ hyperbolic, and $ \sin $ periodic), and solitary containing (exponential, $ \tanh $ hyperbolic, and $ \tan $ periodic) wave solutions are obtained. In continuing, the modulation instability is engaged to discuss the stability of obtained solutions. Also, the semi-inverse variational principle is applied for the gKP equation with four major cases. The physical phenomena of these received multiple soliton solutions are analyzed and demonstrated in figures by choosing the specific parameters. By means of symbolic computation these analytical solutions and corresponding rogue waves are obtained with the help of Maple software. Via various three-dimensional, curve, and density charts, dynamical characteristics of these waves are exhibited.

    Citation: Junjie Li, Gurpreet Singh, Onur Alp İlhan, Jalil Manafian, Yusif S. Gasimov. Modulational instability, multiple Exp-function method, SIVP, solitary and cross-kink solutions for the generalized KP equation[J]. AIMS Mathematics, 2021, 6(7): 7555-7584. doi: 10.3934/math.2021441

    Related Papers:

  • The multiple Exp-function method is employed for seeking the multiple soliton solutions to the generalized (3+1)-dimensional Kadomtsev-Petviashvili (gKP) equation, where contains one-wave, two-wave, and triple-wave solutions. The periodic wave including (exponential, $ \cosh $ hyperbolic, and $ \cos $ periodic), cross-kink containing (exponential, $ \sinh $ hyperbolic, and $ \sin $ periodic), and solitary containing (exponential, $ \tanh $ hyperbolic, and $ \tan $ periodic) wave solutions are obtained. In continuing, the modulation instability is engaged to discuss the stability of obtained solutions. Also, the semi-inverse variational principle is applied for the gKP equation with four major cases. The physical phenomena of these received multiple soliton solutions are analyzed and demonstrated in figures by choosing the specific parameters. By means of symbolic computation these analytical solutions and corresponding rogue waves are obtained with the help of Maple software. Via various three-dimensional, curve, and density charts, dynamical characteristics of these waves are exhibited.



    加载中


    [1] S. T. R. Rizvi, K. Ali, M. Ahmad, Optical solitons for Biswas-Milovic equation by new extended auxiliary equation method, Optik, 204 (2020), 164181. doi: 10.1016/j.ijleo.2020.164181
    [2] B. Nawaz, K. Ali, S. O. Abbas, S. T. R. Rizvi, Q. Zhou, Optical solitons for non-Kerr law nonlinear Schrödinger equation with third and fourth order dispersions, Chinese J. Phys., 60 (2019), 133-140. doi: 10.1016/j.cjph.2019.05.014
    [3] M. Dehghan, J. M. Heris, A. Saadatmandi, Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, Int. J. Num. Meth. Heat, 21 (2011), 736-753. doi: 10.1108/09615531111148482
    [4] M. Dehghan, J. Manafian, A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Num. Meth. Part. D. E., 26 (2010), 448-479. doi: 10.1002/num.20460
    [5] M. Dehghan, J. Manafian, The solution of the variable coefficients fourth-order parabolic partial differential equations by homotopy perturbation method, Z. Naturforsch. A, 64 (2009), 420-430. doi: 10.1515/zna-2009-7-803
    [6] J. Manafian, S. Heidari, Periodic and singular kink solutions of the Hamiltonian amplitude equation, Adv. Math. Mod. Appl., 4 (2019), 134-149.
    [7] A. R. Seadawy, J. Manafian, New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod, Results Phys., 8 (2018), 1158-1167. doi: 10.1016/j.rinp.2018.01.062
    [8] J. Manafian, Novel solitary wave solutions for the (3+1)-dimensional extended Jimbo-Miwa equations, Comput. Math. Appl., 76 (2018), 1246-1260. doi: 10.1016/j.camwa.2018.06.018
    [9] W. X. Ma, Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Diff. Eq., 264 (2018), 2633-2659. doi: 10.1016/j.jde.2017.10.033
    [10] W. X. Ma, A search for lump solutions to a combined fourthorder nonlinear PDE in (2+1)-dimensions, J. Appl. Anal. Comput., 9 (2019), 1319-1332.
    [11] W. X. Ma, Interaction solutions to Hirota-Satsuma-Ito equation in (2+1)-dimensions, Front. Math. China, 14 (2019), 619-629. doi: 10.1007/s11464-019-0771-y
    [12] J. Manafian, B. Mohammadi-Ivatlo, M. Abapour, Lump-type solutions and interaction phenomenon to the (2+1)-dimensional Breaking Soliton equation, Appl. Math. Comput., 356 (2019), 13-41.
    [13] O. A. Ilhan, J. Manafian, Periodic type and periodic cross-kink wave solutions to the (2+1)-dimensional breaking soliton equation arising in fluid dynamics, Mod. Phys. Lett. B, 33 (2019), 1950277.
    [14] W. X. Ma, Y. Zhou, R. Dougherty, Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations, Int. J. Mod. Phys. B, 30 (2016), 1640018. doi: 10.1142/S021797921640018X
    [15] J. Q. Lü, S. Bilige, X. Q. Gao, Y. X. Bai, R. F. Zhang, Abundant lump solution and interaction phenomenon to Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equation, J. Appl. Math. Phys., 6 (2018), 1733-1747. doi: 10.4236/jamp.2018.68148
    [16] J. H. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B, 20 (2006), 1141-1199. doi: 10.1142/S0217979206033796
    [17] J. H. He, A modified Li-He's variational principle for plasma, Int. J. Numer. Meth. Heat, 31 (2021), 1369-1372.
    [18] S. S. Chen, B. Tian, L. Liu, Y. Q. Yuan, C. R. Zhang, Conservation laws, binary Darboux transformations and solitons for a higher-order nonlinear Schrödinger system, Chaos Solitons Frac., 118 (2019), 337-346. doi: 10.1016/j.chaos.2018.11.010
    [19] X. X. Du, B. Tian, X. Y. Wu, H. M. Yin, C. R. Zhang, Lie group analysis, analytic solutions and conservation laws of the (3+1)-dimensional Zakharov-Kuznetsov-Burgers equation in a collisionless magnetized electronpositron- ion plasma, Eur. Phys. J. Plus, 133 (2018), 378. doi: 10.1140/epjp/i2018-12239-y
    [20] S. S. Ray, On conservation laws by Lie symmetry analysis for (2+1)-dimensional Bogoyavlensky-Konopelchenko equation in wave propagation, Comput. Math. Appl., 74 (2017), 1158-1165. doi: 10.1016/j.camwa.2017.06.007
    [21] X. H. Zhao, B. Tian, X. Y. Xie, X. Y. Wu, Y. Sun, Y. J. Guo, Solitons, Bäcklund transformation and Lax pair for a (2+1)-dimensional Davey-Stewartson system on surface waves of finite depth, Wave Random Complex, 28 (2018), 356-366. doi: 10.1080/17455030.2017.1348645
    [22] J. Manafian, An optimal galerkin-homotopy asymptotic method applied to the nonlinear second-order bvps, Proc. Inst. Math. Mech., 47 (2021), 156-182.
    [23] Q. L. Zha, A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems, Comput. Math. Appl., 75 (2018), 3331-3342. doi: 10.1016/j.camwa.2018.02.001
    [24] W. H. Liu, Y. F. Zhang, Multiple rogue wave solutions for a (3+1)-dimensional Hirota bilinear equation, Appl. Math. Lett., 98 (2019), 184-190. doi: 10.1016/j.aml.2019.05.047
    [25] H. M. Baskonus, H. Bulut, Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics, Wave Random Complex, 26 (2016), 189-196. doi: 10.1080/17455030.2015.1132860
    [26] M. Inc, A. I. Aliyu, A. Yusuf, D. Baleanu, Optical solitary waves, conservation laws and modulation instabilty analysis to nonlinear Schrödinger's equations in compressional dispersive Alfvan waves, Optik, 155 (2018), 257-266. doi: 10.1016/j.ijleo.2017.10.109
    [27] B. B. Kadomtsev, V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Dokl. Akad. Nauk SSSR, 192 (1970), 753-756.
