Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

Multidimensional stability of V-shaped traveling fronts in bistable reaction-diffusion equations with nonlinear convection

  • Received: 16 August 2020 Accepted: 29 September 2020 Published: 12 October 2020
  • MSC : 35K57, 35C07, 35B35, 35B40

  • This paper is concerned with the multidimensional stability of V-shaped traveling fronts for a reaction-diffusion equation with nonlinear convection term in Rn (n3). We consider two cases for initial perturbations: one is that the initial perturbations decay at space infinity and another one is that the initial perturbations do not necessarily decay at space infinity. In the first case, we show that the V-shaped traveling fronts are asymptotically stable. In the second case, we first show that the V-shaped traveling fronts are also asymptotically stable under some further assumptions. At the same time, we also show that there exists a solution that oscillates permanently between two V-shaped traveling fronts, which means that the traveling fronts are not asymptotically stable under general bounded perturbations.

    Citation: Hui-Ling Niu. Multidimensional stability of V-shaped traveling fronts in bistable reaction-diffusion equations with nonlinear convection[J]. AIMS Mathematics, 2021, 6(1): 314-332. doi: 10.3934/math.2021020

    Related Papers:

    [1] Hong-Tao Niu . Global stability of traveling fronts of a diffusion system with the Belousov-Zhabotinskii reaction. AIMS Mathematics, 2024, 9(9): 25261-25283. doi: 10.3934/math.20241233
    [2] Chaohong Pan, Xiaowen Xu, Yong Liang . Speed determinacy of traveling waves for a lattice stream-population model with Allee effect. AIMS Mathematics, 2024, 9(7): 18763-18776. doi: 10.3934/math.2024913
    [3] José Luis Díaz Palencia, Saeed ur Rahman, Antonio Naranjo Redondo . Analysis of travelling wave solutions for Eyring-Powell fluid formulated with a degenerate diffusivity and a Darcy-Forchheimer law. AIMS Mathematics, 2022, 7(8): 15212-15233. doi: 10.3934/math.2022834
    [4] Aziz Belmiloudi . Time-varying delays in electrophysiological wave propagation along cardiac tissue and minimax control problems associated with uncertain bidomain type models. AIMS Mathematics, 2019, 4(3): 928-983. doi: 10.3934/math.2019.3.928
    [5] Yasir Nawaz, Muhammad Shoaib Arif, Kamaleldin Abodayeh, Mairaj Bibi . Finite difference schemes for time-dependent convection q-diffusion problem. AIMS Mathematics, 2022, 7(9): 16407-16421. doi: 10.3934/math.2022897
    [6] José L. Díaz . Existence, uniqueness and travelling waves to model an invasive specie interaction with heterogeneous reaction and non-linear diffusion. AIMS Mathematics, 2022, 7(4): 5768-5789. doi: 10.3934/math.2022319
    [7] Zhichao Fang, Ruixia Du, Hong Li, Yang Liu . A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations. AIMS Mathematics, 2022, 7(2): 1941-1970. doi: 10.3934/math.2022112
    [8] Zhenshu Wen, Lijuan Shi . Exact explicit nonlinear wave solutions to a modified cKdV equation. AIMS Mathematics, 2020, 5(5): 4917-4930. doi: 10.3934/math.2020314
    [9] Nafissa T. Trouba, Huiying Xu, Mohamed E. M. Alngar, Reham M. A. Shohib, Haitham A. Mahmoud, Xinzhong Zhu . Soliton solutions and stability analysis of the stochastic nonlinear reaction-diffusion equation with multiplicative white noise in soliton dynamics and optical physics. AIMS Mathematics, 2025, 10(1): 1859-1881. doi: 10.3934/math.2025086
    [10] Yellamma, N. Manjunatha, Umair Khan, Samia Elattar, Sayed M. Eldin, Jasgurpreet Singh Chohan, R. Sumithra, K. Sarada . Onset of triple-diffusive convective stability in the presence of a heat source and temperature gradients: An exact method. AIMS Mathematics, 2023, 8(6): 13432-13453. doi: 10.3934/math.2023681
  • This paper is concerned with the multidimensional stability of V-shaped traveling fronts for a reaction-diffusion equation with nonlinear convection term in Rn (n3). We consider two cases for initial perturbations: one is that the initial perturbations decay at space infinity and another one is that the initial perturbations do not necessarily decay at space infinity. In the first case, we show that the V-shaped traveling fronts are asymptotically stable. In the second case, we first show that the V-shaped traveling fronts are also asymptotically stable under some further assumptions. At the same time, we also show that there exists a solution that oscillates permanently between two V-shaped traveling fronts, which means that the traveling fronts are not asymptotically stable under general bounded perturbations.


    In this paper, we study the multidimensional asymptotic stability of two-dimensional V-shaped traveling fronts of the following reaction-diffusion equation with nonlinear convection term:

    {ut+(g(u))z=Δu+f(u),xRn2,yR,zR,t>0,u(x,y,z,0)=u0(x,y,z),xRn2,yR,zR, (1.1)

    where Δ=2/x21++2/x2n2+2/y2+2/z2 and n3. We assume that the initial value u0BUC1(Rn). In (1.1), (g(u))z is a nonlinear convection term and the function fC2(R) is the reaction term. Suppose f satisfies the following assumption:

    (F) (ⅰ) f(0)=f(1)=0, f(0)<0, f(1)<0;

    (ⅱ) {r[0,1]:f(r)=0}={0,λ,1} with f(λ)>0;

    (ⅲ) 10f(r)dr>0;

    (ⅳ) f(r)<0, f(r)<0 for r>1; f(r)>0, f(r)<0 for r<0.

    The assumption (F) implies that the reaction term f is of bistable type. A typical example of such f is the cubic function f(u)=u(ua)(1u), where a(0,12) is a given number. We also assume the flux g satisfies the following assumption:

    (G) g(r)C2+γ0(R), γ0(0,1); g(r)0 for r[0,1].

    Examples of such g are g(u)=ρu2 and g(u)=ρu(1u), where ρ>0 is a constant. From the assumption (G), we deduce that there exist positive constants l1 and l2 such that

    |g(r)|l1, |g(r)|l2  for all r[1,2]. (1.2)

    For each θ[0,π), it follows from Crooks and Toland [1] that there exist a function Uθ()C2(R) and a constant cθ satisfying

    {Uθ+(cθ+g(Uθ)sinθ)Uθf(Uθ)=0,Uθ(X)>0,XR,Uθ()=0,Uθ(+)=1. (1.3)

    Let e±=(0,,0,±cosθ,sinθ)Sn1. Then the functions

    Uθ((x,y,z)e++cθt)=Uθ(ycosθ+zsinθ+cθt)

    and

    Uθ((x,y,z)e+cθt)=Uθ(ycosθ+zsinθ+cθt)

    are planar traveling fronts of (1.1) with wave speed cθ along the directions e+ and e, respectively. In particular, the profile function Uθ() is unique up to a translation and the wave speed cθ is unique. It is clear that c0>0 due to the assumption (F). However, due to the convection term, it is not necessary that cθ>0 for θ(0,π). For more results on traveling wave front of (1.1) with various nonlinearity f, we refer to [2,3,4,5,6,7,8,9].

    Recently, we studied nonplanar traveling fronts of (1.1) with n=2. Assume that (F) and (G) hold. Fix θ(0,π2) satisfying the following assumption:

    (C) cθ+g(r)sinθ>0 for any r[0,1].

    In our recent paper [10], we proved the existence of V-shaped traveling fronts to (1.1) in R2, namely, there exists a function V(,)C2(R2) satisfying

    {VyyVzz+(sθ+g(V))Vzf(V)=0,(y,z)R2,V(y,z)=V(y,z),  zV(y,z)>0, (y,z)R2,yV(y,z)>0, (y,z)(0,+)×R,V(y,z)>Uθ(|y|cosθ+zsinθ), (y,z)R2,lim (1.4)

    where s_\theta = \frac{c_\theta}{\sin\theta} . In addition, for any initial value u_0(y, z)\in BUC^1(\mathbb{R}^2) with u_0\geq U_\theta\left(|y|\cos\theta+z\sin\theta\right) and

    \begin{equation} \lim\limits_{R\rightarrow\infty}\sup\limits_{y^2+z^2\geq R^2}\left|u_0(y, z)-U_\theta\left(|y|\cos\theta+z\sin\theta\right)\right| = 0, \end{equation} (1.5)

    the solution u(y, z, t; u_0) of (1.1) satisfies

    \begin{equation} \lim\limits_{t\rightarrow\infty} \sup\limits_{(y, z)\in\mathbb{R}^2}\left|u(y, z, t;u_0)-V\left(y, z+s_\theta t\right)\right| = 0. \end{equation} (1.6)

    Here we would like to point out that the last results have been obtained when the convection term is absent, see [11]. In fact, nonplanar traveling fronts of (1.1) without convection have been extensively studied in recent years, see [12,13,14,15,16,17,18,19,20,21,22,23,24,25]. For reaction-diffusion system and time periodic reaction-diffusion equation, we refer to [26,27,28,29,30,31,32,33,34]. For more results on non-planar traveling wave solutions of reaction-diffusion equations, we refer to [35,36,37,38].

    It is clear that the asymptotic stability of the V-shaped traveling front V(y, z)\in C(\mathbb{R}^2) of (1.1) was established in \mathbb{R}^2 , see [10]. In this paper, we further consider the multidimensional stability of the V-shaped traveling front V(y, z) , namely, we consider the stability of V(y, z) in \mathbb{R}^n with n\geq3 . It should be pointed out that the multidimensional stability of planar traveling fronts of (1.1) without convection has been studied by many authors, see [39,40,41,42,43] for the Allen-Cahn equation. In [39,40,43], it is assumed that the initial perturbations are sufficiently small and decay to zero at space infinity. In [42] the authors proved the asymptotic stability under any (possibly large) initial perturbations that decay to zero at space infinity. Furthermore, they proved the asymptotic stability of planar traveling fronts for almost periodic perturbation. Moreover, the existence of a solution that oscillates permanently between two planar waves was shown, which implies that planar traveling fronts are not asymptotically stable under general perturbations. Motano and Nara [41] studied how a planar front behaves when arbitrarily large (but bounded) perturbation is given near the front region. They showed that the planar front is asymptotically stable in L^{\infty}(\mathbb{R}^n) under spatially ergodic perturbations, which include quasi-periodic and almost periodic ones as special cases. Roquejoffre and Roussier-Michon [44] considered the large time behavior of planar traveling fronts and showed that the dynamics of planar fronts are similar to that of the heat equation. More recently, Sheng et al. [28] and Cheng and Yuan [45] studied the multidimensional stability of V-shaped traveling fronts and pyramidal traveling fronts of the Allen-Cahn equation by using the method of [42], respectively.

    Following (1.4) and (1.5), we know that the asymptotic stability of V-shaped traveling fronts V(y, z) of (1.1) in [10] was established in \mathbb{R}^2 under the initial value u_0(y, z) satisfying that u_0(y, z)-V(y, z) decays to zero as |y|+|z|\to \infty . In this paper we use the method of [42] to study the stability of V-shaped traveling fronts V(y, z) of (1.1) under the initial value u_0(x, y, z) in \mathbb{R}^n with n\geq3 , where x\in\mathbb{R}^{n-2} , y\in\mathbb{R} and z\in\mathbb{R} . In contrast to that in [10], in this paper we deal with the following two cases:

    Case A: The initial perturbation u_0(x, y, z)-V(y, z) decays to zero as |x|+|y|+|z|\rightarrow\infty .

    Case B: The initial perturbation u_0(x, y, z)-V(y, z) does not necessarily decay to zero as |x|+|y|+|z|\rightarrow\infty .

    In the remainder of this paper we always assume that \rm(F) and \rm(G) hold and \theta\in \left(0, \frac{\pi}{2}\right) satisfies the assumption \rm(C) . Let (U_\theta(\cdot), c_\theta) be defined by (1.3) and let s_\theta = \frac{c_\theta}{\sin\theta} . Let V(y, z) be defined by (1.4). For the sake of convenience, in the sequel we always denote (U_\theta(\cdot), c_\theta) and s_\theta by (U (\cdot), c ) and s respectively. In the following we first consider the asymptotic stability of V(y, z) in Case A.

    Theorem 1.1. Let n\geq 3 . Assume that the initial value u_0(x, y, z)\in BUC^1(\mathbb{R}^n) and satisfies

    \lim\limits_{R\rightarrow\infty}\sup\limits_{|x|+|y|+|z|\geq R}\left|u_0(x, y, z)-V(y, z)\right| = 0.

    Then the solution u(x, y, z, t) of (1.1) satisfies

    \begin{equation} \lim\limits_{t\rightarrow\infty}\sup\limits_{(x, y, z)\in\mathbb{R}^n}\left|u(x, y, z, t)-V(y, z+st)\right| = 0. \end{equation} (1.7)

    Theorem 1.1 implies that the V-shaped traveling front V(y, z+st) is asymptotically stable under any initial perturbations that decay to zero as |x|+|y|+|z|\rightarrow\infty . The following theorem gives the convergence rate for (1.7) when the initial perturbation belongs to L^1 in a certain sense.

    Theorem 1.2. Let n\geq 3 . Assume that the initial value u_0(x, y, z) of (1.1) is given by

    \begin{equation} u_0(x, y, z) = V\left(y, z+v_0(x)\right), \end{equation} (1.8)

    for some function v_0\in L^1(\mathbb{R}^{n-2})\cap L^\infty(\mathbb{R}^{n-2})\cap BUC^1(\mathbb{R}^{n-2}) . Then the solution u(x, y, z, t) of (1.1) satisfies

    \begin{equation} \sup\limits_{(x, y, z)\in\mathbb{R}^n}|u(x, y, z, t)-V(y, z+st)|\leq Ct^{-\frac{n-2}{2}}, \ t \gt 0, \end{equation} (1.9)

    where C > 0 is a constant depending on f, \ g, \|v_0\|_{L^1(\mathbb{R}^{n-2})} and \|v_0\|_{L^\infty(\mathbb{R}^{n-2})} .

    The following proposition shows that the convergence rate (1.9) is optimal in some sense.

    Proposition 1.3. Let n\geq 3 . Let u_0 be defined as in (1.8) and assume that v_0 either satisfies v_0\geq0, \ v_0\not\equiv0 or v_0\leq0, \ v_0\not\equiv0 . Then there exist constants C_1 > 0 and C_2 > 0 such that

    \begin{equation} C_1(1+t)^{-\frac{n-2}{2}}\leq\sup\limits_{(x, y, z)\in\mathbb{R}^n}|u(x, y, z, t)-V(y, z+st)|\leq C_2t^{-\frac{n-2}{2}}, \ t\geq0. \end{equation} (1.10)

    Remark 1.4. Theorem 1.1 and 1.2 show that the V-shaped traveling front is not only asymptotically stable, but also algebraically stable under certain perturbations. Furthermore, Proposition 1.3 also implies that this convergence rate is optimal in some sense, that is, the convergence rate is not faster than O\left(t^{-\frac{n-2}{2}}\right) .

    Next, we state our results in Case B. Firstly, we show that the V-shaped traveling front is also asymptotically stable if the initial value u_0(x, y, z) satisfies some certain assumptions in Case B.

    Theorem 1.5. Let n\geq 3 . Suppose that the initial value u_0(x, y, z)\in BUC^1(\mathbb{R}^n) of (1.1) satisfies

    V (y, z)\leq u_0(x, y, z)\leq \hat{u}_0\left(y, z\right), \quad \forall (x, y, z)\in\mathbb{R}^3,

    where \hat{u}_0\left(y, z\right)\in BUC^1(\mathbb{R}^n) satisfies

    \begin{equation} \lim\limits_{R\rightarrow\infty}\sup\limits_{y^2+z^2\geq R^2}\left|\hat{u}_0(y, z)-U_\theta\left(|y|\cos\theta+z\sin\theta\right)\right| = 0. \end{equation} (1.11)

    Then the solution u(x, y, z, t) ofx (1.1) satisfies

    \begin{equation} \lim\limits_{t\rightarrow\infty}\sup\limits_{(x, y, z)\in\mathbb{R}^n}|u(x, y, z, t)-V(y, z+st )| = 0. \end{equation} (1.12)

    Secondly, we present a result on the existence of a solution of (1.1) that oscillates permanently between two V-shaped traveling fronts.

    Theorem 1.6. Let n = 3 . Then for any \delta > 0 , there exists a bounded function v_0^*(x)\in BUC^1(\mathbb R) with \|v_0^*\|_{L^\infty(\mathbb R)} = \delta such that the solution u(x, y, z, t) of (1.1) with u(x, y, z, 0) = V\left(y, z+v_0^*(x)\right) satisfies

    \begin{equation*} \lim\limits_{m\rightarrow\infty}\sup\limits_{|x|\leq m!-1, (y, z)\in\mathbb{R}^2}\left|u(x, y, z, t_m)-V(y, z+st_m+(-1)^m\delta)\right| = 0, \end{equation*}

    where t_m = m(m!)^2/4 .

    Remark 1.7. A typical example of initial functions satisfying the requirement of Theorem 1.5 is that u_0(x, y, z) = V\left(y, z+\psi(z)v(x)\right) in (x, y, z)\in\mathbb{R}^3 , where the functions v(x) and \psi(z) respectively satisfy the following conditions:

    (ⅰ) v(x)\in BUC^1(\mathbb R^{n-2}) is a periodic function in \mathbb{R}^{n-2} and v(x) > 0 ;

    (ⅱ) \psi(z)\in C^1(\mathbb R) , \psi(z) > 0 and \lim\limits_{|z|\rightarrow\infty}\psi(z) = 0 .

    Since v(x) > 0 is a periodic function, there exists a positive constant v_{\max} such that v_{\max} = \max_{x\in\mathbb R^{n-2}}v(x) . Take \hat{u}_0(y, z) = V\left(y, z+\psi(z)v_{\max}\right) . Then V(y, z)\leq u_0(x, y, z)\leq\hat{u}_0(y, z) and (1.11) holds. In addition, it is clear that the initial function u_0(x, y, z) does not decay when |x|+|y|+|z|\rightarrow\infty . Theorem 1.5 shows that even if in Case B, the V-shaped traveling front is still asymptotically stable under some further assumptions on the initial value. On the other hand, Theorem 1.6 implies that even very small perturbations to the V-shaped traveling front V(y, z+st) can give rise to permanent oscillation, hence the V-shaped traveling front is not asymptotically stable under general bounded perturbations. It can be viewed as a counter-example to the asymptotic stability of V-shaped traveling fronts in Case B. From the viewpoint of dynamical system, Theorem 1.6 gives two \omega -limit points of the solution u(x, y, z, t) in the L_{\text{loc}}^\infty(\mathbb{R}^n) -topology. From the above discussion, we conclude that the V-shaped traveling fronts may be stable or unstable in Case B.

    The rest of the paper is organized as follows. In Section 2, we study Case A, namely, we prove Theorem 1.1 and 1.2. In the proofs, we use the moving coordinated with speed s so that the V-shaped traveling fronts can be viewed as stationary states. Setting

    u(x, y, z, t) = w(x, y, \chi, t), \ \chi = z+st,

    the Eq (1.1) can be rewritten as

    \begin{equation*} \begin{cases} w_t = \Delta w-\left(g'(w)+s\right)w_\chi+f(w), \ x\in\mathbb{R}^{n-2}, \ y\in\mathbb R, \ \chi\in\mathbb R, \ t \gt 0, \\ w(x, y, \chi, 0) = u_0(x, y, \chi), \ x\in\mathbb{R}^{n-2}, \ y\in\mathbb R, \ \chi\in\mathbb R, \end{cases} \end{equation*}

    where \Delta = \partial^2/\partial x_1^2+\cdots+\partial^2/\partial x^2_{n-2}+\partial^2/\partial y^2+\partial^2/\partial \chi^2 . For convenience, we denote w(x, y, \chi, t) as u(x, y, z, t) and consider the problem of the form

    \begin{equation} \begin{cases} u_t = \Delta u-\left(g'(u)+s\right)u_z+f(u), \ x\in\mathbb{R}^{n-2}, \ y\in\mathbb R, \ z\in\mathbb R, \ t \gt 0, \\ u(x, y, z, 0) = u_0(x, y, z), \ x\in\mathbb{R}^{n-2}, \ y\in\mathbb R, \ z\in\mathbb R. \end{cases} \end{equation} (1.13)

    The global existence of a unique solution u(x, z, t; u_0) of the Eq (1.13) follows from [46,Theorem 7.1.2,Propositions 7.1.9 and 7.1.10 and Remark 7.1.12] and the assumptions (F) and (G), see also [2,Proposition A.3 and Theorem A.7]. In particular, u(t; u_0)(\cdot) \in C^1\left((0, \infty), BUC(\mathbb{R}^2)\right)\cap C \left((0, \infty), BUC^2(\mathbb{R}^2)\right) \cap C \left([0, \infty), BUC^1(\mathbb{R}^2)\right) , where u(t; u_0)(x, z): = u(x, z, t; u_0) . It is clear that, for each \xi\in\mathbb R , the function V(y, z+\xi) is a stationary solution for problem (1.13). In this section, we also show that the convergence rate in Theorem 1.1 and Theorem 1.2 is optimal in some sense, namely, we prove Proposition 1.3. In Section 3, we consider Case B. Firstly, we prove that the V-shaped traveling fronts are asymptotically stable under certain assumptions of the initial value, namely, we prove Theorems 1.5. Secondly, using the supersolutions and subsolutions constructed in Section 2, we prove that the V-shaped traveling fronts are not asymptotically stable, namely, we prove Theorem 1.6.

    In this section, we consider Case A and prove the asymptotic stability of V-shaped traveling fronts under perturbations that decay to zero as |x|+|y|+|z|\rightarrow\infty . We first state some known results of the curvature flow problem in [47], see also [42].

    The mean curvature flow for a graphical surface \Psi(x, t) on \mathbb{R}^{n-2} is given by the Cauchy problem of the form

    \begin{equation} \begin{cases} \frac{\Psi_t}{\sqrt{1+|\nabla\Psi|^2}} = {\rm div}\left(\frac{\nabla\Psi}{\sqrt{1+|\nabla\Psi|^2}}\right), \ x\in\mathbb{R}^{n-2}, \ t \gt 0, \\ \Psi(x, 0) = \Psi_0(x), \ x\in\mathbb{R}^{n-2}. \end{cases} \end{equation} (2.1)

    If the first and second derivatives of \Psi with respect to x are all bounded on \mathbb{R}^{n-2} , then we take some large constant k > 0 such that

    \begin{align*} 0 = &\Psi_t-\sqrt{1+|\nabla\Psi|^2}\ {\rm div}\left(\frac{\nabla\Psi}{\sqrt{1+|\nabla\Psi|^2}}\right)\\ = &\Psi_t-\Delta\Psi+\sum\limits_{i, j = 1}^{n-2}\frac{\Psi_{x_i}\Psi_{x_j}\Psi_{x_ix_j}}{1+|\nabla\Psi|^2}\\ \geq&\Psi_t-\Delta\Psi-k|\nabla\Psi|^2. \end{align*}

    Clearly, \Psi(x, t) is a subsolution of the following Cauchy problem:

    \begin{align*} \begin{cases} v^+_t = \Delta v^++k|\nabla v^+|^2, \ x\in\mathbb{R}^{n-2}, \ t \gt 0, \\ v^+(x, 0) = u_0(x), \ x\in\mathbb{R}^{n-2}. \end{cases} \end{align*}

    Taking w(x, t) = e^{kv^+(x, t)} , we have

    \begin{equation*} \begin{cases} w_t = \Delta w, \ x\in\mathbb{R}^{n-2}, \ t \gt 0, \\ w(x, 0) = e^{ku_0(x)}, \ x\in\mathbb{R}^{n-2}. \end{cases} \end{equation*}

    Then, from the solution of a standard heat equation, the explicit expression for v^+(x, t) is given by

    \begin{equation} v^+(x, t) = \frac{1}{k}\ln\left(\int_{\mathbb{R}^{n-2}}\Gamma(x-\eta, t)e^{ku_0(\eta)}{\rm d}\eta\right), \end{equation} (2.2)

    where \Gamma(\xi, \tau) is the heat kernel given by

    \Gamma(\xi, \tau) = \frac{1}{(4\pi\tau)^{\frac{n-2}{2}}}e^{-\frac{|\xi|^2}{4\tau}}.

    Consequently, the expression (2.2) gives an upper estimate for \Psi(x, t) of (2.1). By considering the equation

    \begin{align*} \begin{cases} v^-_t = \Delta v^–k|\nabla v^-|^2, \ x\in\mathbb{R}^{n-2}, \ t \gt 0, \\ v^-(x, 0) = u_0(x), \ x\in\mathbb{R}^{n-2}, \end{cases} \end{align*}

    we also give a lower estimate for \Psi(x, t) of (2.1).

    The following lemma gives the large time behavior of the solutions of

    v^\pm_t = \Delta v^\pm\pm k\left|\nabla v^\pm\right|^2, \ x\in\mathbb{R}^{n-2}, \ t \gt 0.

    Lemma 2.1. (See [42,Lemma 2.4 and Remark 2.5]) Let k > 0 be any constant. Let v^\pm(x, t) be solutions to the Cauchy problems:

    \begin{equation*} \begin{cases} v^\pm_t = \Delta v^\pm\pm k\left|\nabla v^\pm\right|^2, \ x\in\mathbb{R}^{n-2}, \ t \gt 0, \\ v^\pm(x, 0) = v_0(x), \ x\in\mathbb{R}^{n-2}. \end{cases} \end{equation*}

    Suppose that v_0(x) is bounded and continuous on \mathbb{R}^{n-2} and satisfies \lim\limits_{|x|\rightarrow\infty}|v_0(x)| = 0 . Then the solutions v^\pm(x, t) satisfy

    \begin{equation*} \label{ms2.3} \lim\limits_{t\rightarrow\infty}\sup\limits_{x\in\mathbb{R}^{n-2}}\left|v^\pm(x, t)\right| = 0, \end{equation*}

    respectively. Furthermore, if v_0\in L^1(\mathbb{R}^{n-2}) , then we have

    \begin{equation*} \label{ms2.4} \sup\limits_{x\in\mathbb{R}^{n-2}}|v^\pm(x, t)|\leq\frac{1}{k}\left\|e^{kv_0}-1\right\|_{L^1(\mathbb{R}^{n-2})}\cdot t^{-\frac{n-2}{2}}, \ t \gt 0. \end{equation*}

    Before constructing a series of supersolutions and subsolutions, we first give some auxiliary lemmas.

    Lemma 2.2. (See [10,Lemma 3.2 and Theorem 2.3]) For any \delta\in (0, \frac{1}{2}) , there exists a positive constant \beta: = \beta(\delta) such that

    V_z(y, z) \geq\beta \; \; \mathit{\text{for}}\; \; \delta \leq V(y, z)\leq 1-\delta .

    In addition, we have

    \lim\limits_{R \rightarrow + \infty}\sup\limits_{|z+m_*|y||\geq R }V_z = 0,

    where m_* = \left.\sqrt{s^2-c^2}\right/c .

    Now, we introduce a lemma which plays a key role in constructing supersolutions and subsolutions.

    Lemma 2.3. There exists a constant k > 0 such that

    -kV_z(y, z)\leq V_{zz}(y, z)\leq kV_z(y, z), \ \ \forall (y, z)\in\mathbb{R}^2.

    Proof. It follows from the first equation of (1.4) that

    \begin{equation} \Delta V_z-\left(s+g'(V)\right)V_{zz}+f'(V)V_z-g''(V)V_z^2 = 0, \quad \forall (y, z)\in\mathbb{R}^2. \end{equation} (2.3)

    If we write W = V_z , then (2.3) becomes

    \begin{equation} \Delta W-\left(s+g'(V)\right)W_z+\left(f'(V)-g''(V)W\right)W = 0. \end{equation} (2.4)

    Setting

    b(y, z) = -\left(s+g'(V)\right), \ c(y, z) = f'(V)-g''(V)W,

    then (2.4) can be rewritten as

    \Delta W+bW_z+cW = 0.

    From Lemma 2.2, there exists a constant K > 0 such that

    0 \lt W(x, z) = V_z(x, z)\leq K, \quad \forall\ (x, z)\in\mathbb{R}^2.

    By the interior L^p estimates for the second derivatives of elliptic equations (see [48,Theorem 9.11]) and the embedding theorem (see [48,Theorem 7.26]), there exists a constant \Lambda > 0 such that

    \left\|W\right\|_{C^{1+\alpha}\left(\mathbb{R}^2\right)}\leq \Lambda

    for some constant \alpha\in (0, 1] . Using the above estimate, the assumptions (F) and (G), and the Schauder interior estimates for the second derivatives of elliptic equations (see [48,Theorem 6.2]), we have that for some 0 < \alpha\leq1 and C_0 > 0 , there are

    \begin{equation} |W|^*_{2, \alpha;B_2(y_0, z_0)}\leq C_0|W|_{0;B_2(y_0, z_0)}, \quad \forall\ (y_0, z_0)\in\mathbb{R}^2, \end{equation} (2.5)

    where B_r(y_0, z_0) is a ball of radius r in \mathbb{R}^2 with origin (y_0, z_0) . On the other hand, since B_1(y_0, z_0)\subset\subset B_2(y_0, z_0) and {\rm dist}\left(B_1\left(y_0, z_0\right), \partial B_2\left(y_0, z_0\right)\right) = 1 , we have

    \begin{equation} |W|_{m, \alpha;B_1(y_0, z_0)}\leq|W|^*_{m, \alpha;B_2(y_0, z_0)}, \quad \forall\ (y_0, z_0)\in\mathbb{R}^2. \end{equation} (2.6)

    Here we refer the definitions of the norms |\cdot|^*_{m, \alpha; \Omega} , |\cdot|_{m, \alpha; \Omega} and |\cdot|_{m; \Omega} to [48] and [28]. Combining (2.5) and (2.6) yields

    |W|_{2, \alpha;B_1(y_0, z_0)}\leq C_0|W|_{0;B_2(y_0, z_0)} , \quad \forall\ (y_0, z_0)\in\mathbb{R}^2.

    Since W(x, z) > 0 , the Harnack-type inequality [48,Theorem 2.5] implies that there exists another constant C_1 > 0 such that

    |W|_{2, \alpha;B_1(y_0, z_0)}\leq C_0C_1W(y_0, z_0) , \quad \forall\ (y_0, z_0)\in\mathbb{R}^2.

    Taking

    k: = C_0C_1,

    we obtain that

    |W_z(y_0, z_0)|\leq kW(y_0, z_0), \quad \forall\ (y_0, z_0)\in\mathbb{R}^2,

    that is

    |V_{zz}|\leq kV_z\quad {\rm in}\ \ \mathbb{R}^2.

    This completes the proof of Lemma 2.3.

    Now, we will show that the functions V\left(y, z+v^\pm(x, t)\right) are a supersolution and a subsolution of (1.13), respectively. In what follows, \Delta_x and \nabla_x denote the (n-2) -dimensional Laplacian and the (n-2) -dimensional gradient, respectively.

    Lemma 2.4. (Supersolutions and Subsolutions). Let u(x, y, z, t) be the solution of (1.13) with the initial value u_0(x, y, z)\in BUC^1(\mathbb R^n) . Suppose that the functions v^+(x, t) and v^-(x, t) solving the following problems

    \begin{equation*} \label{ms2.6} \begin{cases} \frac{\partial}{\partial t}v^+(x, t) = \Delta_xv^++k|\nabla_xv^+|^2, \ x\in\mathbb{R}^{n-2}, \ t \gt 0, \\ v^+(x, 0) = v_0^+(x), \ x\in\mathbb{R}^{n-2}, \end{cases} \end{equation*}
    \begin{equation*} \label{ms2.7} \begin{cases} \frac{\partial}{\partial t}v^-(x, t) = \Delta_xv^–k|\nabla_xv^-|^2, \ x\in\mathbb{R}^{n-2}, \ t \gt 0, \\ v^-(x, 0) = v_0^-(x), \ x\in\mathbb{R}^{n-2}, \end{cases} \end{equation*}

    respectively. Where k > 0 is the constant defined in Lemma 2.3. If

    V\left(y, z+v^-_0(x)\right)\leq u_0(x, y, z)\leq V\left(y, z+v_0^+(x)\right), \ (x, y, z)\in\mathbb{R}^n,

    then u^+(x, y, z, t): = V\left(y, z+v^+(x, t)\right) and u^-(x, y, z, t): = V\left(y, z+v^-(x, t)\right) are a supersolution and a subsolution of (1.13), respectively.

    Proof. We only show that u^+(x, y, z, t) is a supersolution of (1.13), since the subsolution can be proved in a similar way.

    Set

    L[u]: = u_t-\Delta u+\left(g'(u)+s\right)u_z-f(u).

    Using the equality -V_{yy}-V_{zz}+\left(g'(V)+s\right)V_z-f(V) = 0 and Lemma 2.3, we have

    \begin{align*} L[u^+] = &u^+_t-\Delta u^++\left(g'\left(u^+\right)+s\right)u^+_z-f(u^+)\\ = &v^+_tV_z-\sum\limits_{i = 1}^{n-2}\left(v^+_{x_ix_i}V_z+\left(v^+_{x_i}\right)^2V_{zz}\right)-V_{yy}-V_{zz}+\left(g'(V)+s\right)V_z-f(V)\\ = &v^+_tV_z-\Delta_xv^+V_z-\left|\nabla_xv^+\right|^2V_{zz}\\ = &(kV_z-V_{zz})\left|\nabla_xv^+\right|^2\geq0. \end{align*}

    This completes the proof.

    Now we prove Theorem 1.2.

    Proof of Theorem 1.2. Let the function v^+(x, t) as in Lemma 2.4. Then we have

    u(x, y, z, t)\leq V\left(y, z+v^+(x, t)\right)\leq V(y, z)+\|V_z\|_{L^\infty(\mathbb{R}^2)}\cdot\sup\limits_{x\in\mathbb{R}^{n-2}}\left|v^+(x, t)\right|.

    From Lemma 2.1, we have

    u(x, y, z, t)-V(y, z)\leq\|V_z\|_{L^\infty(\mathbb{R}^2)}\cdot\sup\limits_{x\in\mathbb{R}^{n-2}}\left|v^+(x, t)\right|\leq Ct^{-\frac{n-2}{2}},

    for some positive constant C . Similarly, we also obtain

    u(x, y, z, t)-V(y, z)\geq-Ct^{-\frac{n-2}{2}}.

    This completes the proof.

    Next, we give a proof of Proposition 1.3. Our argument is based again on Lemma 2.4.

    Proof of Proposition 1.3. We only consider the case that v_0\leq0, \ v_0\not\equiv0 . The right hand side inequality of (1.10) immediately follows from Theorem 1.2. To prove the left hand side inequality of (1.10), from Lemma 2.4, it suffices to show that the solution v(x, t) of the problem

    \begin{equation*} \begin{cases} v_t = \Delta_xv+k\left|\nabla_xv\right|^2, \ x\in\mathbb{R}^{n-2}, \ t \gt 0, \\ v(x, 0) = v_0(x), \ x\in\mathbb{R}^{n-2} \end{cases} \end{equation*}

    satisfies v(0, t)\leq-C(1+t)^{-\frac{n-2}{2}} for some constant C > 0 . Indeed, Lemma 2.4 gives that

    \begin{align*} u(0, 0, 0, t)\leq &V(0, v(0, t))\\ \leq&V(0, 0)+\min\limits_{z\in\left[-\|v_0\|_{L^\infty(\mathbb{R}^{n-2})}, 0\right]}\left|V_z(0, z)\right|\cdot v(0, t)\\ \leq&V(0, 0)-C'(1+t)^{-\frac{n-2}{2}}, \ t\geq0, \end{align*}

    where C' is a positive constant.

    Similar to (2.2), the explicit expression for v(x, t) is given by

    v(x, t) = \frac{1}{k}\ln\left(\int_{\mathbb{R}^{n-2}}\Gamma(x-\eta, t)e^{kv_0(\eta)}{\rm d}\eta\right),

    where \Gamma(\xi, \tau) is the heat kernel on \mathbb{R}^{n-2} . Since v_0\leq0 and v_0\not\equiv0 , there exists a constant \delta > 0 and a nonempty open set D\subset\mathbb{R}^{n-2} such that v_0\leq-\delta for x\in D . Then we have

    \begin{align*} v(x, t)\leq&\frac{1}{k}\ln\left(1-\int_D\Gamma(x-\eta, t)\left(1-e^{-k\delta}\right){\rm d}\eta\right)\\ \leq&\frac{1}{k}\ln\left(1-|D|\left(1-e^{-k\delta}\right)\cdot\min\limits_{\eta\in D}\Gamma(x-\eta, t)\right)\\ \leq&-\frac{|D|}{k}\left(1-e^{-k\delta}\right)\cdot\min\limits_{\eta\in D}\Gamma(x-\eta, t), \end{align*}

    which implies v(0, t)\leq-C(1+t)^{-\frac{n-2}{2}} . This completes the proof.

    Now, we construct some new types of supersolutions and subsolutions.

    Lemma 2.5. Let k > 0 be defined as in Lemma 2.3. Then there exist constants \delta_0 > 0 , \beta > 0 and \sigma\geq1 such that, for any \delta\in(0, \delta_0] and any functions v^\pm(x, t) satisfying

    v^\pm_t = \Delta_xv^\pm\pm k\left|\nabla_xv^\pm\right|^2,

    the functions defined by

    \begin{equation*} \label{ms2.8} \tilde{u}(x, y, z, t): = V\left(y, z+v^+(x, t)+\sigma\delta\left(1-e^{-\beta t}\right)\right)+\delta e^{-\beta t}, \end{equation*}
    \begin{equation*} \label{ms2.9} \hat{u}(x, y, z, t): = V\left(y, z+v^-(x, t)-\sigma\delta\left(1-e^{-\beta t}\right)\right)-\delta e^{-\beta t} \end{equation*}

    are a supersolution and a subsolution of (1.13), respectively.

    Proof. Using the equality -V_{yy}-V_{zz}+\left(s+g'(V)\right)V_z-f(V) = 0 and Lemma 2.3, we have

    \begin{align*} L[\tilde{u}] = &\tilde{u}_t-\Delta\tilde{u}+\left(s+g'(\tilde{u})\right)\tilde{u}_z-f(\tilde{u})\\ = &V_zv^+_t+\sigma\delta\beta e^{-\beta t}V_z-\delta\beta e^{-\beta t}-\Delta_xv^+V_z-\left|\nabla_xv^+\right|^2V_{zz}-V_{yy}-V_{zz}\\ &+\left(s+g'\left(V+\delta e^{-\beta t}\right)\right)V_z-f\left(V+\delta e^{-\beta t}\right)\\ = &\left(v^+_t-\Delta_xv^+\right)V_z-\left|\nabla_xv^+\right|^2V_{zz}+\sigma\delta\beta e^{-\beta t}V_z-\delta\beta e^{-\beta t}\\ &+\left(g'\left(V+\delta e^{-\beta t}\right)-g'(V)\right)V_z+f(V)-f(V+\delta e^{-\beta t})\\ = &\left(kV_z-V_{zz}\right)\left|\nabla_xv^+\right|^2+\sigma\delta\beta e^{-\beta t}V_z-\delta\beta e^{-\beta t}\\ &+\delta e^{-\beta t}\int_0^1g''\left(V+\theta\delta e^{-\beta t}\right){\rm d}\theta V_z-\delta e^{-\beta t}\int_0^1f'\left(V+\theta\delta e^{-\beta t}\right){\rm d}\theta\\ \geq&\delta e^{-\beta t}\left(\left(\sigma\beta+\int_0^1g''\left(V+\theta\delta e^{-\beta t}\right){\rm d}\theta\right) V_z-\beta-\int_0^1f'\left(V+\theta\delta e^{-\beta t}\right){\rm d}\theta\right). \end{align*}

    On the other hand, from (F), there exists a constant \delta_0(0 < \delta_0 < \frac{1}{8}) such that

    \begin{equation} -f'(r)\geq k_0 \gt 0\; \; \text{for}\; \; r\in[-2\delta_0, 2\delta_0]\cup[1-2\delta_0, 1+2\delta_0], \end{equation} (2.7)

    where

    k_0: = \frac{1}{2}\min\left\{-f'(0), -f'(1)\right\} \gt 0.

    Let \beta_3 > 0 be defined by Lemma 2.2 with \delta_0 . For \delta_0\leq V\left(y, z+v^+(x, t)+\sigma\delta\left(1-e^{-\beta t}\right)\right)\leq1-\delta_0 , from (1.2) and Lemma 2.2, we have

    \begin{align*} &\left(\sigma\beta+\int_0^1g''\left(V+\theta\delta e^{-\beta t}\right){\rm d}\theta\right) V_z-\beta-\int_0^1f'\left(V+\theta\delta e^{-\beta t}\right){\rm d}\theta\\ \geq&(\sigma\beta-l_2)\beta_3-\beta-M\geq0 \end{align*}

    if we take

    \sigma \gt \frac{\beta+M}{\beta\beta_3}+\frac{l_2}{\beta},

    where

    \begin{equation} M: = \sup\limits_{-1\leq r\leq2}\left|f'(r)\right|. \end{equation} (2.8)

    For V\left(y, z+v^+(x, t)+\sigma\delta\left(1-e^{-\beta t}\right)\right) > 1-\delta_0 or V\left(y, z+v^+(x, t)+\sigma\delta\left(1-e^{-\beta t}\right)\right) < \delta_0 , following from Lemma 2.2 and (2.7) we have

    \begin{align*} \left(\sigma\beta+\int_0^1g''\left(V+\theta\delta e^{-\beta t}\right){\rm d}\theta\right) V_z-\beta-\int_0^1f'\left(V+\theta\delta e^{-\beta t}\right){\rm d}\theta\geq k_0-\beta\geq0 \end{align*}

    if we take

    \sigma \gt \frac{l_2}{\beta}\ \text{and}\ 0 \lt \beta \lt k_0.

    Thus, if we take \beta small and \sigma large as

    0 \lt \beta \lt k_0, \ \sigma \gt \max\left\{1, \frac{M+\beta}{\beta\beta_3}+\frac{l_2}{\beta}\right\},

    we obtain L[\tilde{u}]\geq0 . Similarly, we can obtain L[\hat{u}]\leq0 . This completes the proof.

    To prove Theorem 1.1, we need another auxiliary lemma.

    Lemma 2.6. Assume that the initial value u_0(x, y, z)\in BUC^1(\mathbb R^n) satisfies

    \begin{equation} \lim\limits_{R\rightarrow\infty}\sup\limits_{|x|+|y|+|z|\geq R}|u_0(x, y, z)-V(y, z)| = 0. \end{equation} (2.9)

    Then, for any fixed T > 0 , the solution u(x, y, z, t) of (1.13) satisfies

    \begin{equation*} \lim\limits_{R\rightarrow\infty}\sup\limits_{|x|+|y|+|z|\geq R}|u(x, y, z, T)-V(y, z)| = 0. \end{equation*}

    Proof. Define a function w(x, y, z, t) by

    \omega(x, y, z, t): = u(x, y, z, t)-V(y, z).

    Then \omega(x, y, z, t) solves the following Cauchy problem

    \begin{equation} \begin{cases} \omega_t = \Delta \omega-\left(s+g'(\omega+V)\right)\omega_z+\left(f'(V+\theta_1\omega)-g''(V+\theta_2\omega)V_z\right)\omega, \\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; x\in\mathbb{R}^{n-2}, \ (y, z)\in\mathbb{R}^2, \ t \gt 0, \\ \omega(x, y, z, 0) = u_0(x, y, z)-V(y, z), \ x\in\mathbb{R}^{n-2}, \ (y, z)\in\mathbb{R}^2, \end{cases} \end{equation} (2.10)

    where \theta_i(x, y, z, t) is the functions that satisfy 0\leq\theta_i(x, y, z, t)\leq1 , i = 1, 2 .

