Citation: Abdelatif Boutiara, Kaddour Guerbati, Maamar Benbachir. Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces[J]. AIMS Mathematics, 2020, 5(1): 259-272. doi: 10.3934/math.2020017
[1] | R. P. Agarwal, M. Benchohra, D. Seba, On the application of measure of noncompactness to the existence of solutions for fractional differential equations, Results Math., 55 (2009), 221-230. doi: 10.1007/s00025-009-0434-5 |
[2] | R. P. Agarwal, M. Meehan, D. O'Regan, Fixed Point Theory and Applications, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2001. |
[3] | A. Aghajani, A. M. Tehrani, D. O'Regan, Some New Fixed Point Results via the Concept of Measure of Noncompactness, Filomat, 29 (2015), 1209-1216. doi: 10.2298/FIL1506209A |
[4] | R. P. Agarwal, B. Ahmad, A. Alsaedi, Fractional-order differential equations with anti-periodic boundary conditions: a survey, Bound. Value Probl., 2017 (2017), 1-27. doi: 10.1186/s13661-016-0733-1 |
[5] | R. R. Akhmerov, M. I. Kamenskii, A. S. Patapov, et al. Measures of Noncompactness and Condensing Operators, Birkhauser Verlag, Basel, 1992. |
[6] | J. C. Alvàrez, Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally convex spaces, Rev. Real. Acad. Cienc. Exact. Fis. Natur. Madrid, 79 (1985), 53-66. |
[7] | A. Ardjouni, A. Djoudi, Positive solutions for nonlinear Caputo-Hadamard fractional differential equations with integral boundary conditions, Open J. Math. Anal., 3 (2019), 62-69 doi: 10.30538/psrp-oma2019.0033 |
[8] | P. Assari, S. Cuomo, The numerical solution of fractional differential equations using the Volterra integral equation method based on thin plate splines, Engineering with Computers, 35 (2019), 1391-1408. doi: 10.1007/s00366-018-0671-x |
[9] | P. Assari, M. Dehghan, A meshless local Galerkin method for solving Volterra integral equations deduced from nonlinear fractional differential equations using the moving least squares technique, Appl. Numer. Math., 143 (2019), 276-299. doi: 10.1016/j.apnum.2019.04.014 |
[10] | P. Assari F. Asadi-Mehregan, Local radial basis function scheme for solving a class of fractional integro-differential equations based on the use of mixed integral equations, ZAMM-Journal of Applied Mathematics and Mechanics, 99 (2019), 1-28. |
[11] | J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 1980. |
[12] | J. Banas, M. Jleli, M. Mursaleen, et al. Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness, Springer Nature Singapore, 2017. |
[13] | M. Benchohra, S. Hamani and S. K. Ntouyas, Boundary value problems for differential equations with fractional order, Surveys in Mathematics & its Applications, 3 (2008), 1-12. |
[14] | M. Benchohra, J. Henderson, D. Seba, Measure of noncompactness and fractional differential equations in Banach spaces, Communications in Applied Analysis, 12 (2008), 419-428. |
[15] | M. Benchohra, G. M. N'Guérékata, D. Seba, Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order, CUBO A Math. J., 12 (2010), 33-46. |
[16] | W, Benhamida, J. R. Graef, S. Hamani, Boundary Value Problems for Fractional Differential Equations with Integral and Anti-Periodic Conditions in a Banach Space, Progress in Fractional Differentiation and Applications, 4 (2018), 65-70. doi: 10.18576/pfda/040201 |
[17] | W. Benhamida, S. Hamani, Measure of Noncompactness and Caputo-Hadamard Fractional Differential Equations in Banach Spaces, Eurasian Bulletin of Mathematics EBM, 1 (2018), 98-106. |
[18] | W. Benhamida, S. Hamani, J. Henderson, Boundary Value Problems For Caputo-Hadamard Fractional Differential Equations, Advances in the Theory of Nonlinear Analysis and its Applications, 2 (2018), 138-145. |
[19] | L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1991), 494-505. doi: 10.1016/0022-247X(91)90164-U |
[20] | L. Byszewski, V. Lakshmikantham, Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 40 (1991), 11-19. doi: 10.1080/00036819008839989 |
[21] | D. Bahuguna, M. Muslim, Approximation of solutions to non-local history-valued retarded differential equations, Appl. Math. Comput., 174 (2006), 165-179. |
[22] | D. Bahuguna, S. Agarwal, Approximations of solutions to neutral functional differential equations with nonlocal history conditions, J. Math. Anal. Appl., 317 (2006), 583-602. doi: 10.1016/j.jmaa.2005.07.010 |
[23] | D. Chergui, T. E. Oussaeif, M. Ahcene, Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions, AIMS Mathematics, 4 (2019), 112-133. doi: 10.3934/Math.2019.1.112 |
[24] | T. Chen and W. Liu, An anti-periodic boundary value problem for the fractional differential equations with a p-Laplacian operator, Appl. Math. Lett., 25 (2012), 1671-1675. doi: 10.1016/j.aml.2012.01.035 |
[25] | A. Dzielinski, D. Sierociuk, G. Sarwas, Some applications of fractional order calculus, Bull. Pol. Acad. Sci. Tech. Sci., 58 (2010), 583. |
[26] | F. Li, Gaston M. N' Guérékata, An existence result for neutral delay integrodifferential equations with fractional order and nonlocal conditions, Abstr. Appl. Anal., 2011 (2011), 1-20. |
[27] | F. Li, J. Liang, H. K. Xu, Existence of mild solutions for fractional integrodifferential equation of Sobolev type with nonlocal conditions, J. Math. Anal. Appl., 391 (2012), 510-525. doi: 10.1016/j.jmaa.2012.02.057 |
[28] | N. Ford, M. Morgado, Fractional boundary value problems: Analysis and numerical methods, Fract. Calc. Appl. Anal., 14 (2011), 554-567. |
[29] | C. Goodrich, Existence and uniqueness of solutions to a fractional differencial equation with nonlocal conditions, Comput. Math. Appl., 61 (2011), 191-202. doi: 10.1016/j.camwa.2010.10.041 |
[30] | D. Guo, V. Lakshmikantham, X. Liu, Nonlinear integral equations in abstract spaces, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996. |
[31] | E. Hesameddini, A. Rahimi, E. Asadollahifard, On the convergence of a new reliable algorithm for solving multi-order fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 34 (2016), 154. |
[32] | M. H. Heydari, M. R. Mahmoudi, A. Shakiba, et al. Chebyshev cardinal wavelets and their application in solving nonlinear stochastic differential equations with fractional Brownian motion, Commun Nonlinear Sci., 64 (2018), 98-121 doi: 10.1016/j.cnsns.2018.04.018 |
[33] | M. H. Heydari, Z. Avazzadeh, M. R. Mahmoudi, Chebyshev cardinal wavelets for nonlinear stochastic differential equations driven with variable-order fractional Brownian motion, Chaos, Solitons and Fractals, 124 (2019), 105-124 doi: 10.1016/j.chaos.2019.04.040 |
[34] | F. Jarad, D. Baleanu and A. Abdeljawad, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ-NY, 2012 (2012), 142. |
[35] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, 2006. |
[36] | C. Kou, J. Liu and Y. Ye, Existence and uniqueness of solutions for the Cachy-type problems of fractional differential equations, Discrete Dyn. Nat. Soc., 2010 (2010), 1-15. |
[37] | H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 4 (1980), 985-999. |
[38] | K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993. |
[39] | K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974. |
[40] | I. Podlubny, I. Petrás, B. M. Vinagre, et al. Analogue realizations of fractional-order controllers, Nonlinear Dynam., 29 (2002), 281-296. doi: 10.1023/A:1016556604320 |
[41] | R. Roohi, M. H. Heydari, M. Aslami, et al. A comprehensive numerical study of space-time fractional bioheat equation using fractional-order Legendre functions, The European Physical Journal Plus, 133 (2018), 412. |
[42] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, 1993. |
[43] | D. Sierociuk, A. Dzielinski, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek, Modelling heat transfer in heterogeneous media using fractional calculus, Philos. T. R. Soc. A, 371 (2013), 20120146. |
[44] | S. Szufla, On the application of measure of noncompactness to existence theorems, Rendiconti del Seminario Matematico della Universita di Padova, 75 (1986), 1-14. |
[45] | Y. Y. Gambo, F. Jarad, D. Baleanu, et al. On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equ-NY, 2014 (2014), 10. |
[46] | A. Yacine and B. Nouredine, boundary value problem for Caputo-Hadamard fractional differential equations, Surveys in Mathematics and its Applications, 12 (2017), 103-115. |
[47] | H. E. Zhang, Nonlocal boundary value problems of fractional order at resonance with integral conditions, Adv. Differ. Equ-NY, 2017 (2017), 326. |