Research article

Some new inequalities for the generalized Fox-Wright functions

  • Received: 03 December 2020 Accepted: 08 March 2021 Published: 15 March 2021
  • MSC : 33B15, 33B20, 15A39, 35A23

  • In this article, we establish the inequalities of the Redheffer-type involving generalized Fox-Wright function. Furthermore, as a consequence, new Redheffer-type inequalities for generalized hypergeometric functions and the four-parametric generalized Mittag-Leffler functions are also discussed by using the suitable values of exponents in generalized inequalities.

    Citation: Saima Naheed, Shahid Mubeen, Gauhar Rahman, M. R. Alharthi, Kottakkaran Sooppy Nisar. Some new inequalities for the generalized Fox-Wright functions[J]. AIMS Mathematics, 2021, 6(6): 5452-5464. doi: 10.3934/math.2021322

    Related Papers:

  • In this article, we establish the inequalities of the Redheffer-type involving generalized Fox-Wright function. Furthermore, as a consequence, new Redheffer-type inequalities for generalized hypergeometric functions and the four-parametric generalized Mittag-Leffler functions are also discussed by using the suitable values of exponents in generalized inequalities.



    加载中


    [1] S. Araci, G. Rahman, A. Ghaffar, Azeema, K. S. Nisar, Fractional calculus of extended Mittag-Leffler function and its applications to statistical distribution, Mathematics, 7 (2019), 248. doi: 10.3390/math7030248
    [2] M. A. Chaudhry, S. M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., 55 (1994), 99–123. doi: 10.1016/0377-0427(94)90187-2
    [3] M. A. Chaudhry, S. M. Zubair, On the decomposition of generalized incomplete gamma functions with applications to Fourier transforms, J. Comput. Appl. Math., 59 (1995), 253–284. doi: 10.1016/0377-0427(94)00026-W
    [4] M. A. Chaudhry, S. M. Zubair, Extended incomplete gamma functions with applications, J. Math. Anal. Appl., 274 (2002), 725–745. doi: 10.1016/S0022-247X(02)00354-2
    [5] M. Mansour, Determining the $k$-generalized gamma function $\Gamma_k(x)$ by functional equations, Int. J. Contemp. Math. Sci., 4 (2019), 1037–1042.
    [6] C. G. Kokologiannaki, Properties and inequalities of generalized $k$-gamma, beta and zeta functions, Int. J. Contemp. Math. Sci., 5 (2010), 653–660.
    [7] V. Krasniqi, A limit for the $k$-gamma and $k$-beta function, Int. Math. Forum., 5 (2010), 1613–1617.
    [8] F. Merovci, Power product inequalities for the $\Gamma_k$ function, Int. J. Math. Anal., 4 (2010), 1007–1012.
    [9] S. Mubeen, Solution of some integral equations involving confluent $k$-hypergeometric functions, Appl. Math., 4 (2013), 9–11. doi: 10.4236/am.2013.47A003
    [10] S.Mubeen, G. M. Habibullah, An integral representation of some $k$-hypergeometric functions, Int. Math. Forum., 7 (2012), 203–207.
    [11] S. Mubeen, Solution of some integral equations involving confluent $k$-hypergeometric functions, Appl. Math., 4 (2013), 9–11. doi: 10.4236/am.2013.47A003
    [12] S. Mubeen, A. Rehman, A Note on $k$-Gamma function and Pochhammer $k$-symbol, J. Inf. Math. Sci., 6 (2014), 93–107.
    [13] S. Mubeen, M. Naz, A. Rehman, G. Rahman, Solutions of $k$-hypergeometric differential equations, J. Appl. Math., 2014 (2014), 1–13.
    [14] S. Li, Y. Dong, $k$-hypergeometric series solutions to one type of non-homogeneous $k$-hypergeometric equations, Symmetry, 11 (2019), 262. doi: 10.3390/sym11020262
    [15] G. Rahman, M. Arshad, S. Mubeen, Some results on generalized hypergeometric $k$-functions, Bull. Math. Anal. Appl., 8 (2016), 66–77.
    [16] S. Mubeen, C. G. Kokologiannaki, G. Rahman, M. Arshad, Z. Iqbal, Properties of generalized hypergeometric $k$-functions via $k$-fractional calculus, Far East J. Appl. Math., 96 (2017), 351–372. doi: 10.17654/AM096060351
    [17] S. K. Q. Al-Omari, Boehmian spaces for a class of Whittaker integral transformations, Kuwait J. Sci., 43 (2016), 32–38.
    [18] S. K. Q. Al-Omari, On some Whittaker transform of a special function kernel for a class of generalized functions, Nonlinear Stud., 26 (2019), 435–443.
    [19] P. Agarwal, S. K. Q. Al-Omari, J. Park, An extension of some variant of Meijer type integrals in the class of Boehmian, J. Inequal. Appl., 2016 (2016), 1–11. doi: 10.1186/s13660-015-0952-5
    [20] S. Mubeen, S. Iqbal, Gr$\ddot{u}$ss type integral inequalities for generalized Riemann-Liouville $k$-fractional integrals, J. Inequal. Appl., 2016 (2016), 109. Available from: https://doi.org/10.1186/s13660-016-1052-x.
    [21] P. Agarwal, M. Jleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized $k$-fractional integrals, J. Inequal. Appl., 2017 (2017), 55. Available from: https://doi.org/10.1186/s13660-017-1318-y.
    [22] E. Set, M. A. Noor, M. U. Awan, A. G$\ddot{o}$zpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), 169. Available from: https://doi.org/10.1186/s13660-017-1444-6.