    In order to prove the lemma, it suffices to consider the case where \omega(x, y, z, 0)\geq0 and the case where \omega(x, y, z, 0)\leq0 , since the general case follows easily from these special cases and the comparison principle. In the following, we always assume that \omega(x, y, z, 0)\geq0 .

    Letting

    g_1(x, y, z, t) = -\left(s+g'(\omega+V)\right), \ g_2(x, y, z, t) = f'(V+\theta_1\omega)-g''(V+\theta_2\omega)V_z,

    then (2.10) can be rewritten as

    \begin{equation*} \begin{cases} \omega_t = \Delta \omega+g_1(x, y, z, t)\omega_z+g_2(x, y, z, t)\omega, \ x\in\mathbb{R}^{n-2}, \ (y, z)\in\mathbb{R}^2, \ t \gt 0, \\ \omega(x, y, z, 0) = u_0(x, y, z)-V(y, z), \ x\in\mathbb{R}^{n-2}, \ (y, z)\in\mathbb{R}^2. \end{cases} \end{equation*}

    Because of \omega(x, y, z, 0)\geq0 , the maximum principle gives \omega(x, y, z, t)\geq0 . Then, by assumptions (F) and (G), there exists a constant M_* > 0 such that

    \omega_t = \Delta \omega+g_1(x, y, z, t)\omega_z+g_2(x, y, z, t)\omega\leq\Delta \omega+g_1(x, y, z, t)\omega_z+M_*\omega.

    Since g\in C^{2+\gamma_0}(\mathbb{R}) and g_1(x, y, z, t) is bounded continuous in \mathbb{R}^n\times\mathbb{R}^+ , Friedman [49,Chapter 9,Theorem 2] implies that the fundamental solution \Gamma(x, y, z, \zeta, \eta_1, \eta_2, t, \tau) of the problem

    \begin{equation} \begin{cases} \tilde{\omega}_t = \Delta \tilde{\omega}+g_1(x, y, z, t)\tilde{\omega}_z+M_*\tilde{\omega}, \ x\in\mathbb{R}^{n-2}, \ (y, z)\in\mathbb{R}^2, \ t \gt 0, \\ \tilde{\omega}(x, y, z, 0) = u_0(x, y, z)-V(y, z), \ x\in\mathbb{R}^{n-2}, \ (y, z)\in\mathbb{R}^2 \end{cases} \end{equation} (2.11)

    exists and satisfies

    \Gamma(x, y, z, \zeta, \eta_1, \eta_2, t, \tau)\leq\frac{c_1}{ (t-\tau)^{\frac{n}{2}}}e^{-c_2\frac{|x-\zeta|^2+(y-\eta_1)^2+\left(z-\eta_2\right)^2}{t-\tau}}\ \text{for}\ 0\leq\tau \lt t\leq T,

    where c_1 , c_2 are positive constants depending only on T . A solution of problem (2.11) can be expressed as

    \tilde{\omega}(x, y, z, t) = \int_{\mathbb{R}^2}\int_{\mathbb{R}^{n-2}}\Gamma(x, y, z, \zeta, \eta_1, \eta_2, t, 0)\left(u_0(\zeta, \eta_1, \eta_2)-V(\eta_1, \eta_2)\right){\rm d}\zeta{\rm d}\eta_1{\rm d}\eta_2.

    Then we obtain the estimate

    \begin{align*} 0\leq &\omega(x, y, z, t)\leq\tilde{\omega}(x, y, z, t)\\ \leq&\int_{\mathbb{R}^2}\int_{\mathbb{R}^{n-2}}\Gamma(x, y, z, \zeta, \eta_1, \eta_2, t, \tau)\left(u_0(\zeta, \eta_1, \eta_2)-V(\eta_1, \eta_2)\right){\rm d}\zeta{\rm d}\eta_1{\rm d}\eta_2\\ \leq&c_1\int_{\mathbb{R}^2}\int_{\mathbb{R}^{n-2}}e^{-c_2\left(|X|^2+Y^2+Z^2\right)}\\ &\times\left(u_0(x+\sqrt{t}X, y+\sqrt{t}Y, z+\sqrt{t}Z)-V(y+\sqrt{t}Y, z+\sqrt{t}Z)\right){\rm d}X{\rm d}Y{\rm d}Z. \end{align*}

    Since (2.9), then for any fixed T > 0 , we have

    \begin{equation*} \lim\limits_{R\rightarrow\infty}\sup\limits_{|x|+|y|+|z|\geq R}|u(x, y, z, T)-V(y, z)| = 0. \end{equation*}

    Similarly, we can treat the case that \omega(x, y, x, 0)\leq0 . This completes the proof.

    Next, we end this section by proving Theorem 1.1.

    Proof of Theorem 1.1. We only show a lower estimate, since an upper estimate is obtained similarly. Taking constants k > 0 as in Lemma 2.3 and \sigma\geq1 as in Lemma 2.5. Let a constant \varepsilon > 0 be arbitrarily fixed. Define a constant \hat{\varepsilon}: = \varepsilon/\left(2\|V_z\|_{L^\infty(\mathbb{R}^2)}+1\right) . Since f(r) > 0 for r < 0 by the assumption (F), we have that

    \liminf\limits_{t\rightarrow+\infty}u(x, y, z, t) = 0

    by the comparison principle. Consequently, there exists a constant T_1 > 0 such that

    u(x, y, z, T_1)\geq-\frac{\hat{\varepsilon}}{2\sigma}, \ (x, y, z)\in\mathbb{R}^n.

    Furthermore, Lemma 2.6 implies that there exists a constant R > 0 that satisfies

    \sup\limits_{|x|+|y|+|z|\geq R}|u(x, y, z, T_1)-V(y, z)|\leq\frac{\hat{\varepsilon}}{\sigma}.

    Then we can take a function v_0(x)\geq0 that satisfies \lim_{|x|\rightarrow\infty}v_0(x) = 0 and

    u(x, y, z, T_1)\geq V\left(y, z-v_0(x)\right)-\frac{\hat{\varepsilon}}{\sigma}, \ (x, y, z)\in\mathbb{R}^n.

    Assume that v(x, t) solves the following Cauchy problem:

    \begin{equation*} \begin{cases} v_t = \Delta_xv-k|\nabla_xv|^2, \ x\in\mathbb{R}^{n-2}, \ t \gt 0, \\ v(x, 0) = v_0(x), \ x\in\mathbb{R}^{n-2}. \end{cases} \end{equation*}

    Then Lemma 2.1 implies that there exists a constant T_2 > 0 for which v(x, t)\leq\hat{\varepsilon} holds true for t\geq T_2 . Finally, by using the comparison principle and the solution constructed in Lemma 2.5, we obtain

    \begin{align*} u(x, y, z, t)\geq& V\left(y, z-v(x, t-T_1)-\hat{\varepsilon}\left(1-e^{-\beta(t-T_1)}\right)\right)-\frac{\hat{\varepsilon}}{\sigma}e^{-\beta(t-T_1)}\\ \geq&V(y, z-2\hat{\varepsilon})-\hat{\varepsilon}\\ \geq&V(y, z)-\left(2\|V_z\|_{L^\infty(\mathbb{R}^2)}+1\right)\hat{\varepsilon}\\ \geq&V(y, z)-\varepsilon \end{align*}

    for t\geq T_1+T_2 . This completes the proof of Theorem 1.1.

    In this section, we consider Case B and give proofs of Theorems 1.5 and 1.6.

    Proof of Theorem 1.5. Consider the following two-dimensional problem

    \begin{equation} \begin{cases}\frac{\partial u}{\partial t}+\left(g(u)\right)_z = u_{yy}+u_{zz}+f(u), \; \; y\in\mathbb R, \; z\in\mathbb R, \; t \gt 0, \\ u(y, z, 0) = \hat{u}_0(y, z), \; \; y\in\mathbb R, \; z\in\mathbb R.\end{cases} \end{equation} (3.1)

    Denote the solution by u(y, z, t; \hat{u}_0) . Following from (1.6) (see also [10]), we have that

    \begin{equation} \lim\limits_{t\rightarrow\infty} \sup\limits_{(y, z)\in\mathbb{R}^n}\left|u(y, z, t;\hat{u}_0)-V\left(y, z+st\right)\right| = 0. \end{equation} (3.2)

    It is clear that u(y, z, t; \hat{u}_0) is also a solution of (1.1) with initial value u(x, y, z, 0) = \hat{u}_0(y, z) . Since V(y, z)\leq u_0(x, y, z)\leq \hat{u}_0(y, z) in (x, y, z)\in\mathbb{R}^3 , it follows from the comparison principle that

    \begin{equation} V(y, z+st)\leq u(x, y, z, t;u_0)\leq u(y, z, t;\hat{u}_0)\quad \forall (x, y, z)\in\mathbb{R}^3, \ t \gt 0, \end{equation} (3.3)

    where u(x, y, z, t; u_0) denotes the solution of (1.1). Finally, using (3.2) and (3.3) we obtain

    \lim\limits_{t\rightarrow\infty} \sup\limits_{(x, y, z)\in\mathbb{R}^n}\left|u(x, y, z, t;u_0)-V\left(y, z+st\right)\right| = 0.

    This completes the proof.

    We now give the proof of Theorem 1.6. This theorem implies that the V-shaped traveling fronts are not necessarily asymptotically stable if the initial perturbations are not decay to zero as |x|+|y|+|z|\rightarrow\infty even they are very small. By using supersolutions and subsolutions constructed in the previous section and the following lemma, we construct a sequence of supersolutions and subsolutions that push the solution back and forth in the z -direction, then forcing the solution to oscillate permanently with non-decaying amplitude.

    Lemma 3.1. (See [42,Lemma 3.1 and Lemma 3.2]). Let k > 0 be defined as in Lemma 2.3 and v^\pm(x, t) be the solutions to the problem

    \begin{equation*} \begin{cases} v^\pm_t = v^\pm_{xx}\pm kv^\pm, \ x\in\mathbb R, \ t \gt 0, \\ v(x, 0) = v^\pm_0(x), \ x\in\mathbb R, \end{cases} \end{equation*}

    respectively. Suppose that the initial value v^\pm_0(x) are bounded on \mathbb R and satisfy

    \begin{align*} v^+_0(x)&\leq\delta\ \mathit{\text{for}}\ x\in\mathbb R, \\ v^+_0(x)&\leq-\delta\ \mathit{\text{for}}\ |x|\in[m!+1, (m+1)!-1] \end{align*}

    and

    \begin{align*} v^-_0(x)&\geq-\delta\ \mathit{\text{for}}\ x\in\mathbb R, \\ v^-_0(x)&\geq\delta\ \mathit{\text{for}}\ |x|\in[m!+1, (m+1)!-1] \end{align*}

    for some constant \delta > 0 and some integer m\geq2 , respectively. Then there exists a constant C > 0 depending only on \delta and k such that

    \sup\limits_{|x|\leq m!-1}v^+(x, T)\leq-\delta+C\int_{|\zeta|\in\left[0, \frac{2}{\sqrt{m}}\right]\bigcup[\sqrt{m}, \infty)}e^{-\zeta^2}{\rm d}\zeta

    and

    \sup\limits_{|x|\leq m!-1}v^-(x, T)\geq\delta-C\int_{|\zeta|\in\left[0, \frac{2}{\sqrt{m}}\right]\bigcup[\sqrt{m}, \infty)}e^{-\zeta^2}{\rm d}\zeta,

    respectively, where T = m(m!)^2/4 .

    Proof of Theorem 1.6. Set

    I_m = [m!+1, (m+1)!-1], \ \tilde{I}_m = [0, m!]\cup[(m+1)!, \infty).

    Define two sequences of smooth functions \left\{v^\pm_{0, i}(x)\right\}_{i = 1, 2, \cdots} satisfying

    \begin{equation*} |v^+_{0, i}(x)|\leq\delta, \ x\in\mathbb R\; \; \text{and}\; \; v^+_{0, i}(x) = \begin{cases} -\delta, &|x|\in I_{2i}, \\ \delta, &|x|\in\tilde{I}_{2i} \end{cases} \end{equation*}

    and

    \begin{equation*} |v^-_{0, i}(x)|\leq\delta, \ x\in\mathbb R\; \; \text{and}\; \; v^-_{0, i}(x) = \begin{cases} \delta, &|x|\in I_{2i+1}, \\ -\delta, &|x|\in\tilde{I}_{2i+1}, \end{cases} \end{equation*}

    respectively. We also take a function v_0^*(x)\in C^\infty(\mathbb R) to satisfy

    v_{0, i}^-(x)\leq v_0^*(x)\leq v_{0, i}^+(x)\; \; \text{for all}\; \; i\geq1.

    Let u^*(x, y, z, t) be the solution to (1.13) with u^*(x, y, z, 0) = V\left(y, z+v^*_0(x)\right) and v^+_i(x, t) be the solution to the following Cauchy problem:

    \begin{equation*} \begin{cases} (v^+_i)_t = (v^+_i)_{xx}+k\left(\left(v^+_i\right)_x\right)^2, \ x\in\mathbb R, \ t \gt 0, \\ v^+_i(x, 0) = v^+_{0, i}(x), \ x\in\mathbb R. \end{cases} \end{equation*}

    From -\delta\leq v^*_0(x)\leq v^+_{0, i}(x) , we have

    V(y, z-\delta)\leq V\left(y, z+v^*_0(x)\right)\leq V\left(y, z+v^+_{0, i}(x)\right),

    then Lemma 2.4 implies that

    V(y, z-\delta)\leq u^*(x, y, z, t)\leq V\left(y, z+v^+_i(x, t)\right).

    Thus, it follows from Lemma 3.1 that

    \begin{align*} V(y, z-\delta)\leq&\sup\limits_{|x|\leq(2i)!-1}u^*\left(x, y, z, t_{2i}\right)\\ \leq&\sup\limits_{|x|\leq(2i)!-1}V\left(y, z+v^+_{0, i}\left(x, t_{2i}\right)\right)\\ \leq&V(y, z-\delta)+\|V_z\|_{L^\infty(\mathbb{R}^2)}\cdot C\int_{|\zeta|\in\left[0, \frac{2}{\sqrt{2i}}\right]\bigcup\left[\sqrt{2i}, \infty\right)}e^{-\zeta^2}{\rm d}\zeta, \end{align*}

    where t_{2i} = (2i)\left((2i)!\right)^2/4 . This implies that

    \begin{equation} \lim\limits_{i\rightarrow\infty}\sup\limits_{(y, z)\in\mathbb{R}^2}\sup\limits_{|x|\leq(2i)!-1}\left|u^*(x, y, z, t_{2i})-V(y, z-\delta)\right| = 0. \end{equation} (3.4)

    Similarly, again by using Lemma 3.1 and the equalities v^-_{0, i}(x)\leq v^*_0(x)\leq\delta for i = 1, 2, 3, \cdots , we get

    \begin{align*} V(y, z+\delta)\geq&\sup\limits_{|x|\leq(2i+1)!-1}u^*\left(x, y, z, t_{2i+1}\right)\\ \geq&\sup\limits_{|x|\leq(2i+1)!-1}V\left(y, z+v^-_{0, i}\left(x, t_{2i+1}\right)\right)\\ \geq&V(y, z+\delta)-\|V_z\|_{L^\infty(\mathbb{R}^2)}\cdot C\int_{|\zeta|\in\left[0, \frac{2}{\sqrt{2i+1}}\right]\bigcup\left[\sqrt{2i+1}, \infty\right)}e^{-\zeta^2}{\rm d}\zeta, \end{align*}

    where t_{2i+1} = (2i+1)\left((2i+1)!\right)^2/4 . Then, we have

    \begin{equation} \lim\limits_{i\rightarrow\infty}\sup\limits_{(y, z)\in\mathbb{R}^2}\sup\limits_{|x|\leq\left(2i+1\right)!-1}\left|u^*(x, y, z, t_{2i+1})-V(y, z+\delta)\right| = 0. \end{equation} (3.5)

    Combining (3.4) and (3.5), we obtain the expected result. This completes the proof.

    Recently, the study on multidimensional traveling fronts for scalar reaction-diffusion equations has attracted much attention. For example, V-formed curved fronts for two-dimensional spaces (see [10,11,12,15,16,17,20,28,33]), cylindrically symmetric traveling fronts (see [14,30,36]) and traveling fronts with pyramidal shapes (see [21,23,24,25,35,37,45]) in higher-dimensional spaces. For reaction-diffusion system, we refer to [26,27,29,31,32].

    In [10], under the assumptions (F) and (G), we establish the existence and stability of V-shaped traveling fronts V(y, z) of (1.1) in \mathbb{R}^2 for every direction \theta\in (0, \pi/2) satisfying (C). On the basis of [10], we establish the multidimensional asymptotic stability of V-shaped traveling fronts V(y, z) in \mathbb{R}^n (n\geqslant3) in this article. Here we would like to mention that the main method of this paper comes from Matano et al.[42] and Sheng et al.[28]. However, in order to overcome the difficulties caused by nonlinear convection, we have to choose a suitable space for the initial data u_0 , namely u_0\in C^1(\mathbb{R}^2) . Moreover, there seems to be no research on the multidimensional asymptotic stability of the nonplanar traveling fronts for a reaction-diffusion equation with nonlinear convection, even if one-dimensional traveling fronts (or planar traveling fronts).

    The authors would like to thank the reviewers for their constructive comments and valuable suggestions that improve the quality of our paper. This work was supported by the NSF of China (11701012).

    The authors declare no conflict of interest.



    [1] E. C. M. Crooks, J. F. Toland, Travelling waves for reaction-diffusion-convection systems, Topol. Methods Nonlinear Anal., 11 (1998), 19-43. doi: 10.12775/TMNA.1998.002
    [2] E. C. M. Crooks, Stability of travelling-wave solutions for reaction-diffusion-convection systems, Topol. Methods Nonlinear Anal., 16 (2000), 37-63. doi: 10.12775/TMNA.2000.029
    [3] E. C. M. Crooks, Travelling fronts for monostable reaction-diffusion systems with gradient-dependence, Adv. Differ. Equ., 8 (2003), 279-314.
    [4] E. C. M. Crooks, Front profiles in the vanishing-diffusion limit for monostable reaction-diffusion-convection equations, Differ. Integr. Equ., 23 (2010), 495-512.
    [5] E. C. M. Crooks, C. Mascia, Front speeds in the vanishing diffusion limit for reaction-diffusion-convection equations, Differ. Integr. Equ., 20 (2007), 499-514.
    [6] E. C. M. Crooks, J. C. Tsai, Front-like entire solutions for equations with convection, J. Differ. Equ., 253 (2012), 1206-1249. doi: 10.1016/j.jde.2012.04.022
    [7] B. H. Gilding, On front speeds in the vanishing diffusion limit for reaction-convection-diffusion equations, Differ. Integr. Equ., 23 (2010), 445-450.
    [8] B. H. Gilding, R. Kersner, Travelling waves in nonlinear diffusion-convection reaction, Progr. Nonlinear Differ. Equ. Appl., 60 Birkhäuser Verlag, Basel, 2004.
    [9] B. Feng, R. Chen, J. Liu, Blow-up criteria and instability of normalized standing waves for the fractional Schrödinger-Choquard equation, Adv. Nonlinear Anal., 10 (2021), 311-330.
    [10] H. L. Niu, J. Liu, Curved fronts of bistable reaction-diffusion equations with nonlinear convection, Adv. Differ. Equ., 2020 (2020), 1-27. doi: 10.1186/s13662-019-2438-0
    [11] H. Ninomiya, M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differ. Equ., 213 (2005), 204-233. doi: 10.1016/j.jde.2004.06.011
    [12] A. Bonnet, F. Hamel, Existence of nonplanar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 31 (1999), 80-118. doi: 10.1137/S0036141097316391
    [13] F. Hamel, Bistable transition fronts in \mathbb{R}^N, Adv. Math., 289 (2016), 279-344. doi: 10.1016/j.aim.2015.11.033
    [14] F. Hamel, R. Monneau, Solutions of semilinear elliptic equations in \mathbb{R}^N with conical-shaped level sets, Comm. Partial Differ. Equ., 25 (2000), 769-819. doi: 10.1080/03605300008821532
    [15] F. Hamel, R. Monneau, J. M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 13 (2005), 1069-1096. doi: 10.3934/dcds.2005.13.1069
    [16] F. Hamel, R. Monneau, J. M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 14 (2006), 75-92.
    [17] F. Hamel, R. Monneau, J. M. Roquejoffre, Stability of travelling waves in a model for conical flames in two space dimensions, Ann. Sci. École Norm. Sup., 37 (2004), 469-506. doi: 10.1016/j.ansens.2004.03.001
    [18] F. Hamel, N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in \mathbb{R}^N, Arch. Ration. Mech. Anal., 157 (2001), 91-163. doi: 10.1007/PL00004238
    [19] F. Hamel, J. M. Roquejoffre, Heteroclinic connections for multidimensional bistable reaction-diffusion equations, Discrete Contin. Dynam. Syst. S, 4 (2011), 101-123. doi: 10.3934/dcdss.2011.4.101
    [20] H. Ninomiya, M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equation, Discrete Contin. Dyn. Syst., 15 (2006), 819-832. doi: 10.3934/dcds.2006.15.819
    [21] W. J. Sheng, W. T. Li, Z. C. Wang, Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-periodic nonlinearity, J. Differ. Equ., 252 (2012), 2388-2424. doi: 10.1016/j.jde.2011.09.016
    [22] B. Feng, R. Chen, Q. Wang, Instability of standing waves for the nonlinear Schrödinger-Poisson equation in the L2-critical case, J. Dynam. Differ. Equ., 32 (2020) 1357-1370.
    [23] M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344. doi: 10.1137/060661788
    [24] M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differ. Equ., 246 (2009), 2103-2130. doi: 10.1016/j.jde.2008.06.037
    [25] M. Taniguchi, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst., 32 (2012), 1011-1046. doi: 10.3934/dcds.2012.32.1011
    [26] H. T. Niu, Z. H. Bu, Z. C. Wang, Global stability of curved fronts in the Belousov-Zhabotinskii reaction-diffusion system in R2, Nonlinear Anal. RWA, 46 (2019), 493-524. doi: 10.1016/j.nonrwa.2018.10.003
    [27] H. T. Niu, Z. C. Wang, Z. H. Bu, Curved fronts in the Belousov-Zhabotinskii reaction-diffusion systems in R2, J. Differ. Equ., 264 (2018), 5758-5801. doi: 10.1016/j.jde.2018.01.020
    [28] W. J. Sheng, W. T. Li, Z. C. Wang, Multidimensional stability of V-shaped traveling fronts in the Allen-Cahn equation, Sci. China Math., 56 (2013), 1969-1982. doi: 10.1007/s11425-013-4699-5
    [29] Z. C. Wang, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst., 32 (2012), 2339-2374. doi: 10.3934/dcds.2012.32.2339
    [30] Z. C. Wang, Cylindrically symmetric traveling fronts in periodic reaction-diffusion equations with bistable nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 145A (2015), 1053-1090.
    [31] Z. C. Wang, W. T. Li, S. Ruan, Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems, Sci.China Math., 59 (2016), 1869-1908.
    [32] Z. C. Wang, H. L. Niu, S. Ruan, On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in R3, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1111-1144.
    [33] Z. C. Wang, J. Wu, Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity, J. Differ. Equ., 250 (2011), 3196-3229. doi: 10.1016/j.jde.2011.01.017
    [34] B. Feng, J. Liu, H. Niu, B. Zhang, Strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersions, Nonlinear Anal., 196 (2020), 111791. doi: 10.1016/j.na.2020.111791
    [35] Z. H. Bu, L. Y. Ma, Z. C. Wang, Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations II, Nonlinear Anal. RWA, 47 (2019), 80-118.
    [36] Z. H. Bu, L. Y. Ma, Z. C. Wang, Conical traveling fronts of combustion equations in R3, Appl. Math. Lett., 108 (2020), 106509. doi: 10.1016/j.aml.2020.106509
    [37] Z. C. Wang, Z. H. Bu, Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-KPP nonlinearities, J. Differ. Equ., 260 (2016), 6405-6450. doi: 10.1016/j.jde.2015.12.045
    [38] B. Feng, On the blow-up solutions for the nonlinear Schrödinger equation with combined power-type nonlinearities, J. Evol. Equ., 18 (2018), 203-220. doi: 10.1007/s00028-017-0397-z
    [39] T. Kapitula, Multidimensional stability of planar travelling waves, Trans. Amer. Math. Soc., 349 (1997), 257-269. doi: 10.1090/S0002-9947-97-01668-1
    [40] C. D. Levermore, J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, II, Commun. Partial Differ. Equ., 17 (1992), 1901-1924. doi: 10.1080/03605309208820908
    [41] H. Matano, M. Nara, Large time behavior of disturbed planar fronts in the Allen-Cahn equation, J. Differ. Equ., 251 (2011), 3522-3557. doi: 10.1016/j.jde.2011.08.029
    [42] H. Matano, M. Nara, M. Taniguchi, Stability of planar waves in the Allen-Cahn equation, Commun. Partial Differ. Equ., 34 (2009), 976-1002. doi: 10.1080/03605300902963500
    [43] J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation, I, Commun. Partial Differ. Equ., 17 (1992), 1889-1899. doi: 10.1080/03605309208820907
    [44] J. M. Roquejoffre, V. Roussier-Michon, Nontrivial large-time behaviour in bistable reaction-diffusion equations, Ann. Mat. Pura Appl., 188 (2009), 207-233.
    [45] H. Cheng, R. Yuan, Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation, Discrete Contin. Dyn. Syst., 20 (2015), 1015-1029. doi: 10.3934/dcdsb.2015.20.1015
    [46] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Birkhäuser Verlag, Basel, 1995.
    [47] M. Nara, M. Taniguchi, Stability of a traveling wave in curvature flows for spatially non-decaying initial perturbations, Discrete Contin. Dyn. Syst., 14 (2006), 203-220.
    [48] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Reprint of the 1998 edition, Springer-Verlag, Berlin, 2001.
    [49] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, 1964.
  • This article has been cited by:

    1. Amina Cherraf, Mingchu Li, Anes Moulai-Khatir, Meryem Hamidaoui, Mathematical Modeling of the Tumor–Immune System with Time Delay and Diffusion, 2023, 12, 2075-1680, 184, 10.3390/axioms12020184
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3571) PDF downloads(121) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog