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1. Introduction

In the last few decades, the investigation of fractional differential equations has been picking up
much attention of researchers. This is due to the fact that fractional differential equations have various
applications in engineering and scientific disciplines, for example, fluid dynamics, fractal theory,
diffusion in porous media, fractional biological neurons, traffic flow, polymer rheology, neural
network modeling, viscoelastic panel in supersonic gas flow, real system characterized by power laws,
electrodynamics of complex medium, sandwich system identification, nonlinear oscillation of
earthquake, models of population growth, mathematical modeling of the diffusion of discrete particles
in a turbulent fluid, nuclear reactors and theory of population dynamics. The fractional differential
equation is an important tool to describe the memory and hereditary properties of various materials
and phenomena. The details on the theory and its applications may be found in books [35, 38, 40, 42]
and references therein.

It has also been many subjects in fractional calculus that have been developed in various fields,

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2020017


260

from pure mathematical theory to applied sciences such as modeling of heat transfer in heterogeneous
media [43], modeling of ultracapacitor and beams heating [25], etc. These applications are mainly due
to the fact that many physical systems are related to fractional-order dynamics and their behaviors are
governed by fractional differential equations (FDEs) [39]. The significant importance of using FDEs
describes the non-local property [31], which means the current state and all its previous states affect the
next state of a dynamical system. We remind that an essential issue about fractional calculus problems
is difficult in obtaining analytical solutions. Therefore, numerical and approximation methods are
commonly proposed to obtain approximate solutions for this kind of problems,e.g., [8–10, 28, 32, 33,
41].

Recently, fractional-order differential equations equipped with a variety of boundary conditions
have been studied. The literature on the topic includes the existence and uniqueness results related to
classical, initial value problem, periodic/anti-periodic, nonlocal, multi-point, integral boundary
conditions, and Integral Fractional Boundary Condition, for instance, the monographs of Ahmed et
al. [4], Benchohra et al. [13], W, Benhamida et al. [16], D. Chergui et al. [23], Chen et al. [24],
Goodrich et al. [29] and Zhang et al. [47].

On the other hand, the nonlocal problem has been studied by many authors. The existence of a
solution for abstract Cauchy differential equations with nonlocal conditions in a Banach space has been
considered first by Byszewski [19]. In physical science, the nonlocal condition may be connected with
better effect in applications than the classical initial condition since nonlocal conditions are normally
more exact for physical estimations than the classical initial condition. For the study of nonlocal
problems, we refer to [20–22, 26, 27, 29, 47] and references given therein.

This paper deals with the existence of solutions to the boundary value problem for fractional-order
differential equations:

CDr x(t) = f (t, x(t)), t ∈ J := [1,T ], 0 < r ≤ 1, (1.1)

with fractional boundary condition:

αx(1) + βx(T ) = λIqx(η) + δ, q ∈ (0, 1]. (1.2)

where Dr is the Caputo-Hadamard fractional derivative, 0 < r < 1, 0 < q ≤ 1, and let E be a Banach
space space with norm ‖.‖, f : J×E → E is given continuous function and satisfying some assumptions
that will be specified later. α, β, λ are real constants, and η ∈ (1,T ), δ ∈ E.

In this paper, we present existence results for the problem (1.1)-(1.2) using a method involving a
measure of noncompactness and a fixed point theorem of Mönch type. that technique turns out to be a
very useful tool in existence for several types of integral equations; details are found in A. Aghajani et
al. [3], Akhmerov et al. [5], Alvàrez [6], Banas̀ et al. [11,12], Benchohra et al. [14,15], Guo et al. [30],
Mönch [37], Szufla [44]. We can use a numerical method to solve the problem in Equation (1.1-1.2),
for instance, see [8–10, 28, 32, 33, 41].

The organization of this work is as follows. In Section 2, we introduce some notations, definitions,
and lemmas that will be used later. Section 3 treats the existence of solutions in Banach spaces. In
Section 4, we illustrate the obtained results by an example. Finally, the paper concludes with some
interesting observations in Section 5.
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2. Preliminaires

In what follows we introduce definitions, notations, and preliminary facts which are used in the
sequel. For more details, we refer to [1, 2, 5, 11, 35, 36, 42, 44].
Denote by C(J, E) the Banach space of continuous functions x : J → E, with the usual supremum
norm

‖x‖∞ = sup {‖x(t)‖, t ∈ J} .

Let L1(J, E) be the Banach space of measurable functions x : J → E which are Bochner integrable,
equipped with the norm

‖x‖L1 =

∫
J
|x(t)| dt.

Let the space
ACn

δ([a, b], E) =
{
h : [a, b]→ R : δn−1h(t) ∈ AC([a, b], E)

}
.

where δ = t d
dt is the Hadamard derivative and AC([a, b], E) is the space of absolutely continuous

functions on [a, b].

Now, we give some results and properties of fractional calculus.

Definition 2.1. (Hadamard fractional integral) (see [35])
The left-sided fractional integral of order α > 0 of a function y : (a, b)→ R is given by

Iαa+y(t) =
1

Γ(α)

∫ t

a

(
log

t
s

)α−1
y(s)

ds
s

(2.1)

provided the right integral converges.

Definition 2.2. (Hadamard fractional derivative) (see [35])
The left-sided Hadamard fractional derivative of order α ≥ 0 of a continuous function y : (a, b)→ R is
given by

Dα
a+ f (t) = δnIn−α

a+ y(t)

=
1

Γ(n − α)

(
t

d
dt

)n ∫ t

a

(
log

t
s

)n−α−1
y(s)

ds
s

(2.2)

where n = [α] + 1, and [α] denotes the integer part of the real number α and δ = t d
dt .

provided the right integral converges.

There is a recent generalization introduced by Jarad and al in [34], where the authors define the
generalization of the Hadamard fractional derivatives and present properties of such derivatives. This
new generalization is now known as the Caputo-Hadamard fractional derivatives and is given by the
following definition:

Definition 2.3. (Caputo-Hadamard fractional derivative) (see [34, 46])
Let α = 0, and n = [α] + 1. If y(x) ∈ ACn

δ[a, b], where 0 < a < b < ∞ and
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ACn
δ([a, b], E) =

{
h : [a, b]→ R : δn−1h(t) ∈ AC([a, b], E)

}
.

The left-sided Caputo-type modification of left-Hadamard fractional derivatives of order α is given by

CDα
a+y(t) = Dα

a+

y(t) −
n−1∑
k=0

δky(a)
k!

(log
t
s
)k

 (2.3)

Theorem 2.4. (See [34])
Let α ≥ 0, and n = [α] + 1. If y(t) ∈ ACn

δ[a, b], where 0 < a < b < ∞. Then CDα
a+ f (t) exist everywhere

on [a, b] and
(i) if α < N − {0}, CDα

a+ f (t) can be represented by

CDα
a+y(t) = In−α

a+ δny(t)

=
1

Γ(n − α)

∫ t

a

(
log

t
s

)n−α−1
δny(s)

ds
s

(2.4)

(ii) if α ∈ N − {0}, then
CDα

a+y(t) = δny(t) (2.5)

In particular
CD0

a+y(t) = y(t) (2.6)

Caputo-Hadamard fractional derivatives can also be defined on the positive half axis R+ by replacing
a by 0 in formula (2.4) provided that y(t) ∈ ACn

δ(R
+). Thus one has

CDα
a+y(t) =

1
Γ(n − α)

∫ t

a

(
log

t
s

)n−α−1
δny(s)

ds
s

(2.7)

Proposition 2.5. (see [34, 35])
Let α > 0, β > 0, n = [α] + 1, and a > 0, then

Iαa+

(
log

t
a

)β−1
(x) =

Γ(β)
Γ(β − α)

(
log

x
a

)β+α−1

CDα
a+

(
log

t
a

)β−1
(x) =

Γ(β)
Γ(β − α)

(
log

x
a

)β−α−1
, β > n,

CDα
a+

(
log

t
a

)k
= 0, k = 0, 1, ..., n − 1.