    [23] C. J. Huang, G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of the Hermite-Hadamard type for $k$-fractional conformable integrals, Austral. J. Math. Anal. Appl., 16 (2019), 9.
    [24] F. Qi, G. Rahman, S. M. Hussain, W. S. Du, K. S. Nisar, Some inequalities of Chebyˇsev type for conformable $k$-fractional integral operators, Symmetry, 10 (2018), 614. doi: 10.3390/sym10110614
    [25] S. Habib, S. Mubeen, M. N. Naeem, F. Qi, Generalized $k$-fractional conformable integrals and related inequalities, AIMS Math., 4 (2018), 343–358.
    [26] G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of the Gr$\ddot{u}$ss type for conformable $k$-fractional integral operators, RACSAM, 114 (2020), 9. Available from: https://doi.org/10.1007/s13398-019-00731-3.
    [27] G. Farid, G. M. Habullah, An extension of Hadamard fractional integral, Int. J. Math. Anal., 9 (2015), 471–482. doi: 10.12988/ijma.2015.5118
    [28] G. Farid, A. U. Rehman, M. Zahra, On Hadamard-type inequalities for $k$-fractional integrals, Konuralp J. Math., 4 (2016), 79–86.
    [29] S. Iqbal, S. Mubeen, M. Tomar, On Hadamard $k$-fractional integrals, J. Fract. Calc. Appl., 9 (2018), 255–267.
    [30] M. Tomar, S. Mubeen, J. Choi, Certain inequalities associated with Hadamard $k$-fractional integral operators, J. Inequal. Appl., 2016 (2016), 234. doi: 10.1186/s13660-016-1178-x
    [31] K. S. Nisar, G. Rahman, J. Choi, S. Mubeen, Certain Gronwall type inequalities associated with Riemann-Liouville $k$- and hadamard $k$-fractional derivatives and their applications, East Asian Math. J., 34 (2018), 249–263.
    [32] M. Samraiz, E. Set, M. Hasnain, G. Rahman, On an extension of Hadamard fractional derivative, J. Inequal. Appl., 2019 (2019), 263.
    [33] G. Rahman, S. Mubeen, K. S. Nisar, On generalized $k$-fractional derivative operator, AIMS Math., 5 (2019), 1936–1945.
    [34] Y. Li, Y. Chen, I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965–1969. doi: 10.1016/j.automatica.2009.04.003
    [35] M. A. F. Dos Santos, Fractional Prabhakar derivative in diffusion equation with non-static stochastic resetting, Physics, 1 (2019), 40–58. doi: 10.3390/physics1010005
    [36] S. Rogosin, The role of the Mittag-Leffler function in fractional modeling, Mathematics, 3 (2015), 368–381. doi: 10.3390/math3020368
    [37] D. Baleanu, A. Fernandezon, Some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 444–462. doi: 10.1016/j.cnsns.2017.12.003
    [38] S. Mubeen, R. S. Ali, Fractional operators with generalized Mittag-Leffler $k$-function, Adv. Differ. Equations, 2019 (2019), 520. doi: 10.1186/s13662-019-2458-9
    [39] J. F. Gomez, L. Torres, R. F. Escobar, Fractional Derivatives with Mittag-Leffler Kernel: Trends and Applications in Science and Engineering, Switzerland: Springer International Publishing, 2019.
    [40] C. Fox, The asymptotic expansion of integral functions defined by generalized hypergeometric series, Proc. London Math. Soc., 27 (1928), 389–400.
    [41] E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London Math. Soc., 10 (1935), 286–293.
    [42] A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi H. Bateman, Higher Transcendental Functions, New York: McGraw-Hill, 1953.
    [43] A. Petojevic, A note about the Pochhammer symbols, Math. Morav., 12 (2008), 37–42.
    [44] M. A. Al-Bassam, Y. F. Luchko, On generalized fractional calculus and its application to the solution of integro-differential equations, J. Fract. Calc., 7 (1995), 69–88.
    [45] K. Mehrez, Redheffer-type inequalities for the Fox-Wright functions, Commun. Korean Math. Soc., 34 (2019), 203–211.
    [46] R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer $k$-symbol, Divulg. Mat., 15 (2007), 179–192.
    [47] E. C. Jones, P. M. Cohn, O. Wyler, R. E. Shafer, S. Rabinowitz, R. Redheffer, S. Raymond, Problems and solutions: Advanced problems: 5636–5643, Amer. Math. Monthly, 75 (1968), 1124–1125.
    [48] R. Redheffer, J. P. Williams, Problems and solutions: Solutions of advanced problems: 5642, Amer. Math. Monthly, 76 (1969), 1153–1154.
    [49] L. Zhu, J. Sun, Six new Redheffer-type inequalities for circular and hyperbolic functions, Comput. Math. Appl., 56 (2008), 522–529. doi: 10.1016/j.camwa.2008.01.012
    [50] K. Mehrez, Functional inequalities for the Wright functions, Integr. Transforms Spec. Funct., 28 (2017), 130–144. doi: 10.1080/10652469.2016.1254628
    [51] S. Ponnusamy, M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika, 44 (1997), 278–301. doi: 10.1112/S0025579300012602
    [52] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Inequalities for quasiconformal mappings in space, Pacific J. Math., 160 (1993), 1–18. doi: 10.2140/pjm.1993.160.1
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2571) PDF downloads(188) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog