In this article, we establish the inequalities of the Redheffer-type involving generalized Fox-Wright function. Furthermore, as a consequence, new Redheffer-type inequalities for generalized hypergeometric functions and the four-parametric generalized Mittag-Leffler functions are also discussed by using the suitable values of exponents in generalized inequalities.
Citation: Saima Naheed, Shahid Mubeen, Gauhar Rahman, M. R. Alharthi, Kottakkaran Sooppy Nisar. Some new inequalities for the generalized Fox-Wright functions[J]. AIMS Mathematics, 2021, 6(6): 5452-5464. doi: 10.3934/math.2021322
In this article, we establish the inequalities of the Redheffer-type involving generalized Fox-Wright function. Furthermore, as a consequence, new Redheffer-type inequalities for generalized hypergeometric functions and the four-parametric generalized Mittag-Leffler functions are also discussed by using the suitable values of exponents in generalized inequalities.
[1] | S. Araci, G. Rahman, A. Ghaffar, Azeema, K. S. Nisar, Fractional calculus of extended Mittag-Leffler function and its applications to statistical distribution, Mathematics, 7 (2019), 248. doi: 10.3390/math7030248 |
[2] | M. A. Chaudhry, S. M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., 55 (1994), 99–123. doi: 10.1016/0377-0427(94)90187-2 |
[3] | M. A. Chaudhry, S. M. Zubair, On the decomposition of generalized incomplete gamma functions with applications to Fourier transforms, J. Comput. Appl. Math., 59 (1995), 253–284. doi: 10.1016/0377-0427(94)00026-W |
[4] | M. A. Chaudhry, S. M. Zubair, Extended incomplete gamma functions with applications, J. Math. Anal. Appl., 274 (2002), 725–745. doi: 10.1016/S0022-247X(02)00354-2 |
[5] | M. Mansour, Determining the $k$-generalized gamma function $\Gamma_k(x)$ by functional equations, Int. J. Contemp. Math. Sci., 4 (2019), 1037–1042. |
[6] | C. G. Kokologiannaki, Properties and inequalities of generalized $k$-gamma, beta and zeta functions, Int. J. Contemp. Math. Sci., 5 (2010), 653–660. |
[7] | V. Krasniqi, A limit for the $k$-gamma and $k$-beta function, Int. Math. Forum., 5 (2010), 1613–1617. |
[8] | F. Merovci, Power product inequalities for the $\Gamma_k$ function, Int. J. Math. Anal., 4 (2010), 1007–1012. |
[9] | S. Mubeen, Solution of some integral equations involving confluent $k$-hypergeometric functions, Appl. Math., 4 (2013), 9–11. doi: 10.4236/am.2013.47A003 |
[10] | S.Mubeen, G. M. Habibullah, An integral representation of some $k$-hypergeometric functions, Int. Math. Forum., 7 (2012), 203–207. |
[11] | S. Mubeen, Solution of some integral equations involving confluent $k$-hypergeometric functions, Appl. Math., 4 (2013), 9–11. doi: 10.4236/am.2013.47A003 |
[12] | S. Mubeen, A. Rehman, A Note on $k$-Gamma function and Pochhammer $k$-symbol, J. Inf. Math. Sci., 6 (2014), 93–107. |
[13] | S. Mubeen, M. Naz, A. Rehman, G. Rahman, Solutions of $k$-hypergeometric differential equations, J. Appl. Math., 2014 (2014), 1–13. |
[14] | S. Li, Y. Dong, $k$-hypergeometric series solutions to one type of non-homogeneous $k$-hypergeometric equations, Symmetry, 11 (2019), 262. doi: 10.3390/sym11020262 |
[15] | G. Rahman, M. Arshad, S. Mubeen, Some results on generalized hypergeometric $k$-functions, Bull. Math. Anal. Appl., 8 (2016), 66–77. |
[16] | S. Mubeen, C. G. Kokologiannaki, G. Rahman, M. Arshad, Z. Iqbal, Properties of generalized hypergeometric $k$-functions via $k$-fractional calculus, Far East J. Appl. Math., 96 (2017), 351–372. doi: 10.17654/AM096060351 |
[17] | S. K. Q. Al-Omari, Boehmian spaces for a class of Whittaker integral transformations, Kuwait J. Sci., 43 (2016), 32–38. |
[18] | S. K. Q. Al-Omari, On some Whittaker transform of a special function kernel for a class of generalized functions, Nonlinear Stud., 26 (2019), 435–443. |
[19] | P. Agarwal, S. K. Q. Al-Omari, J. Park, An extension of some variant of Meijer type integrals in the class of Boehmian, J. Inequal. Appl., 2016 (2016), 1–11. doi: 10.1186/s13660-015-0952-5 |
[20] | S. Mubeen, S. Iqbal, Gr$\ddot{u}$ss type integral inequalities for generalized Riemann-Liouville $k$-fractional integrals, J. Inequal. Appl., 2016 (2016), 109. Available from: https://doi.org/10.1186/s13660-016-1052-x. |
[21] | P. Agarwal, M. Jleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized $k$-fractional integrals, J. Inequal. Appl., 2017 (2017), 55. Available from: https://doi.org/10.1186/s13660-017-1318-y. |
[22] | E. Set, M. A. Noor, M. U. Awan, A. G$\ddot{o}$zpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), 169. Available from: https://doi.org/10.1186/s13660-017-1444-6. |
[23] | C. J. Huang, G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of the Hermite-Hadamard type for $k$-fractional conformable integrals, Austral. J. Math. Anal. Appl., 16 (2019), 9. |
[24] | F. Qi, G. Rahman, S. M. Hussain, W. S. Du, K. S. Nisar, Some inequalities of Chebyˇsev type for conformable $k$-fractional integral operators, Symmetry, 10 (2018), 614. doi: 10.3390/sym10110614 |
[25] | S. Habib, S. Mubeen, M. N. Naeem, F. Qi, Generalized $k$-fractional conformable integrals and related inequalities, AIMS Math., 4 (2018), 343–358. |
[26] | G. Rahman, K. S. Nisar, A. Ghaffar, F. Qi, Some inequalities of the Gr$\ddot{u}$ss type for conformable $k$-fractional integral operators, RACSAM, 114 (2020), 9. Available from: https://doi.org/10.1007/s13398-019-00731-3. |
[27] | G. Farid, G. M. Habullah, An extension of Hadamard fractional integral, Int. J. Math. Anal., 9 (2015), 471–482. doi: 10.12988/ijma.2015.5118 |
[28] | G. Farid, A. U. Rehman, M. Zahra, On Hadamard-type inequalities for $k$-fractional integrals, Konuralp J. Math., 4 (2016), 79–86. |
[29] | S. Iqbal, S. Mubeen, M. Tomar, On Hadamard $k$-fractional integrals, J. Fract. Calc. Appl., 9 (2018), 255–267. |
[30] | M. Tomar, S. Mubeen, J. Choi, Certain inequalities associated with Hadamard $k$-fractional integral operators, J. Inequal. Appl., 2016 (2016), 234. doi: 10.1186/s13660-016-1178-x |
[31] | K. S. Nisar, G. Rahman, J. Choi, S. Mubeen, Certain Gronwall type inequalities associated with Riemann-Liouville $k$- and hadamard $k$-fractional derivatives and their applications, East Asian Math. J., 34 (2018), 249–263. |
[32] | M. Samraiz, E. Set, M. Hasnain, G. Rahman, On an extension of Hadamard fractional derivative, J. Inequal. Appl., 2019 (2019), 263. |
[33] | G. Rahman, S. Mubeen, K. S. Nisar, On generalized $k$-fractional derivative operator, AIMS Math., 5 (2019), 1936–1945. |
[34] | Y. Li, Y. Chen, I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965–1969. doi: 10.1016/j.automatica.2009.04.003 |
[35] | M. A. F. Dos Santos, Fractional Prabhakar derivative in diffusion equation with non-static stochastic resetting, Physics, 1 (2019), 40–58. doi: 10.3390/physics1010005 |
[36] | S. Rogosin, The role of the Mittag-Leffler function in fractional modeling, Mathematics, 3 (2015), 368–381. doi: 10.3390/math3020368 |
[37] | D. Baleanu, A. Fernandezon, Some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 444–462. doi: 10.1016/j.cnsns.2017.12.003 |
[38] | S. Mubeen, R. S. Ali, Fractional operators with generalized Mittag-Leffler $k$-function, Adv. Differ. Equations, 2019 (2019), 520. doi: 10.1186/s13662-019-2458-9 |
[39] | J. F. Gomez, L. Torres, R. F. Escobar, Fractional Derivatives with Mittag-Leffler Kernel: Trends and Applications in Science and Engineering, Switzerland: Springer International Publishing, 2019. |
[40] | C. Fox, The asymptotic expansion of integral functions defined by generalized hypergeometric series, Proc. London Math. Soc., 27 (1928), 389–400. |
[41] | E. M. Wright, The asymptotic expansion of the generalized hypergeometric function, J. London Math. Soc., 10 (1935), 286–293. |
[42] | A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi H. Bateman, Higher Transcendental Functions, New York: McGraw-Hill, 1953. |
[43] | A. Petojevic, A note about the Pochhammer symbols, Math. Morav., 12 (2008), 37–42. |
[44] | M. A. Al-Bassam, Y. F. Luchko, On generalized fractional calculus and its application to the solution of integro-differential equations, J. Fract. Calc., 7 (1995), 69–88. |
[45] | K. Mehrez, Redheffer-type inequalities for the Fox-Wright functions, Commun. Korean Math. Soc., 34 (2019), 203–211. |
[46] | R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer $k$-symbol, Divulg. Mat., 15 (2007), 179–192. |
[47] | E. C. Jones, P. M. Cohn, O. Wyler, R. E. Shafer, S. Rabinowitz, R. Redheffer, S. Raymond, Problems and solutions: Advanced problems: 5636–5643, Amer. Math. Monthly, 75 (1968), 1124–1125. |
[48] | R. Redheffer, J. P. Williams, Problems and solutions: Solutions of advanced problems: 5642, Amer. Math. Monthly, 76 (1969), 1153–1154. |
[49] | L. Zhu, J. Sun, Six new Redheffer-type inequalities for circular and hyperbolic functions, Comput. Math. Appl., 56 (2008), 522–529. doi: 10.1016/j.camwa.2008.01.012 |
[50] | K. Mehrez, Functional inequalities for the Wright functions, Integr. Transforms Spec. Funct., 28 (2017), 130–144. doi: 10.1080/10652469.2016.1254628 |
[51] | S. Ponnusamy, M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika, 44 (1997), 278–301. doi: 10.1112/S0025579300012602 |
[52] | G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Inequalities for quasiconformal mappings in space, Pacific J. Math., 160 (1993), 1–18. doi: 10.2140/pjm.1993.160.1 |