(2.8)

Theorem 2.6. (see [45])
Let y(t) ∈ ACn

δ[a, b], 0 < a < b < ∞ and α ≥ 0, β ≥ 0, Then

CDα
a+

(
Iαa+y

)
(t) =

(
Iβ−αa+ y

)
(t),

CDα
a+

(
CDβ

a+y
)

(t) =
(

CDα+β
a+ y

)
(t).

(2.9)
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Lemma 2.7. (see [34])
Let α ≥ 0, and n = [α] + 1. If y(t) ∈ ACn

δ[a, b], then the Caputo-Hadamard fractional differential
equation

CDα
a+y(t) = 0 (2.10)

has a solution:

y(t) =

n−1∑
k=0

ck

(
log

t
a

)k
(2.11)

and the following formula holds:

Iαa+

(
CDα

a+y
)

(t) = y(t) +

n−1∑
k=0

ck

(
log

t
a

)k
(2.12)

where ck ∈ R, k = 1, 2, ..., n − 1

Now let us recall some fundamental facts of the notion of Kuratowski measure of noncompactness.

Definition 2.8. ( [5, 11]) Let E be a Banach space and ΩE the bounded subsets of E. The Kuratowski
measure of noncompactness is the map µ : ΩE → [0,∞] defined by

µ(B) = inf{ε > 0 : B ⊆ ∪n
i=1Bi and diam(Bi) ≤ ε}; here B ∈ ΩE.

This measure of noncompactness satisfies some important properties [5, 11]:
(a) µ(B) = 0⇔ B is compact (B is relatively compact).
(b) µ(B) = µ(B).
(c) A ⊂ B⇒ µ(A) ≤ µ(B).
(d) µ(A + B) ≤ µ(A) + µ(B)
(e) µ(cB) = |c|µ(B); c ∈ R.
(f) µ(convB) = µ(B).
Here B and convB denote the closure and the convex hull of the bounded set B, respectively. The
details of µ and its properties can be found in ( [5, 11]).

Definition 2.9. A map f : J × E → E is said to be Caratheodory if
(i) t 7→ f (t, u) is measurable for each u ∈ E;
(ii) u 7→ F(t, u) is continuous for almost all t ∈ J.

Notation 2.10. for a given set V of functions v : J → E, let us denote by

V(t) = {v(t) : v ∈ V}, t ∈ J,

and
V(J) = {v(t) : v ∈ V, t ∈ J}.

Let us now recall Mönch’s fixed point theorem and an important lemma.

Theorem 2.11. ( [2, 37, 44]) Let D be a bounded, closed and convex subset of a Banach space such
that 0 ∈ D, and let N be a continuous mapping of D into itself. If the implication
V = convN(V) or V = N(V) ∪ 0⇒ µ(V) = 0
holds for every subset V of D, then N has a fixed point.
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Lemma 2.12. ( [44]) Let D be a bounded, closed and convex subset of the Banach space C(J, E), G
a continuous function on J × J and f a function from J × E −→ E which satisfies the Caratheodory
conditions, and suppose there exists p ∈ L1(J,R+) such that, for each t ∈ J and each bounded set
B ⊂ E, we have

limh→0+ µ( f (Jt,h × B)) ≤ p(t)µ(B); here Jt,h = [t − h, t] ∩ J.

If V is an equicontinuous subset of D, then

µ

({∫
J

G(s, t) f (s, y(s))ds : y ∈ V
})
≤

∫
J
‖G(t, s)‖p(s)µ(V(s))ds.

3. Main results

This section is devoted to the existence results for problem (1.1)-(1.2).

Definition 3.1. A function x ∈ AC1
δ(J, E) is said to be a solution of the problem (1.1)-(1.2) if x satisfies

the equation CDr x(t) = f (t, x(t)) on J, and the conditions (1.2).

For the existence of solutions for the problem (1.1)-(1.2), we need the following auxiliary lemma.

Lemma 3.2. Let h : [1,T ) → E be a continuous function. A function x is a solution of the fractional
integral equation

x(t) = Irh(t) +
1
Λ

{
λIr+qh(η) − βIrh(T ) + δ

}
(3.1)

if and only if x is a solution of the fractional BVP

CDr x(t) = h(t), t ∈ J, r ∈ (0, 1] (3.2)

αx(1) + βx(T ) = λIqx(η) + δ, q ∈ (0, 1] (3.3)

Proof. Assume x satisfies (3.2). Then Lemma 2.8 implies that

x(t) = Irh(t) + c1. (3.4)

The condition (3.3) implies that

x(1) = c1

x(T ) = Irh(T ) + c1

Iqx(1) = Ir+qh(η)) + c1
(log η)q

Γ(q + 1)
So

αc1 + βIrh(T ) + βc1 = λIr+qh(η)) + c1
λ(log η)q

Γ(q + 1)
+ δ

Thus,

c1

(
α + β −

λ(log η)q

Γ(q + 1)

)
= λIr+qh(η)) − βIrh(T ) + δ.
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Consequently,

c1 =
1
Λ

{
λIr+qh(η)) − βIrh(T ) + δ

}
.

Where,

Λ =

(
α + β −

λ(log η)q

Γ(q + 1)

)
Finally, we obtain the solution (3.1)

x(t) = Irh(t) +
1
Λ

{
λIr+qh(η) − βIrh(T ) + δ

}
�

In the following,we prove existence results, for the boundary value problem (1.1)-(1.2) by using a
Mönch fixed point theorem.
(H1) f : J × E → E satisfies the Caratheodory conditions;
(H2) There exists p ∈ L1(J,R+) ∩C(J,R+), such that,

‖ f (t, x)‖ ≤ p(t)‖x‖, for t ∈ J and each x ∈ E;

(H3) For each t ∈ J and each bounded set B ⊂ E, we have

lim
h→0+

µ( f (Jt,h × B)) ≤ p(t)µ(B); here Jt,h = [t − h, t] ∩ J.

Theorem 3.3. Assume that conditions (H1)-(H3) hold. Let p∗ = supt∈J p(t). If

p∗M < 1 (3.5)

With

M :=
{

(log T )r

Γ(r + 1)
+
|λ|(log η)r+q

|Λ|Γ(r + q + 1)
+
|β|(log T )r

|Λ|Γ(r + 1)

}
then the BVP (1.1)-(1.2) has at least one solution.

Proof. Transform the problem (1.1)-(1.2) into a fixed point problem. Consider the operator
F : C(J, E)→ C(J, E) defined by

Fx(t) = Irh(t) +
1
Λ

{
λIr+qh(η) − βIrh(T ) + δ

}
(3.6)

Clearly, the fixed points of the operator F are solutions of the problem (1.1)-(1.2). Let

R ≥
|δ|

|Λ|(1 − p∗M)
. (3.7)

and consider
D = {x ∈ C(J, E) : ‖x‖ ≤ R}.

Clearly, the subset D is closed, bounded and convex. We shall show that F satisfies the assumptions of
Mönch’s fixed point theorem. The proof will be given in three steps. �
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Step 1: First we show that F is continuous:
Let xn be a sequence such that xn → x in C(J, E). Then for each t ∈ J ,

‖(Fxn)(t) − (Fx)(t)‖ ≤
1

Γ(r)

∫ t

1
(log

t
s
)r−1‖ f (s, xn(s)) − f (s, x(s))‖

ds
s

+
|λ|

|Λ|Γ(r + q)

∫ η

1
(log

η

s
)r+q−1‖ f (s, xn(s)) − f (s, x(s))‖

ds
s

+
|β|

|Λ|Γ(r)

∫ T

1
(log

T
s

)r−1‖ f (s, xn(s)) − f (s, x(s))‖
ds
s

≤

{
(log T )r

Γ(r + 1)
+
|λ|(log η)r+q

|Λ|Γ(r + q + 1)
+
|β|(log T )r

|Λ|Γ(r + 1)

}
‖ f (s, xn(s)) − f (s, x(s))‖

Since f is of Caratheodory type, then by the Lebesgue dominated convergence theorem we have

‖F(xn) − F(x)‖∞ → 0 as n→ ∞.

Step 2: Second we show that F maps D into itself :
Take x ∈ D, by (H2), we have, for each t ∈ J and assume that Fx(t) , 0.

‖(Fx)(t)‖ ≤
1

Γ(r)

∫ t

1
(log

t
s
)r−1‖ f (s, x(s))‖

ds
s

+
|λ|

|Λ|Γ(r + q)

∫ η

1
(log

η

s
)r+q−1‖ f (s, x(s))‖

ds
s

+
|β|

|Λ|Γ(r)

∫ T

1
(log

T
s

)r−1‖ f (s, x(s))‖
ds
s

+
|δ|

|Λ|

≤
1

Γ(r)

∫ t

1
(log

t
s
)r−1 p(s)‖x(s)‖

ds
s

+
|λ|

|Λ|Γ(r + q)

∫ η

1
(log

η

s
)r+q−1 p(s)‖x(s)‖

ds
s

+
|β|

|Λ|Γ(r)

∫ T

1
(log

T
s

)r−1 p(s)‖x(s)‖
ds
s

+
|δ|

|Λ|

≤
P∗R
Γ(r)

∫ t

1
(log

t
s
)r−1 ds

s
+
|λ|P∗R
|Λ|Γ(r + q)

∫ η

1
(log

η

s
)r+q−1 ds

s

+
|β|P∗R
|Λ|Γ(r)

∫ T

1
(log

T
s

)r−1 ds
s

+
|δ|

|Λ|

≤ P∗R
{

(log T )r

Γ(r + 1)
+
|λ|(log η)r+q

|Λ|Γ(r + q + 1)
+
|β|(log T )r

|Λ|Γ(r + 1)

}
+
|δ|

|Λ|

≤ P∗RM +
|δ|

|Λ|

≤ R.

Step 3: we show that F(D) is equicontinuous :
By Step 2, it is obvious that F(D) ⊂ C(J, E) is bounded. For the equicontinuity of F(D), let t1, t2 ∈ J ,
t1 < t2 and x ∈ D, so Fx(t2) − Fx(t1) , 0. Then

‖Fx(t2) − Fx(t1)‖ ≤
1

Γ(r)

∫ t1

1

[
(log

t2

s
)r−1 − (log

t1

s
)r−1

]
‖ f (s, x(s))‖

ds
s
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+
1

Γ(r)

∫ t2

t1
(log

t2

s
)r−1‖ f (s, x(s))‖

ds
s

≤
R

Γ(r)

∫ t1

1

[
(log

t2

s
)r−1 − (log

t1

s
)r−1

]
p(s)

ds
s

+
R

Γ(r)

∫ t2

t1
(log

t2

s
)r−1 p(s)

ds
s

≤
Rp∗

Γ(r + 1)
[
(log t2)r − (log t1)r] .

As t1 → t2, the right hand side of the above inequality tends to zero.
Hence N(D) ⊂ D.

Finally we show that the implication holds:
Let V ⊂ D such that V = conv(F(V) ∪ {0}). Since V is bounded and equicontinuous, and therefore the
function v→ v(t) = µ(V(t)) is continuous on J. By assumption (H2), and the properties of the measure
µ we have for each t ∈ J.

v(t) ≤ µ(F(V)(t) ∪ {0})) ≤ µ((FV)(t))

≤
1

Γ(r)

∫ t

1
(log

t
s
)r−1 p(s)µ(V(s))

ds
s

+
|λ|

|Λ|Γ(r + q)

∫ η

1
(log

η

s
)r+q−1 p(s)µ(V(s))

ds
s

+
|β|

|Λ|Γ(r)

∫ T

1
(log

T
s

)r−1 p(s)µ(V(s))
ds
s

≤
‖v‖
Γ(r)

∫ t

1
(log

t
s
)r−1 p(s)

ds
s

+
|λ|‖v‖

|Λ|Γ(r + q)

∫ η

1
(log

η

s
)r+q−1 p(s)

ds
s

+
|β|‖v‖
|Λ|Γ(r)

∫ T

1
(log

T
s

)r−1 p(s)
ds
s

≤ p∗‖v‖
{

(log T )r

Γ(r + 1)
+
|λ|(log η)r+q

|Λ|Γ(r + q + 1)
+
|β|(log T )r

|Λ|Γ(r + 1)

}
:= p∗‖v‖M.

This means that
‖v‖(1 − p∗M) ≤ 0

By (3.5) it follows that ‖v‖ = 0, that is v(t) = 0 for each t ∈ J , and then V(t) is relatively compact in E.
In view of the Ascoli-Arzela theorem, V is relatively compact in D. Applying now Theorem 2.11, we
conclude that F has a fixed point which is a solution of the problem (1.1)-(1.2).

4. Example

Let

E = l1 = {x = (x1, x2, ..., xn, ...) :
∞∑

n=1

|xn| < ∞}

with the norm

‖x‖E =

∞∑
n=1

|xn|
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We consider the problem for Caputo-Hadamard fractional differential equations of the form:
D

2
3 x(t) = f (t, x(t)), (t, x) ∈ ([1, e], E),

x(1) + x(e) = 1
2

(
I

1
2 x(2)

)
+ 3

4 .

(4.1)

Here r = 2
3 , q = 1

2 , δ = 3
4 , λ = 1

2 , η = 2, T = e.
With

f (t, y(t)) =
t
√
π − 1
16

y(t), t ∈ [1, e]

Clearly, the function f is continuous. For each x ∈ R+ and t ∈ [1, e], we have

| f (t, x(t))| ≤
t
√
π

16
|x|

Hence, the hypothesis (H2) is satisfied with p∗ =
t
√
π

16 . We shall show that condition (3.5) holds with
T = e. Indeed,

p∗
{

(log T )r

Γ(r + 1)
+
|λ|(log η)r+q

|Λ|Γ(r + q + 1)
+
|β|(log T )r

|Λ|Γ(r + 1)

}
' 0.6109 < 1

Simple computations show that all conditions of Theorem 3.3 are satisfied. It follows that the problem
(4.1) has at least solution defined on [1, e].

5. Conclusion

In this paper, we obtained some existence results of nonlinear Caputo-Hadamard fractional
differential equations with three-point boundary conditions by using a method involving a measure of
noncompactness and a fixed point theorem of Mönch type. Though the technique applied to establish
the existence results for the problem at hand is a standard one, yet its exposition in the present
framework is new. An illustration to the present work is also given by presenting some examples. Our
results are quite general give rise to many new cases by assigning different values to the parameters
involved in the problem. For an explanation, we enlist some special cases.

• We remark that when λ = 0, problem (1.1)-(1.2), the boundary conditions take the form: αx(1) +

βx(T ) = δ and the resulting problem corresponds to the one considered in [17, 18].

• If we take α = q = 1, β = 0, in (1.2), then our results correspond to the case integral boundary
conditions take the form: x(1) = λ

∫ e

1
x(s)ds + δ considered in [7].

• By fixing α = 1, β = λ = 0, in (1.2), our results correspond to the ones for initial value problem take
the form:x(1) = δ .

• In case we choose α = β = 1, λ = δ = 0, in (1.2), our results correspond to periodic/anti-periodic
type boundary conditions take the form: x(1) = −(β/α)x(T ). In particular, we have the results
for anti-periodic type boundary conditions when (β/α) = 1. For more details on anti-periodic
fractional order boundary value problems, see [4].

• Letting α = 1, β = δ = 0, in (1.2), then our results correspond to the case fractional integral boundary
conditions take the form:x(1) = λIqx(η).
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• When, α = β = 1, δ = 0, in (1.2), our results correspond to fractional integral and anti-periodic type
boundary conditions.

In the nutshell, the boundary value problem studied in this paper is of fairly general nature and
covers a variety of special cases and we can use a numerical method to solve the problem in equation
(1.1-1.2). The possible generalization is to consider the problem (1.1-1.2) on Banach space with
another technique, other fixed point theorem and determine the conditions that befit closer to obtain
the best results. As another proposal, considering some type of fractional derivative
(Hilfer-Hadamard, Hilfer-Katugampola) with respect to another function. we will use the numerical
method to solve this problem. These suggestions will be treated in the future.
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26. F. Li, Gaston M. N’ Guérékata, An existence result for neutral delay integrodifferential equations
with fractional order and nonlocal conditions, Abstr. Appl. Anal., 2011 (2011), 1–20.

AIMS Mathematics Volume 5, Issue 1, 259–272.



271

27. F. Li, J. Liang, H. K. Xu, Existence of mild solutions for fractional integrodifferential equation of
Sobolev type with nonlocal conditions, J. Math. Anal. Appl., 391 (2012), 510–525.

28. N. Ford, M. Morgado, Fractional boundary value problems: Analysis and numerical methods,
Fract. Calc. Appl. Anal., 14 (2011), 554–567.

29. C. Goodrich, Existence and uniqueness of solutions to a fractional differencial equation with
nonlocal conditions, Comput. Math. Appl., 61 (2011), 191–202.

30. D. Guo, V. Lakshmikantham, X. Liu, Nonlinear integral equations in abstract spaces, Mathematics
and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.

31. E. Hesameddini, A. Rahimi, E. Asadollahifard, On the convergence of a new reliable algorithm for
solving multi-order fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 34
(2016), 154.

32. M. H. Heydari, M. R. Mahmoudi, A. Shakiba, et al. Chebyshev cardinal wavelets and their
application in solving nonlinear stochastic differential equations with fractional Brownian motion,
Commun Nonlinear Sci., 64 (2018), 98–121

33. M. H. Heydari, Z. Avazzadeh, M. R. Mahmoudi, Chebyshev cardinal wavelets for nonlinear
stochastic differential equations driven with variable-order fractional Brownian motion, Chaos,
Solitons and Fractals, 124 (2019), 105–124

34. F. Jarad, D. Baleanu and A. Abdeljawad, Caputo-type modification of the Hadamard fractional
derivatives, Adv. Differ. Equ-NY, 2012 (2012), 142.

35. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, North-Holland Mathematics Studies, Elsevier, 2006.

36. C. Kou, J. Liu and Y. Ye, Existence and uniqueness of solutions for the Cachy-type problems of
fractional differential equations, Discrete Dyn. Nat. Soc., 2010 (2010), 1–15.

37. H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order
in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 4 (1980), 985–999.

38. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations,
John Wiley, New York, 1993.

39. K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

40. I. Podlubny, I. Petrás, B. M. Vinagre, et al. Analogue realizations of fractional-order controllers,
Nonlinear Dynam., 29 (2002), 281–296.

41. R. Roohi, M. H. Heydari, M. Aslami, et al. A comprehensive numerical study of space-time
fractional bioheat equation using fractional-order Legendre functions, The European Physical
Journal Plus, 133 (2018), 412.

42. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and
Applications, Gordon and Breach, Yverdon, 1993.

43. D. Sierociuk, A. Dzielinski, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek, Modelling heat
transfer in heterogeneous media using fractional calculus, Philos. T. R. Soc. A, 371 (2013),
20120146.

AIMS Mathematics Volume 5, Issue 1, 259–272.



272

44. S. Szufla, On the application of measure of noncompactness to existence theorems, Rendiconti del
Seminario Matematico della Universita di Padova, 75 (1986), 1–14.

45. Y. Y. Gambo, F. Jarad, D. Baleanu, et al. On Caputo modification of the Hadamard fractional
derivatives, Adv. Differ. Equ-NY, 2014 (2014), 10.

46. A. Yacine and B. Nouredine, boundary value problem for Caputo-Hadamard fractional differential
equations, Surveys in Mathematics and its Applications, 12 (2017), 103–115.

47. H. E. Zhang, Nonlocal boundary value problems of fractional order at resonance with integral
conditions, Adv. Differ. Equ-NY, 2017 (2017), 326.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 1, 259–272.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaires
	Main results
	Example
	Conclusion