    [28] A. M. Wazwaz, Multi-front waves for extended form of modified Kadomtsev-Petviashvili equations, Appl. Mech. Engl. Ed. 32 (2011), 875-880.
    [29] T. Xiao, Y. B. Zeng, A new constrained mKP hierarchy and the generalized Darboux transformation for the mKP equation with self-consistent sources, Phys. A, 353 (2005), 38-60. doi: 10.1016/j.physa.2005.02.043
    [30] W. X. Ma, T. C. Xia, Pfaffianized systems for a generalized Kadomtsev-Petviashvili equation, Phys. Scr., 87 (2013), 055003. doi: 10.1088/0031-8949/87/05/055003
    [31] W. X. Ma, Z. N. Zhu, Solving the (3+1)-dimensional generalized KP and BKP equations by the multi expfunction algorithm, Appl. Math. Comput., 218 (2012), 11871-11879.
    [32] R. Hirota, The Direct Method in Soliton Theory, Cambridge: Cambridge University Press, 2004,198.
    [33] A. M. Wazwaz, S. A. El-Tantawy, A new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation, Nonlinear Dyn., 84 (2016), 1107-1112. doi: 10.1007/s11071-015-2555-6
    [34] X. F. Cao, Lump Solutions to the (3+1)-Dimensional Generalized B-Type Kadomtsev-Petviashvili Equation, Adv. Math. Phys., 2018 (2018), 7843498.
    [35] X. Guan, W. J. Liu, Q. Zhou, A. Biswas, Some lump solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Appl. Math. Comput., 366 (2020), 124757.
    [36] J. G. Liu, Y. He, Abundant lump and lump-kink solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation, Nonlinear Dyn., 92 (2018), 1103-1108. doi: 10.1007/s11071-018-4111-7
    [37] J. Manafian, M. Lakestani, Interaction among a lump, periodic waves, and kink solutions to the fractional generalized CBS-BK equation, Math. Meth. Appl. Sci., 44 (2021), 1052-1070. doi: 10.1002/mma.6811
    [38] J. Manafian, B. M. Ivatloo, M. Abapour, Breather wave, periodic, and cross-kink solutions to the generalized Bogoyavlensky-Konopelchenko equation, Math. Meth. Appl. Sci., 43 (2020), 1753-1774. doi: 10.1002/mma.6000
    [39] J. Manafian, O. A. Ilhan, L. Avazpour, A. Alizadeh, N-lump and interaction solutions of localized waves to the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation arise from a model for an incompressible fluid, Math. Meth. Appl. Sci., 43 (2020), 9904-9927. doi: 10.1002/mma.6665
    [40] X. Y. Gao, Mathematical view with observational/experimental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas, Appl. Math. Lett., 91 (2019), 165-172. doi: 10.1016/j.aml.2018.11.020
    [41] K. S. Nisar, O. A. Ilhan, S. T. Abdulazeez, J. Manafian, S. A. Mohammed, M.S. Osman, Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method, Results Phys., 21 (2021), 103769. doi: 10.1016/j.rinp.2020.103769
    [42] J. Zhao, J. Manafian, N. E. Zaya, S. A. Mohammed, Multiple rogue wave, lump-periodic, lump-soliton, and interaction between k-lump and k-stripe soliton solutions for the generalized KP equation, Math. Meth. Appl. Sci., 44 (2021), 5079-5098. doi: 10.1002/mma.7093
    [43] C. Q. Dai, Y. Fan, N. Zhang, Re-observation on localized waves constructed by variable separation solutions of (1+1)-dimensional coupled integrable dispersionless equations via the projective Riccati equation method, Appl. Math. Lett., 96 (2019), 20-26. doi: 10.1016/j.aml.2019.04.009
    [44] H. Q. Sun, A. H. Chen, Lump and lump-kink solutions of the (3+1)-dimensional Jimbo-Miwa and two extended Jimbo-Miwa equations, Appl. Math. Lett., 68 (2017), 55-61. doi: 10.1016/j.aml.2016.12.008
    [45] B. Q. Li, Y. L. Ma, Multiple-lump waves for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation arising from incompressible fluid, Comput. Math. Appl., 76 (2018), 204-214. doi: 10.1016/j.camwa.2018.04.015
    [46] Y. Zhang, H. H. Dong, X. E. Zhang, H. W. Yang, Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation, Comput. Math. Appl., 73 (2017), 246-252. doi: 10.1016/j.camwa.2016.11.009
    [47] M. Hamid, M. Usman, T. Zubair, R. U. Haq, A. Shafee, An efficient analysis for N-soliton, Lump and lump-kink solutions of time-fractional (2+1)-Kadomtsev-Petviashvili equation, Phys. A, 528 (2019), 121320. doi: 10.1016/j.physa.2019.121320
    [48] A. R. Adem, The generalized (1+1)-dimensional and (2+1)-dimensional Ito equations: Multiple exp-function algorithm and multiple wave solutions, Comput. Math. Appl., 71 (2016), 1248-1258. doi: 10.1016/j.camwa.2016.02.005
    [49] Y. Long, Y. H. He, S. L. Li, Multiple soliton solutions for a new generalization of the associated camassa-holm equation by exp-function method, Math. Prob. Eng., 2014 (2014), 418793.
    [50] J. G. Liu, L. Zhou, Y. He, Multiple soliton solutions for the new (2+1)-dimensional Korteweg-de Vries equation by multiple exp-function method, Appl. Math. Lett., 80 (2018), 71-78. doi: 10.1016/j.aml.2018.01.010
    [51] J. P. Yu, J. Jing, Y. L. Sun, S. P. Wu, (n+1)-Dimensional reduced differential transform method for solving partial differential equations, Appl. Math. Comput., 273 (2016), 697-705.
    [52] J. P. Yu, Y. L. Sun, Study of lump solutions to dimensionally reduced generalized KP equations, Nonlinear Dyn., 87 (2017), 2755-2763. doi: 10.1007/s11071-016-3225-z
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2844) PDF downloads(124) Cited by(3)

Article outline

Figures and Tables

Figures(14)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog