Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article Special Issues

On theoretical upper limits for valid timesteps of implicit ODE methods

  • Received: 31 January 2020 Accepted: 07 February 2020 Published: 19 February 2020
  • MSC : 34A09

  • Implicit methods for the numerical solution of initial-value problems may admit multiple solutions at any given time step. Accordingly, their nonlinear solvers may converge to any of these solutions. Below a critical timestep, exactly one of the solutions (the consistent solution) occurs on a solution branch (the principal branch) that can be continuously and monotonically continued back to zero timestep. Standard step-size control can promote convergence to consistent solutions by adjusting the timestep to maintain an error estimate below a given tolerance. However, simulations for symplectic systems or large physical systems are often run with constant timesteps and are thus more susceptible to convergence to inconsistent solutions. Because simulations cannot be reliably continued from inconsistent solutions, the critical timestep is a theoretical upper bound for valid timesteps.

    Citation: Kevin R. Green, George W. Patrick, Raymond J. Spiteri. On theoretical upper limits for valid timesteps of implicit ODE methods[J]. AIMS Mathematics, 2019, 4(6): 1841-1853. doi: 10.3934/math.2019.6.1841

    Related Papers:

    [1] Tamer Nabil . Ulam stabilities of nonlinear coupled system of fractional differential equations including generalized Caputo fractional derivative. AIMS Mathematics, 2021, 6(5): 5088-5105. doi: 10.3934/math.2021301
    [2] Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada . A coupled system of p-Laplacian implicit fractional differential equations depending on boundary conditions of integral type. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839
    [3] Changlong Yu, Jing Li, Jufang Wang . Existence and uniqueness criteria for nonlinear quantum difference equations with p-Laplacian. AIMS Mathematics, 2022, 7(6): 10439-10453. doi: 10.3934/math.2022582
    [4] Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad . Existence of solutions by fixed point theorem of general delay fractional differential equation with p-Laplacian operator. AIMS Mathematics, 2023, 8(5): 10160-10176. doi: 10.3934/math.2023514
    [5] Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with ABC fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071
    [6] Ihtisham Ul Haq, Shabir Ahmad, Sayed Saifullah, Kamsing Nonlaopon, Ali Akgül . Analysis of fractal fractional Lorenz type and financial chaotic systems with exponential decay kernels. AIMS Mathematics, 2022, 7(10): 18809-18823. doi: 10.3934/math.20221035
    [7] Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami . Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system. AIMS Mathematics, 2024, 9(6): 16203-16233. doi: 10.3934/math.2024784
    [8] A. M. A. El-Sayed, H. H. G. Hashem, Sh. M. Al-Issa . A comprehensive view of the solvability of non-local fractional orders pantograph equation with a fractal-fractional feedback control. AIMS Mathematics, 2024, 9(7): 19276-19298. doi: 10.3934/math.2024939
    [9] Hasanen A. Hammad, Hassen Aydi, Hüseyin Işık, Manuel De la Sen . Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives. AIMS Mathematics, 2023, 8(3): 6913-6941. doi: 10.3934/math.2023350
    [10] Ymnah Alruwaily, Lamya Almaghamsi, Kulandhaivel Karthikeyan, El-sayed El-hady . Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2023, 8(5): 10067-10094. doi: 10.3934/math.2023510
  • Implicit methods for the numerical solution of initial-value problems may admit multiple solutions at any given time step. Accordingly, their nonlinear solvers may converge to any of these solutions. Below a critical timestep, exactly one of the solutions (the consistent solution) occurs on a solution branch (the principal branch) that can be continuously and monotonically continued back to zero timestep. Standard step-size control can promote convergence to consistent solutions by adjusting the timestep to maintain an error estimate below a given tolerance. However, simulations for symplectic systems or large physical systems are often run with constant timesteps and are thus more susceptible to convergence to inconsistent solutions. Because simulations cannot be reliably continued from inconsistent solutions, the critical timestep is a theoretical upper bound for valid timesteps.


    In the general framework, Caputo and Fabrizio [1] proposed a new fractional derivative now called Caputo-Fabrizio (CF) fractional derivative in 2015. Compared with previous Riemann-Liouville (RL) and Riemann-Caputo (RC) fractional derivatives, this derivative has exponential kernel and non-singularity. The following comparison will reflect their differences. As we all know, when 0<γ<1, (tτ)γ and eγ1γ(tτ) are the kernels of RC- and CF-fractional derivative with γ-order, respectively. Decidedly, (tτ)γ (singular) and eγ1γ(tτ)1 (non-singular), as τt. In other words, CF-fractional derivative has unique advantages in eliminating singularity. Therefore, many scholars have carried out detailed and in-depth research on the CF-fractional differential equation. For example, some of them have applied CF-fractional differential equations to describe closed groundwater flows [2], population dynamics [3,4], electrical circuit [5,6], epidemics [7,8,9] and others [10,11,12]. There have been some papers dealing with some theoretical problems of CF-fractional calculus. Tarasov [13] explored whether CF-fractional derivative operators represent memory or distributed-delay from the definition of CF-fractional derivative. Pan [14] studied the chaotic behavior of a four dimensional CF-fractional differential system. Zhang [15] investigated the exponential Euler schemes for numerical solutions of CF-fractional differential equation. Tariq et al. [16] obtained the new fractional integral inequalities for CF-fractional integral operators. Abbas et al. [17] studied a fractional differential equations with non instantaneous impulses. They applied measures of noncompactness and two fixed point theorems to obtain the existence of solutions. In addition, the study of Hilfer fractional differential equations as a generalization of fractional derivatives is one of the recent focuses. Alsaedi et al. [18] considered a ψ-Hilfer fractional integral boundary value problem with the p-Laplacian operator. The authors studied the existence and uniqueness of solutions by using Banach's contraction mapping principle. Zhou and He [19,20] studied the mild solutions to two fractional evolution equations by analytic semigroup theory.

    In 1940s, Hyers and Ulam [21,22] put forward a new stability named Ulam and Hyers (UH) stability. After in-depth analysis of the UH-stability structure, some researchers have extended the concept of UH-stability, such as generalized UH-stability, Ulam-Hyers-Rassias stability, generalized Ulam-Hyers-Rassias, etc. The study on the UH-type stability of various dynamic systems has received great attention. Of course, the UH-type stability of fractional differential systems is also favored. There have been many papers dealing with UH-type stability of fractional differential system (see some of them [23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39]). However, there are rare works on the UH-type stability of CF-fractional differential system. It is worth to inquire into the stability of system with CF-fractional derivatives. In addition, when describing complex systems affected by many factors, fractional differential equations are more detailed and accurate than a single fractional differential equation. However, the study of the former is much more difficult than the latter. As far as I am concerned, there are no papers combining CF-fractional derivative with coupling Laplacian system, which is an interesting and challenging problem. Therefore, we emphasize on the below nonlinear CF-fractional coupled Laplacian equations

    {CFDν10+[Φp1(CFDμ10+U1(t))]=F1(t,U1(t),U2(t)),t(0,l],CFDν20+[Φp2(CFDμ20+U2(t))]=F2(t,U1(t),U2(t)),t(0,l],U1(0)=a1,U2(0)=a2,CFDμ10+U1(0)=b1,CFDμ20+U2(0)=b2, (1.1)

    where a1,a2,b1,b2R, l>0, 0<μ1,μ2,ν1,ν21 and p1,p2>1 are some constants, CFD0+ stands for the –order Caputo-Fabrizio (CF) fractional derivative. Φpj(z)=|z|pj2z(j=1,2) is pj–Laplacian. It is well known that the inverse of Φpj is Φqj, and 1pj+1qj=1, j=1,2. The nonlinear function FjC([0,l]×R2,R), j=1,2.

    This manuscript focuses on the solvability and stability of (1.1). In Section 2, we need to review some necessary knowledge of CF-fractional calculus. In Section 3, we apply the contraction mapping principle to prove that system (1.1) has a unique solution. We further established the GUH-stability of the system (1.1) in Section 4. Section 5 provides an example to illustrate the correctness of our major outcomes. We make a brief conclusion in Section 6.

    In this section, we first need to introduce the definitions of CF-fractional derivative and integral and some basic properties of p-Laplacian operator.

    Definition 2.1. [40] For 0α1, l>0 and UH1(0,l), the left–sided α–order Caputo–Fabrizio fractional integral of function U is defined by

    CFIα0U(t)=1αN(α)U(t)+αN(α)t0U(s)ds,

    where N(α) is a normalisation constant with N(0)=N(1)=1.

    Definition 2.2. [1] For 0α1, l>0 and UH1(0,l), the left–sided α–order Caputo–Fabrizio fractional derivative of U is defined by

    CFDα0+U(t)=N(α)1αt0eα1α(ts)U(s)ds.

    Lemma 2.1. [40] Let 0α1 and HC[0,). Then the unique solution of the following IVP

    {CFDα0+U(t)=H(t),t0,U(0)=U0.

    is expressed as

    U(t)=U0+1αN(α)[H(t)H(0)]+αN(α)t0H(s)ds.

    Lemma 2.2. Let p>1. The p–Laplacian operator Φp(z)=|z|p2z admits the properties as follows:

    (i) If z0, then Φp(z)=zp1, and Φp(z) is increasing with respect to z;

    (ii) For all z,wR, Φp(zw)=Φp(z)Φp(w);

    (iii) If 1p+1q=1, then Φq[Φp(z)]=Φp[Φq(z)]=z, for all zR;

    (iv) For all z,w0, zwΦq(z)Φq(w);

    (v)0zΦ1q(w)0Φq(z)w;

    (vi)|Φq(z)Φq(w)|{(q1)¯Mq2|zw|, q2,0z,w¯M; (q1)M_q2|zw|, 1<q<2,z,wM_0.

    The following lemma is crucial to establishing our main results later.

    Lemma 2.3. Let a1,a2,b1,b2R, l>0, 0<μ1,μ2,ν1,ν21 and p1,p2>1 are some constants, FjC([0,l]×R2,R), j=1,2. Then the nonlinear CF–fractional coupled Laplacian Eq (1.1) is equivalent to the following integral equations

    {U1(t)=a1+1μ1N(μ1)[Φq1(G1(t,U1(t),U2(t)))b1]+μ1N(μ1)t0Φq1(G1(s,U1(s),U2(s)))ds,t[0,l],U2(t)=a2+1μ2N(μ2)[Φq2(G2(t,U1(t),U2(t)))b2]+μ2N(μ2)t0Φq2(G2(s,U1(s),U2(s)))ds,t[0,l], (2.1)

    where 1pj+1qj=1(j=1,2), and

    G1(t,U1(t),U2(t))=Φp1(b1)+1ν1N(ν1)[F1(t,U1(t),U2(t))F1(0,a1,a2)]+ν1N(ν1)t0F1(τ,U1(τ),U2(τ))dτ,
    G2(t,U1(t),U2(t))=Φp2(b2)+1ν2N(ν2)[F2(t,U1(t),U2(t))F2(0,a1,a2)]+ν2N(ν2)t0F2(τ,U1(τ),U2(τ))dτ.

    Proof. Assume that (U1(t),U2(t))C([0,l],R)×C([0,l],R) satisfies the Eq (1.1). Then, from Lemma 2.1 and the first equation of (1.1), we have

    Φp1(CFDμ10+U1(t))=Φp1(CFDμ10+U1(0))+1ν1N(ν1)[F1(t,U1(t),U2(t))F1(0,U1(0),U2(0))]+ν1N(ν1)t0F1(τ,U1(τ),U2(τ))dτ,t[0,l]. (2.2)

    It follows from (2.2) and (iii) in Lemma 2.2 that

    CFDμ10+U1(t)=Φq1(Φp1(CFDμ10+U1(0))+1ν1N(ν1)[F1(t,U1(t),U2(t))F1(0,U1(0),U2(0))]+ν1N(ν1)t0F1(τ,U1(τ),U2(τ))dτ),t[0,l], (2.3)

    where 1p1+1q1=1, p1>1. Denote G1(t,U1(t),U2(t)) by

    G1(t,U1(t),U2(t))=Φp1(CFDμ10+U1(0))+1ν1N(ν1)[F1(t,U1(t),U2(t))F1(0,U1(0),U2(0))]+ν1N(ν1)t0F1(τ,U1(τ),U2(τ))dτ. (2.4)

    Combined (2.3), (2.4) and Lemma 2.1, we obtain

    U1(t)=U1(0)+1μ1N(μ1)[Φq1(G1(t,U1(t),U2(t)))Φq1(G1(0,U1(0),U2(0)))]+μ1N(μ1)t0Φq1(G1(s,U1(s),U2(s)))ds,t[0,l]. (2.5)

    Similar to (2.2)–(2.5), one derives from the second equation of (1.1) that

    U2(t)=U2(0)+1μ2N(μ2)[Φq2(G2(t,U1(t),U2(t)))Φq2(G2(0,U1(0),U2(0)))]+μ2N(μ2)t0Φq2(G2(s,U1(s),U2(s)))ds,t[0,l], (2.6)

    where 1p2+1q2=1,p2>1, and

    G2(t,U1(t),U2(t))=Φp2(CFDμ20+U2(0))+1ν2N(ν2)[F2(t,U1(t),U2(t))F2(0,U1(0),U2(0))]+ν2N(ν2)t0F2(τ,U1(τ),U2(τ))dτ. (2.7)

    Substituting the initial value conditions U1(0)=a1, U2(0)=a2, CFDμ10+U1(0)=b1 and CFDμ20+U2(0)=b2 into (2.4)–(2.7), one easily gets (2.1), that is, (U1(t),U2(t))C([0,l],R)×C([0,l],R) is a solution of the integral equations (2.1). Noticing that zΦp(z) is reversible, one knows that the above derivation is completely reversible. Vice versa, if (U1(t),U2(t))C([0,l],R)×C([0,l],R) is the solution of the integral Eq (2.1), then it is also a solution of (1.1). The proof is completed.

    This section mainly applies the contraction mapping principle to discuss the existence and uniqueness of solution to (1.1).

    Lemma 3.1. (contraction mapping principle [41]) Let X be a Banach space and ϕEX be closed. If T:EE is contract, then T admits a unique fixed point uE.

    According to Lemma 2.3, we take X=C([0,l],R)×C([0,l],R). For all w=(u,v)X, define the norm w=(u,v)=max{sup0tl|u(t)|,sup0tl|v(t)|}, then (X,) is a Banach space. Subsequently, we will inquire into the solvability and stability of (1.1) on (X,). For convenience, we introduce the following conditions and symbols.

    (H1)a10 or a20, l,b1,b2>0, 0<μ1,μ2,ν1,ν21 and p1,p2>1 are some constants, FjC([0,l]×R2,R), j=1,2.

    (H2) For all t[0,l], u,vR, there exist some constants mj,Mj>0 such that

    mjFj(t,u,v)Mj,j=1,2.

    (H3) For all t[0,l], u,¯u,v,¯vR, there exist some continuous functions Lj1(t), Lj2(t)0 such that

    |Fj(t,u,v)Fj(t,¯u,¯v)|Lj1(t)|u¯u|+Lj2(t)|v¯v|.

    Denote

    Mj_=bpj1j1νjN(νj)(Mjmj)+νjN(νj)mjl,
    ¯Mj=bpj1j+1νjN(νj)(Mjmj)+νjN(νj)Mjl,
    Θj=(1μj)(1νj)N(μj)N(νj)+(1μj)νjlN(μj)N(νj)+(1νj)μjlN(μj)N(νj)+μjνjl2N(μj)N(νj),
    ¯κj=Θj(qj1)¯Mjqj2(Lj1l+Lj2l),
    κj_=Θj(qj1)Mj_qj2(Lj1l+Lj2l),
    Ljil=max{Lji(t):0tl},j,i=1,2.

    In this position, we present one of our main results as follows.

    Theorem 3.1. Assume that (H1)(H3) and Mj_>0(j=1,2) are true. Further assume that one of the conditions holds as follows: when q1,q22, ¯κ1,¯κ2<1; or q12,1<q2<2, ¯κ1,κ2_<1; or 1<q1<2,q22, κ1_,¯κ2<1; or 1<q1,q2<2, κ1_,κ2_<1. Then system (1.1) has a unique nonzero solution (U1(t),U2(t))X.

    Proof. (U1(0),U2(0))=(a1,a2)(0,0) indicates (\mathcal{U}_1(t), \mathcal{U}_2(t))\not\equiv(0, 0), \, \forall t\in[0, l] , that is, the solution of (1.1) is nonzero. For all (\mathcal{U}_1, \mathcal{U}_2)\in\mathbb{X} , based on Lemma 2.3, we define the vector operator \mathscr{T}:\mathbb{X}\to\mathbb{X} as

    \begin{align} \mathscr{T}(\mathcal{U}_1,\mathcal{U}_2)(t) = (\mathscr{T}_1(\mathcal{U}_1,\mathcal{U}_2)(t),\mathscr{T}_2(\mathcal{U}_1,\mathcal{U}_2)(t)), \end{align} (3.1)

    where

    \begin{align} \mathscr{T}_1(\mathcal{U}_1,\mathcal{U}_2)(t) = &a_1+\frac{1-\mu_1}{\mathfrak{N}(\mu_1)}\big[\Phi_{q_1}\big(G_1(t,\mathcal{U}_1(t),\mathcal{U}_2(t))\big) -b_1\big] \\ \,&+\frac{\mu_1}{\mathfrak{N}(\mu_1)}\int_{0}^t\Phi_{q_1}\big(G_1(s,\mathcal{U}_1(s),\mathcal{U}_2(s))\big)ds,\,\,t\in[0,l], \end{align} (3.2)
    \begin{align} \mathscr{T}_2(\mathcal{U}_1,\mathcal{U}_2)(t) = &a_2+\frac{1-\mu_2}{\mathfrak{N}(\mu_2)}\big[\Phi_{q_2}\big(G_2(t,\mathcal{U}_1(t),\mathcal{U}_2(t))\big) -b_2\big] \\ \,&+\frac{\mu_2}{\mathfrak{N}(\mu_2)}\int_{0}^t\Phi_{q_2}\big(G_2(s,\mathcal{U}_1(s),\mathcal{U}_2(s))\big)ds,\,\,t\in[0,l], \end{align} (3.3)

    G_1(t, \mathcal{U}_1(t), \mathcal{U}_2(t)) and G_2(t, \mathcal{U}_1(t), \mathcal{U}_2(t)) are the same as (2.1).

    For all \mathcal{U} = (\mathcal{U}_1, \mathcal{U}_2) and t\in[0, l] , we derive from (2.1), (\mathrm{H}_1) and (\mathrm{H}_2) that

    \begin{align} G_1(t,\mathcal{U}_1(t),\mathcal{U}_2(t)) \leq b_1^{p_1-1}+\frac{1-\nu_1}{\mathfrak{N}(\nu_1)}(M_1-m_1)+\frac{\nu_1}{\mathfrak{N}(\nu_1)}M_1l = \overline{\mathcal{M}_1}, \end{align} (3.4)
    \begin{align} G_1(t,\mathcal{U}_1(t),\mathcal{U}_2(t)) \geq b_1^{p_1-1}-\frac{1-\nu_1}{\mathfrak{N}(\nu_1)}(M_1-m_1)+\frac{\nu_1}{\mathfrak{N}(\nu_1)}m_1l = \underline{\mathcal{M}_1}, \end{align} (3.5)
    \begin{align} G_2(t,\mathcal{U}_1(t),\mathcal{U}_2(t)) \leq b_2^{p_2-1}+\frac{1-\nu_2}{\mathfrak{N}(\nu_2)}(M_2-m_2)+\frac{\nu_2}{\mathfrak{N}(\nu_2)}M_2l = \overline{\mathcal{M}_2}, \end{align} (3.6)

    and

    \begin{align} G_2(t,\mathcal{U}_1(t),\mathcal{U}_2(t)) \geq b_2^{p_2-1}-\frac{1-\nu_2}{\mathfrak{N}(\nu_2)}(M_2-m_2)+\frac{\nu_2}{\mathfrak{N}(\nu_2)}m_2l = \underline{\mathcal{M}_2}. \end{align} (3.7)

    Obviously, \underline{\mathcal{M}_1}\leq\overline{\mathcal{M}_1} , \underline{\mathcal{M}_2}\leq\overline{\mathcal{M}_2} . Thus, for all \mathcal{U} = (\mathcal{U}_1, \mathcal{U}_2) , \overline{\mathcal{U}} = (\overline{\mathcal{U}}_1, \overline{\mathcal{U}}_2)\in\mathbb{X} , and t\in[0, l] , it follows from (3.2), (3.4), (3.5), (\mathrm{H}_3) and (\mathrm{vi}) of Lemma 2.2 that

    \begin{align} \,&|\mathscr{T}_1(\mathcal{U}_1,\mathcal{U}_2)(t)-\mathscr{T}_1(\overline{\mathcal{U}}_1,\overline{\mathcal{U}}_2)(t)| \\ = &\bigg|\frac{1-\mu_1}{\mathfrak{N}(\mu_1)}\big[\Phi_{q_1}\big(G_1(t,\mathcal{U}_1(t),\mathcal{U}_2(t))\big) -\Phi_{q_1}\big(G_1(t,\overline{\mathcal{U}}_1(t),\overline{\mathcal{U}}_2(t))\big)\big] \\ \,&+\frac{\mu_1}{\mathfrak{N}(\mu_1)}\int_{0}^t[\Phi_{q_1}\big(G_1(s,\mathcal{U}_1(s),\mathcal{U}_2(s))\big) -\Phi_{q_1}\big(G_1(s,\overline{\mathcal{U}}_1(s),\overline{\mathcal{U}}_2(s))\big)]ds\bigg| \\ \leq&\frac{1-\mu_1}{\mathfrak{N}(\mu_1)}\big|\Phi_{q_1}\big(G_1(t,\mathcal{U}_1(t),\mathcal{U}_2(t))\big) -\Phi_{q_1}\big(G_1(t,\overline{\mathcal{U}}_1(t),\overline{\mathcal{U}}_2(t))\big)\big| \\ \,&+\frac{\mu_1}{\mathfrak{N}(\mu_1)}\int_{0}^t\big|\Phi_{q_1}\big(G_1(s,\mathcal{U}_1(s),\mathcal{U}_2(s))\big) -\Phi_{q_1}\big(G_1(s,\overline{\mathcal{U}}_1(s),\overline{\mathcal{U}}_2(s))\big)\big|ds. \end{align} (3.8)

    When q_1\geq2 , (3.8) gives

    \begin{align} \,&|\mathscr{T}_1(\mathcal{U}_1,\mathcal{U}_2)(t)-\mathscr{T}_1(\overline{\mathcal{U}}_1,\overline{\mathcal{U}}_2)(t)| \\ \leq&\frac{1-\mu_1}{\mathfrak{N}(\mu_1)}(q_1-1)\overline{\mathcal{M}_1}^{q_1-2}\big|G_1(t,\mathcal{U}_1(t),\mathcal{U}_2(t)) -G_1(t,\overline{\mathcal{U}}_1(t),\overline{\mathcal{U}}_2(t))\big| \\ \,&+\frac{\mu_1}{\mathfrak{N}(\mu_1)}(q_1-1)\overline{\mathcal{M}_1}^{q_1-2} \int_{0}^t\big|G_1(s,\mathcal{U}_1(s),\mathcal{U}_2(s)) -G_1(s,\overline{\mathcal{U}}_1(s),\overline{\mathcal{U}}_2(s))\big|ds \\ \leq&\frac{1-\mu_1}{\mathfrak{N}(\mu_1)}(q_1-1)\overline{\mathcal{M}_1}^{q_1-2} \bigg[\frac{1-\nu_1}{\mathfrak{N}(\nu_1)} \big|F_1(t,\mathcal{U}_1(t),\mathcal{U}_2(t)) -F_1(t,\overline{\mathcal{U}}_1(t),\overline{\mathcal{U}}_2(t))\big| \\ \,&+\frac{\nu_1}{\mathfrak{N}(\nu_1)}\int_{0}^t\big|F_1(\tau,\mathcal{U}_1(\tau),\mathcal{U}_2(\tau)) -F_1(\tau,\overline{\mathcal{U}}_1(\tau),\overline{\mathcal{U}}_2(\tau))\big|d\tau\bigg] \\ \,&+\frac{\mu_1}{\mathfrak{N}(\mu_1)}(q_1-1)\overline{\mathcal{M}_1}^{q_1-2} \int_{0}^t\bigg[\frac{1-\nu_1}{\mathfrak{N}(\nu_1)} \big|F_1(s,\mathcal{U}_1(s),\mathcal{U}_2(s)) -F_1(s,\overline{\mathcal{U}}_1(s),\overline{\mathcal{U}}_2(s))\big| \\ \,&+\frac{\nu_1}{\mathfrak{N}(\nu_1)}\int_{0}^s\big|F_1(\tau,\mathcal{U}_1(\tau),\mathcal{U}_2(\tau)) -F_1(\tau,\overline{\mathcal{U}}_1(\tau),\overline{\mathcal{U}}_2(\tau))\big|d\tau\bigg]ds. \\ \leq&\frac{1-\mu_1}{\mathfrak{N}(\mu_1)}(q_1-1)\overline{\mathcal{M}_1}^{q_1-2} \bigg[\frac{1-\nu_1}{\mathfrak{N}(\nu_1)} \big[\mathcal{L}_{11}(t)|\mathcal{U}_1(t)-\overline{\mathcal{U}}_1(t)|+\mathcal{L}_{12}(t)|\mathcal{U}_2(t) -\overline{\mathcal{U}}_2(t)|\big] \\ \,&+\frac{\nu_1}{\mathfrak{N}(\nu_1)} \int_{0}^t\big[\mathcal{L}_{11}(\tau)|\mathcal{U}_1(\tau)-\overline{\mathcal{U}}_1(\tau)|+\mathcal{L}_{12}(\tau)|\mathcal{U}_2(\tau) -\overline{\mathcal{U}}_2(\tau)|\big]d\tau\bigg] \\ \,&+\frac{\mu_1}{\mathfrak{N}(\mu_1)}(q_1-1)\overline{\mathcal{M}_1}^{q_1-2} \int_{0}^t\bigg[\frac{1-\nu_1}{\mathfrak{N}(\nu_1)} \big[\mathcal{L}_{11}(s)|\mathcal{U}_1(s)-\overline{\mathcal{U}}_1(s)|+\mathcal{L}_{12}(s)|\mathcal{U}_2(s) -\overline{\mathcal{U}}_2(s)|\big] \\ \,&+\frac{\nu_1}{\mathfrak{N}(\nu_1)}\int_{0}^s\big[\mathcal{L}_{11}(\tau)|\mathcal{U}_1(\tau)-\overline{\mathcal{U}}_1(\tau)| +\mathcal{L}_{12}(\tau)|\mathcal{U}_2(\tau) -\overline{\mathcal{U}}_2(\tau)|\big]d\tau\bigg]ds. \\ \leq&\frac{1-\mu_1}{\mathfrak{N}(\mu_1)}(q_1-1)\overline{\mathcal{M}_1}^{q_1-2} \bigg[\frac{1-\nu_1}{\mathfrak{N}(\nu_1)} \big[\|\mathcal{L}_{11}\|_l\cdot\|\mathcal{U}-\overline{\mathcal{U}}\|+\|\mathcal{L}_{12}\|_l\cdot\|\mathcal{U} -\overline{\mathcal{U}}\|\big] \\ \,&+\frac{\nu_1}{\mathfrak{N}(\nu_1)} \int_{0}^l\big[\|\mathcal{L}_{11}\|_l\cdot\|\mathcal{U}-\overline{\mathcal{U}}\|+\|\mathcal{L}_{12}\|_l\cdot\|\mathcal{U} -\overline{\mathcal{U}}\|\big]d\tau\bigg] \\ \,&+\frac{\mu_1}{\mathfrak{N}(\mu_1)}(q_1-1)\overline{\mathcal{M}_1}^{q_1-2} \int_{0}^l\bigg[\frac{1-\nu_1}{\mathfrak{N}(\nu_1)} \big[\|\mathcal{L}_{11}\|_l\cdot\|\mathcal{U}-\overline{\mathcal{U}}\|+\|\mathcal{L}_{12}\|_l\cdot\|\mathcal{U} -\overline{\mathcal{U}}\|\big] \\ \,&+\frac{\nu_1}{\mathfrak{N}(\nu_1)}\int_{0}^l\big[\|\mathcal{L}_{11}\|_l\cdot\|\mathcal{U}-\overline{\mathcal{U}}\| +\|\mathcal{L}_{12}\|_l\cdot\|\mathcal{U} -\overline{\mathcal{U}}\|\big]d\tau\bigg]ds \\ = &\bigg[\frac{(1-\mu_1)(1-\nu_1)}{\mathfrak{N}(\mu_1)\mathfrak{N}(\nu_1)} +\frac{(1-\mu_1)\nu_1l}{\mathfrak{N}(\mu_1)\mathfrak{N}(\nu_1)} +\frac{(1-\nu_1)\mu_1l}{\mathfrak{N}(\mu_1)\mathfrak{N}(\nu_1)}+\frac{\mu_1\nu_1l^2}{\mathfrak{N}(\mu_1)\mathfrak{N}(\nu_1)}\bigg] \\ \,&\times(q_1-1)\overline{\mathcal{M}_1}^{q_1-2}(\|\mathcal{L}_{11}\|_l+\|\mathcal{L}_{12}\|_l)\|\mathcal{U}-\overline{\mathcal{U}}\| = \overline{\kappa_1}\|\mathcal{U}-\overline{\mathcal{U}}\|. \end{align} (3.9)

    When 1 < q_1 < 2 , similar to (3.9), (3.8) leads

    \begin{align} \,&|\mathscr{T}_1(\mathcal{U}_1,\mathcal{U}_2)(t)-\mathscr{T}_1(\overline{\mathcal{U}}_1,\overline{\mathcal{U}}_2)(t)| \\ \leq&\bigg[\frac{(1-\mu_1)(1-\nu_1)}{\mathfrak{N}(\mu_1)\mathfrak{N}(\nu_1)}+\frac{(1-\mu_1)\nu_1l}{\mathfrak{N}(\mu_1)\mathfrak{N}(\nu_1)} +\frac{(1-\nu_1)\mu_1l}{\mathfrak{N}(\mu_1)\mathfrak{N}(\nu_1)}+\frac{\mu_1\nu_1l^2}{\mathfrak{N}(\mu_1)\mathfrak{N}(\nu_1)}\bigg] \\ \,&\times(q_1-1)\underline{\mathcal{M}_1}^{q_1-2}(\|\mathcal{L}_{11}\|_l+\|\mathcal{L}_{12}\|_l)\|\mathcal{U}-\overline{\mathcal{U}}\| = \underline{\kappa_1}\|\mathcal{U}-\overline{\mathcal{U}}\|. \end{align} (3.10)

    It is similar to (3.8)–(3.10) that

    \begin{align} \,&|\mathscr{T}_2(\mathcal{U}_1,\mathcal{U}_2)(t)-\mathscr{T}_2(\overline{\mathcal{U}}_1,\overline{\mathcal{U}}_2)(t)| \\ \leq&\bigg[\frac{(1-\mu_2)(1-\nu_2)}{\mathfrak{N}(\mu_2)\mathfrak{N}(\nu_2)} +\frac{(1-\mu_2)\nu_2l}{\mathfrak{N}(\mu_2)\mathfrak{N}(\nu_2)} +\frac{(1-\nu_2)\mu_2l}{\mathfrak{N}(\mu_2)\mathfrak{N}(\nu_2)}+\frac{\mu_2\nu_2l^2}{\mathfrak{N}(\mu_2)\mathfrak{N}(\nu_2)}\bigg] \\ \,&\times(q_2-1)\overline{\mathcal{M}_2}^{q_2-2}(\|\mathcal{L}_{21}\|_l+\|\mathcal{L}_{22}\|_l)\|\mathcal{U}-\overline{\mathcal{U}}\| = \overline{\kappa_2}\|\mathcal{U}-\overline{\mathcal{U}}\|,\,\,q_2\geq2, \end{align} (3.11)

    and

    \begin{align} \,&|\mathscr{T}_2(\mathcal{U}_1,\mathcal{U}_2)(t)-\mathscr{T}_2(\overline{\mathcal{U}}_1,\overline{\mathcal{U}}_2)(t)| \\ \leq&\bigg[\frac{(1-\mu_2)(1-\nu_2)}{\mathfrak{N}(\mu_2)\mathfrak{N}(\nu_2)} +\frac{(1-\mu_2)\nu_2l}{\mathfrak{N}(\mu_2)\mathfrak{N}(\nu_2)} +\frac{(1-\nu_2)\mu_2l}{\mathfrak{N}(\mu_2)\mathfrak{N}(\nu_2)}+\frac{\mu_2\nu_2l^2}{\mathfrak{N}(\mu_2)\mathfrak{N}(\nu_2)}\bigg] \\ \,&\times(q_2-1)\underline{\mathcal{M}_2}^{q_2-2}(\|\mathcal{L}_{21}\|_l+\|\mathcal{L}_{22}\|_l)\|\mathcal{U}-\overline{\mathcal{U}}\| = \underline{\kappa_2}\|\mathcal{U}-\overline{\mathcal{U}}\|,\,\,1 < q_2 < 2. \end{align} (3.12)

    From (3.9)–(3.12), we obtain

    \begin{align} \|\mathscr{T}(\mathcal{U}_1,\mathcal{U}_2)(t)-\mathscr{T}(\overline{\mathcal{U}}_1,\overline{\mathcal{U}}_2)(t)\| \leq\left\{ \begin{array}{ll} \max\{\overline{\kappa_1},\overline{\kappa_2}\}\cdot\|\mathcal{U}-\overline{\mathcal{U}}\|, & { q_1, q_2\geq2 ,} \\ \max\{\overline{\kappa_1},\underline{\kappa_2}\}\cdot\|\mathcal{U}-\overline{\mathcal{U}}\|, & { q_1\geq2,1 < q_2 < 2 ,} \\ \max\{\underline{\kappa_1},\overline{\kappa_2}\}\cdot\|\mathcal{U}-\overline{\mathcal{U}}\|, & { 1 < q_1 < 2, q_2\geq2 ,} \\ \max\{\underline{\kappa_1},\underline{\kappa_2}\}\cdot\|\mathcal{U}-\overline{\mathcal{U}}\|, & { 1 < q_1,q_2 < 2 .} \end{array} \right. \end{align} (3.13)

    Let \kappa_j\in\{\overline{\kappa_j}, \underline{\kappa_j}\}, j = 1, 2 , then 0 < \max\{\kappa_1, \kappa_2\} < 1 . So (3.13) means that \mathscr{T}:\mathbb{X}\to\mathbb{X} is contractive. Hence, we conclude from Lemma 3.1 and Lemma 2.2 that \mathscr{T} has a unique fixed point \mathcal{U}^*(t) = (\mathcal{U}_1^*(t), \mathcal{U}_2^*(t))\in\mathbb{X} , which is the solution of (1.1). The proof is completed.

    In the portion, we mainly discuss the GUH-stability of (1.1) by direct analysis methods. We first give the definitions of UH- and GUH-stability corresponding to problem (1.1) as follows.

    Let \mathcal{U} = (\mathcal{U}_1, \mathcal{U}_2)\in \mathbb{X} and \epsilon > 0 . Consider the following inequality

    \begin{align} \left\{ \begin{array}{ll} ^{\mathrm{CF}}\mathcal{D}_{0^+}^{\nu_1}\big[\Phi_{p_1}(\,^{\mathrm{CF}}\mathcal{D}_{0^+}^{\mu_1}\mathcal{U}_1(t))\big] -F_1(t,\mathcal{U}_1(t),\mathcal{U}_2(t))\leq\epsilon,\,\,t\in(0,l], \\ ^{\mathrm{CF}}\mathcal{D}_{0^+}^{\nu_2}\big[\Phi_{p_2}(\,^{\mathrm{CF}}\mathcal{D}_{0^+}^{\mu_2}\mathcal{U}_2(t))\big] -F_2(t,\mathcal{U}_1(t),\mathcal{U}_2(t))\leq\epsilon,\,\,t\in(0,l], \\ \mathcal{U}_1(0) = a_1,\,\mathcal{U}_2(0) = a_2,\,^{\mathrm{CF}}\mathcal{D}_{0^+}^{\mu_1}\mathcal{U}_1(0) = b_1,\, ^{\mathrm{CF}}\mathcal{D}_{0^+}^{\mu_2}\mathcal{U}_2(0) = b_2. \end{array} \right. \end{align} (4.1)

    Definition 4.1. Assume that, \forall\, \epsilon > 0 and \forall\, \mathcal{U} = (\mathcal{U}_1, \mathcal{U}_2)\in \mathbb{X} satisfying (4.1), there exist a unique \mathcal{U}^* = (\mathcal{U}_1^*, \mathcal{U}_2^*)\in \mathbb{X} satisfying (1.1) and a constant \omega_1 > 0 such that

    \begin{align*} \|\mathcal{U}(t)-\mathcal{U}^*(t)\|\leq \omega_1\epsilon, \end{align*}

    then problem (1.1) is called Ulam-Hyers (UH) stable.

    Definition 4.2. Assume that, \forall\, \epsilon > 0 and \forall\, \mathcal{U} = (\mathcal{U}_1, \mathcal{U}_2)\in \mathbb{X} satisfying (4.1), there exist a unique \mathcal{U}^* = (\mathcal{U}_1^*, \mathcal{U}_2^*)\in \mathbb{X} satifying (1.1) and \vartheta\in C(\mathbb{R}, \mathbb{R}^+) with \vartheta(0) = 0 such that

    \begin{align*} \|\mathcal{U}(t)-\mathcal{U}^*(t)\|\leq \vartheta(\epsilon), \end{align*}

    then problem (1.1) is called generalized Ulam-Hyers (GUH) stable.

    Remark 4.1. \mathcal{U} = (\mathcal{U}_1, \mathcal{U}_2)\in \mathbb{X} is a solution of inequality (4.1) iff there exists \phi = (\phi_1, \phi_2)\in \mathbb{X} such that

    (1) \; |\phi_1(t)|\leq\epsilon , and |\phi_2(t)|\leq\epsilon , 0 < t\leq l;

    (2) \; ^{\mathrm{CF}}\mathcal{D}_{0^+}^{\nu_1}\big[\Phi_{p_1}(\, ^{\mathrm{CF}}\mathcal{D}_{0^+}^{\mu_1}\mathcal{U}_1(t))\big] = F_1(t, \mathcal{U}_1(t), \mathcal{U}_2(t)) +\phi_1(t), \, \, 0 < t\leq l;

    (3) \; ^{\mathrm{CF}}\mathcal{D}_{0^+}^{\nu_2}\big[\Phi_{p_2}(\, ^{\mathrm{CF}}\mathcal{D}_{0^+}^{\mu_2}\mathcal{U}_2(t))\big] = F_2(t, \mathcal{U}_1(t), \mathcal{U}_2(t)) +\phi_2(t), \, \, 0 < t\leq l;

    (4) \; \mathcal{U}_1(0) = a_1, \, \mathcal{U}_2(0) = a_2, \, ^{\mathrm{CF}}\mathcal{D}_{0^+}^{\mu_1}\mathcal{U}_1(0) = b_1, \, ^{\mathrm{CF}}\mathcal{D}_{0^+}^{\mu_2}\mathcal{U}_2(0) = b_2.

    Theorem 4.1. If all conditions of Theorem 3.1 hold, then problem (1.1) is GUH-stable.

    Proof. Based on Lemma 2.3 and Remark 4.1, the inequality (4.1) is solved by

    \begin{align} \left\{ \begin{array}{ll} \mathcal{U}_1(t) = a_1+\frac{1-\mu_1}{\mathfrak{N}(\mu_1)}\big[\Phi_{q_1}\big(G_1^{\phi}(t,\mathcal{U}_1(t),\mathcal{U}_2(t))\big) -b_1\big] \\ \quad\quad\quad+\frac{\mu_1}{\mathfrak{N}(\mu_1)}\int_{0}^t\Phi_{q_1}\big(G_1^{\phi}(s,\mathcal{U}_1(s),\mathcal{U}_2(s))\big)ds,\,\,t\in[0,l], \\ \mathcal{U}_2(t) = a_2+\frac{1-\mu_2}{\mathfrak{N}(\mu_2)}\big[\Phi_{q_2}\big(G_2^{\phi}(t,\mathcal{U}_1(t),\mathcal{U}_2(t))\big) -b_2\big] \\ \quad\quad\quad+\frac{\mu_2}{\mathfrak{N}(\mu_2)}\int_{0}^t\Phi_{q_2}\big(G_2^{\phi}(s,\mathcal{U}_1(s),\mathcal{U}_2(s))\big)ds,\,\,t\in[0,l], \end{array} \right. \end{align} (4.2)
    \begin{align} \,&G_1^{\phi}(t,\mathcal{U}_1(t),\mathcal{U}_2(t)) = \Phi_{p_1}(b_1) +\frac{1-\nu_1}{\mathfrak{N}(\nu_1)}[F_1(t,\mathcal{U}_1(t),\mathcal{U}_2(t))+\phi_1(t) \\ \,&-F_1(0,a_1,a_2)-\phi_1(0)] +\frac{\nu_1}{\mathfrak{N}(\nu_1)}\int_{0}^t[F_1(\tau,\mathcal{U}_1(\tau),\mathcal{U}_2(\tau))+\phi_1(\tau)]d\tau, \end{align} (4.3)
    \begin{align} \,&G_2^{\phi}(t,\mathcal{U}_1(t),\mathcal{U}_2(t)) = \Phi_{p_2}(b_2) +\frac{1-\nu_2}{\mathfrak{N}(\nu_2)}[F_2(t,\mathcal{U}_1(t),\mathcal{U}_2(t))+\phi_2(t) \\ \,&-F_2(0,a_1,a_2)-\phi_2(0)] +\frac{\nu_2}{\mathfrak{N}(\nu_2)}\int_{0}^t[F_2(\tau,\mathcal{U}_1(\tau),\mathcal{U}_2(\tau))+\phi(\tau)]d\tau. \end{align} (4.4)

    According to Theorem 3.1 and Lemma 2.3, the unique solution \mathcal{U}^*(t) = (\mathcal{U}_1^*(t), \mathcal{U}_2^*(t))\in\mathbb{X} of (1.1) satisfies (2.1). For all \epsilon > 0 ( \epsilon small enough), from (\mathrm{H}_1) , (\mathrm{H}_2) and (1) of Remark 4.1, it similar to (3.4)–(3.7) that

    \begin{align} G_1^{\phi}(t,\mathcal{U}_1(t),\mathcal{U}_2(t)) \leq b_1^{p_1-1}+\frac{1-\nu_1}{\mathfrak{N}(\nu_1)}(M_1-m_1+2\epsilon)+\frac{\nu_1}{\mathfrak{N}(\nu_1)}(M_1+\epsilon)l = \overline{\mathcal{M}_1}(\epsilon), \end{align} (4.5)
    \begin{align} G_1^{\phi}(t,\mathcal{U}_1(t),\mathcal{U}_2(t)) \geq b_1^{p_1-1}-\frac{1-\nu_1}{\mathfrak{N}(\nu_1)}(M_1-m_1-2\epsilon)+\frac{\nu_1}{\mathfrak{N}(\nu_1)}(m_1-\epsilon)l = \underline{\mathcal{M}_1}(\epsilon) > 0, \end{align} (4.6)
    \begin{align} G_2^{\phi}(t,\mathcal{U}_1(t),\mathcal{U}_2(t)) \leq b_2^{p_2-1}+\frac{1-\nu_2}{\mathfrak{N}(\nu_2)}(M_2-m_2-2\epsilon)+\frac{\nu_2}{\mathfrak{N}(\nu_2)}(M_2+\epsilon)l = \overline{\mathcal{M}_2}(\epsilon), \end{align} (4.7)

    and

    \begin{align} G_2^{\phi}(t,\mathcal{U}_1(t),\mathcal{U}_2(t)) \geq b_2^{p_2-1}-\frac{1-\nu_2}{\mathfrak{N}(\nu_2)}(M_2-m_2-2\epsilon)+\frac{\nu_2}{\mathfrak{N}(\nu_2)}(m_2-\epsilon)l = \underline{\mathcal{M}_2}(\epsilon) > 0. \end{align} (4.8)

    Clearly, 0 < \underline{\mathcal{M}_1}(\epsilon) < \underline{\mathcal{M}_1} < \overline{\mathcal{M}_1} < \overline{\mathcal{M}_1}(\epsilon) , 0 < \underline{\mathcal{M}_2}(\epsilon) < \underline{\mathcal{M}_2} < \overline{\mathcal{M}_2} < \overline{\mathcal{M}_2}(\epsilon) .

    Similar to (3.8) and (3.9), when q_1\geq2 , we derive from (2.1), (4.2), (4.3) and (4.5) that

    \begin{align} \,&|\mathcal{U}_1(t)-\mathcal{U}_1^*(t)| = \bigg|\frac{1-\mu_1}{\mathfrak{N}(\mu_1)}\big[\Phi_{q_1}\big(G_1^{\phi}(t,\mathcal{U}_1(t),\mathcal{U}_2(t))\big) -\Phi_{q_1}\big(G_1(t,\mathcal{U}_1^*(t),\mathcal{U}_2^*(t))\big)\big] \\ \,&+\frac{\mu_1}{\mathfrak{N}(\mu_1)}\int_{0}^t[\Phi_{q_1}\big(G_1^{\phi}(s,\mathcal{U}_1(s),\mathcal{U}_2(s))\big) -G_1(s,\mathcal{U}_1^*(s),\mathcal{U}_2^*(s))\big)]ds\bigg| \\ \leq&\frac{1-\mu_1}{\mathfrak{N}(\mu_1)}\big|\Phi_{q_1}\big(G_1^{\phi}(t,\mathcal{U}_1(t),\mathcal{U}_2(t))\big) -\Phi_{q_1}\big(G_1(t,\mathcal{U}_1^*(t),\mathcal{U}_2^*(t))\big)\big| \\ \,&+\frac{\mu_1}{\mathfrak{N}(\mu_1)}\int_{0}^t\big|\Phi_{q_1}\big(G_1^{\phi}(s,\mathcal{U}_1(s),\mathcal{U}_2(s))\big) -G_1(s,\mathcal{U}_1^*(s),\mathcal{U}^*_2(s))\big)\big|ds \\ \leq&\frac{1-\mu_1}{\mathfrak{N}(\mu_1)}(q_1-1)\overline{\mathcal{M}_1}(\epsilon)^{q_1-2} \big|G_1^{\phi}(t,\mathcal{U}_1(t),\mathcal{U}_2(t)) -G_1(t,\mathcal{U}^*_1(t),\mathcal{U}^*_2(t))\big| \\ \,&+\frac{\mu_1}{\mathfrak{N}(\mu_1)}(q_1-1)\overline{\mathcal{M}_1}(\epsilon)^{q_1-2} \int_{0}^t\big|G_1^{\phi}(s,\mathcal{U}_1(s),\mathcal{U}_2(s)) -G_1(s,\mathcal{U}^*_1(s),\mathcal{U}^*_2(s))\big|ds \\ \leq&\frac{1-\mu_1}{\mathfrak{N}(\mu_1)}(q_1-1)\overline{\mathcal{M}_1}(\epsilon)^{q_1-2} \bigg[\frac{1-\nu_1}{\mathfrak{N}(\nu_1)} \big[\big|F_1(t,\mathcal{U}_1(t),\mathcal{U}_2(t)) -F_1(t,\mathcal{U}^*_1(t),\mathcal{U}^*_2(t))\big|+2\epsilon\big] \\ \,&+\frac{\nu_1}{\mathfrak{N}(\nu_1)}\int_{0}^t\big[\big|F_1(\tau,\mathcal{U}_1(\tau),\mathcal{U}_2(\tau)) -F_1(\tau,\mathcal{U}^*_1(\tau),\mathcal{U}^*_2(\tau))\big|+2\epsilon\big]d\tau\bigg] \\ \,&+\frac{\mu_1}{\mathfrak{N}(\mu_1)}(q_1-1)\overline{\mathcal{M}_1}(\epsilon)^{q_1-2} \int_{0}^t\bigg[\frac{1-\nu_1}{\mathfrak{N}(\nu_1)} \big[\big|F_1(s,\mathcal{U}_1(s),\mathcal{U}_2(s)) -F_1(s,\mathcal{U}^*_1(s),\mathcal{U}^*_2(s))\big|+2\epsilon\big] \\ \,&+\frac{\nu_1}{\mathfrak{N}(\nu_1)}\int_{0}^s\big[\big|F_1(\tau,\mathcal{U}_1(\tau),\mathcal{U}_2(\tau)) -F_1(\tau,\mathcal{U}^*_1(\tau),\mathcal{U}^*_2(\tau))\big|+2\epsilon\big]d\tau\bigg]ds. \\ \leq&\frac{1-\mu_1}{\mathfrak{N}(\mu_1)}(q_1-1)\overline{\mathcal{M}_1}(\epsilon)^{q_1-2} \bigg[\frac{1-\nu_1}{\mathfrak{N}(\nu_1)} \big[\mathcal{L}_{11}(t)|\mathcal{U}_1(t)-\mathcal{U}^*_1(t)|+\mathcal{L}_{12}(t)|\mathcal{U}_2(t) -\mathcal{U}^*_2(t)|+2\epsilon\big] \\ \,&+\frac{\nu_1}{\mathfrak{N}(\nu_1)} \int_{0}^t\big[\mathcal{L}_{11}(\tau)|\mathcal{U}_1(\tau)-\mathcal{U}^*_1(\tau)|+\mathcal{L}_{12}(\tau)|\mathcal{U}_2(\tau) -\mathcal{U}^*_2(\tau)|+2\epsilon\big]d\tau\bigg] \\ \,&+\frac{\mu_1}{\mathfrak{N}(\mu_1)}(q_1-1)\overline{\mathcal{M}_1}(\epsilon)^{q_1-2} \int_{0}^t\bigg[\frac{1-\nu_1}{\mathfrak{N}(\nu_1)} \big[\mathcal{L}_{11}(s)|\mathcal{U}_1(s)-\mathcal{U}^*_1(s)|+\mathcal{L}_{12}(s)|\mathcal{U}_2(s) -\mathcal{U}^*_2(s)|+2\epsilon\big] \\ \,&+\frac{\nu_1}{\mathfrak{N}(\nu_1)}\int_{0}^s\big[\mathcal{L}_{11}(\tau)|\mathcal{U}_1(\tau)-\mathcal{U}^*_1(\tau)| +\mathcal{L}_{12}(\tau)|\mathcal{U}_2(\tau) -\mathcal{U}^*_2(\tau)|+2\epsilon\big]d\tau\bigg]ds. \\ \leq&\frac{1-\mu_1}{\mathfrak{N}(\mu_1)}(q_1-1)\overline{\mathcal{M}_1}(\epsilon)^{q_1-2} \bigg[\frac{1-\nu_1}{\mathfrak{N}(\nu_1)} \big[\|\mathcal{L}_{11}\|_l\cdot\|\mathcal{U}-\mathcal{U}^*\|+\|\mathcal{L}_{12}\|_l\cdot\|\mathcal{U} -\mathcal{U}^*\|+2\epsilon\big] \\ \,&+\frac{\nu_1}{\mathfrak{N}(\nu_1)} \int_{0}^l\big[\|\mathcal{L}_{11}\|_l\cdot\|\mathcal{U}-\mathcal{U}^*\|+\|\mathcal{L}_{12}\|_l\cdot\|\mathcal{U} -\mathcal{U}^*\|+2\epsilon\big]d\tau\bigg] \\ \,&+\frac{\mu_1}{\mathfrak{N}(\mu_1)}(q_1-1)\overline{\mathcal{M}_1}(\epsilon)^{q_1-2} \int_{0}^l\bigg[\frac{1-\nu_1}{\mathfrak{N}(\nu_1)} \big[\|\mathcal{L}_{11}\|_l\cdot\|\mathcal{U}-\mathcal{U}^*\|+\|\mathcal{L}_{12}\|_l\cdot\|\mathcal{U} -\mathcal{U}^*\|+2\epsilon\big] \\ \,&+\frac{\nu_1}{\mathfrak{N}(\nu_1)}\int_{0}^l\big[\|\mathcal{L}_{11}\|_l\cdot\|\mathcal{U}-\mathcal{U}^*\| +\|\mathcal{L}_{12}\|_l\cdot\|\mathcal{U} -\mathcal{U}^*\|+2\epsilon\big]d\tau\bigg]ds \\ = &\bigg[\frac{(1-\mu_1)(1-\nu_1)}{\mathfrak{N}(\mu_1)\mathfrak{N}(\nu_1)} +\frac{(1-\mu_1)\nu_1l}{\mathfrak{N}(\mu_1)\mathfrak{N}(\nu_1)} +\frac{(1-\nu_1)\mu_1l}{\mathfrak{N}(\mu_1)\mathfrak{N}(\nu_1)}+\frac{\mu_1\nu_1l^2}{\mathfrak{N}(\mu_1)\mathfrak{N}(\nu_1)}\bigg] (q_1-1)\overline{\mathcal{M}_1}(\epsilon)^{q_1-2} \\ \,&\times[(\|\mathcal{L}_{11}\|_l+\|\mathcal{L}_{12}\|_l)\|\mathcal{U}-\overline{\mathcal{U}}\|+2\epsilon\big] = \overline{\Upsilon_1}(\epsilon)\|\mathcal{U}-\overline{\mathcal{U}}\|+2\overline{\Delta_1}(\epsilon)\epsilon, \end{align} (4.9)

    where \overline{\Upsilon_1}(\epsilon) = \Theta_1(q_1-1)\overline{\mathcal{M}_1}(\epsilon)^{q_1-2}(\|\mathcal{L}_{11}\|_l+\|\mathcal{L}_{12}\|_l) , \overline{\Delta_1}(\epsilon) = \Theta_1(q_1-1)\overline{\mathcal{M}_1}(\epsilon)^{q_1-2} .

    Analogy to (4.9), we apply (4.6)–(4.8) to obtain

    \begin{align} |\mathcal{U}_2(t)-\mathcal{U}_2^*(t)| \leq\overline{\Upsilon_2}(\epsilon)\|\mathcal{U}-\mathcal{U^*}\|+2\overline{\Delta_2}(\epsilon)\epsilon,\,\,q_2\geq2, \end{align} (4.10)
    \begin{align} |\mathcal{U}_1(t)-\mathcal{U}_1^*(t)| \leq\underline{\Upsilon_1}(\epsilon)\|\mathcal{U}-\mathcal{U}^*\|+2\underline{\Delta_1}(\epsilon)\epsilon,\,\,1 < q_1 < 2, \end{align} (4.11)

    and

    \begin{align} |\mathcal{U}_2(t)-\mathcal{U}_2^*(t)| \leq\underline{\Upsilon_2}(\epsilon)\|\mathcal{U}-\mathcal{U}^*\|+2\underline{\Delta_2}(\epsilon)\epsilon,\,\,1 < q_2 < 2, \end{align} (4.12)

    where \overline{\Upsilon_2}(\epsilon) = \Theta_2(q_2-1)\overline{\mathcal{M}_2}(\epsilon)^{q_2-2}(\|\mathcal{L}_{21}\|_l+\|\mathcal{L}_{22}\|_l) , \underline{\Upsilon_1}(\epsilon) = \Theta_1(q_1-1)\underline{\mathcal{M}_1}(\epsilon)^{q_1-2}(\|\mathcal{L}_{11}\|_l+\|\mathcal{L}_{12}\|_l) , \underline{\Upsilon_2}(\epsilon) = \Theta_2(q_2-1)\underline{\mathcal{M}_2}(\epsilon)^{q_2-2}(\|\mathcal{L}_{21}\|_l+\|\mathcal{L}_{22}\|_l) . \overline{\Delta_2}(\epsilon) = \Theta_2(q_2-1)\overline{\mathcal{M}_2}(\epsilon)^{q_2-2} , \underline{\Delta_1}(\epsilon) = \Theta_1(q_1-1)\underline{\mathcal{M}_1}(\epsilon)^{q_1-2} , and \underline{\Delta_2}(\epsilon) = \Theta_2(q_2-1)\underline{\mathcal{M}_2}(\epsilon)^{q_2-2} .

    For all \epsilon > 0 ( \epsilon small enough), we have 0 < \overline{\Upsilon_1}(\epsilon), \underline{\Upsilon_1}(\epsilon), \overline{\Upsilon_2}(\epsilon), \underline{\Upsilon_2}(\epsilon) < 1 . Take \Upsilon_j(\epsilon)\in\{\overline{\Upsilon_j}(\epsilon), \underline{\Upsilon_j}(\epsilon)\} , and \Delta_j(\epsilon)\in\{\overline{\Delta_j}(\epsilon), \underline{\Delta_j}(\epsilon)\} , j = 1, 2 , then it follows from (4.9)–(4.12) that

    \begin{align} \|\mathcal{U}-\mathcal{U}^*\|\leq\frac{2\max\{\Delta_1(\epsilon),\,\Delta_2(\epsilon)\}} {1-\max\{\Upsilon_1(\epsilon),\,\Upsilon_2(\epsilon)\}}\epsilon. \end{align} (4.13)

    Therefore, we know from (4.13) and Definition 4.2 that problem (1.1) is GUH-stable. The proof is completed.

    The purpose of this section is to verify the correctness and applicability of our main results through an illustrative example.

    To do so, consider the following specific nonlinear CF-fractional coupled Laplacian system

    \begin{align} \left\{ \begin{array}{ll} ^{\mathrm{CF}}\mathcal{D}_{0^+}^{0.4}\big[\Phi_{p_1}(\,^{\mathrm{CF}}\mathcal{D}_{0^+}^{0.7}\mathcal{U}_1(t))\big] = \frac{2+\cos(\mathcal{U}_1(t))}{100}+\frac{1}{50}|\sin(t)|\frac{\mathcal{U}_2(t)}{1+\mathcal{U}_2(t)^2},\,\,t\in(0,1], \\ ^{\mathrm{CF}}\mathcal{D}_{0^+}^{0.8}\big[\Phi_{p_2}(\,^{\mathrm{CF}}\mathcal{D}_{0^+}^{0.3}\mathcal{U}_2(t))\big] = \frac{2+\sin(3t)}{100}[\frac{3\pi}{4}+\arctan(\mathcal{U}_1(t)+\mathcal{U}_2(t))],\,\,t\in(0,1], \\ \mathcal{U}_1(0) = -1,\,\mathcal{U}_2(0) = 1,\,^{\mathrm{CF}}\mathcal{D}_{0^+}^{0.7}\mathcal{U}_1(0) = 1,\, ^{\mathrm{CF}}\mathcal{D}_{0^+}^{0.3}\mathcal{U}_2(0) = 1. \end{array} \right. \end{align} (5.1)

    Obviously, l = 1 , \mu_1 = 0.7 , \nu_1 = 0.4 , \mu_2 = 0.3 , \nu_2 = 0.8 , a_1 = -1 , a_2 = b_1 = b_2 = 1 , F_1(t, u, v) = \frac{2+\cos(u)}{100}+\frac{1}{50}|\sin(t)|\frac{v}{1+v^2} , F_2(t, u, v) = \frac{2+\sin(3t)}{100}[\frac{3\pi}{4}+\arctan(u+v)] . Take \mathfrak{N}(x) = 1-x+\frac{x}{\Gamma(x)}, 0 < x\leq1 , then \mathfrak{N}(0) = \mathfrak{N}(1) = 1 . By a simple calculation, we have

    \frac{1}{100}\leq F_1(t,u,v)\leq\frac{4}{100},\,\,\frac{\pi}{400}\leq F_2(t,u,v)\leq\frac{15\pi}{400},
    |F_1(t,u,v)-F_1(t,\overline{u},\overline{v})|\leq\frac{1}{100}|u-\overline{u}|+\frac{|\sin(t)|}{100}|v-\overline{v}|,
    |F_2(t,u,v)-F_2(t,\overline{u},\overline{v})|\leq\frac{2+\sin(3t)}{100}[|u-\overline{u}|+|v-\overline{v}|].

    Thus, the conditions (\mathrm{H}_1) (\mathrm{H}_3) are true. Consequently, m_1 = \frac{1}{100} , M_1 = \frac{4}{100} , m_2 = \frac{\pi}{400} , M_2 = \frac{15\pi}{400} , \mathcal{L}_{11}(t) = \frac{1}{100} , \mathcal{L}_{12}(t) = \frac{|\sin(t)|}{100} , \mathcal{L}_{21}(t) = \mathcal{L}_{22}(t) = \frac{2+\sin(3t)}{100} , \|\mathcal{L}_{11}\|_l = \frac{1}{100} , \|\mathcal{L}_{12}\|_l = \frac{\sin(1)}{100} , \|\mathcal{L}_{21}\|_l = \|\mathcal{L}_{22}\|_l = \frac{3}{100} , and

    \Theta_1 = \frac{(1-\mu_1)(1-\nu_1)}{\mathfrak{N}(\mu_1)\mathfrak{N}(\nu_1)} +\frac{(1-\mu_1)\nu_1l}{\mathfrak{N}(\mu_1)\mathfrak{N}(\nu_1)} +\frac{(1-\nu_1)\mu_1l}{\mathfrak{N}(\mu_1)\mathfrak{N}(\nu_1)}+\frac{\mu_1\nu_1l^2}{\mathfrak{N}(\mu_1)\mathfrak{N}(\nu_1)}\approx1.5269,
    \Theta_2 = \frac{(1-\mu_2)(1-\nu_2)}{\mathfrak{N}(\mu_2)\mathfrak{N}(\nu_2)} +\frac{(1-\mu_2)\nu_2l}{\mathfrak{N}(\mu_2)\mathfrak{N}(\nu_2)} +\frac{(1-\nu_2)\mu_2l}{\mathfrak{N}(\mu_2)\mathfrak{N}(\nu_2)}+\frac{\mu_2\nu_2l^2}{\mathfrak{N}(\mu_2)\mathfrak{N}(\nu_2)}\approx1.4085.

    Case 1: When p_1 = \frac{3}{2} , p_2 = \frac{5}{4} , then q_1 = 3 > 2 , q_2 = 5 > 2 , and

    \underline{\mathcal{M}_1} = b_1^{p_1-1}-\frac{1-\nu_1}{\mathfrak{N}(\nu_1)}(M_1-m_1)+\frac{\nu_1}{\mathfrak{N}(\nu_1)}m_1l\approx0.9821 > 0,
    \underline{\mathcal{M}_2} = b_2^{p_2-1}-\frac{1-\nu_2}{\mathfrak{N}(\nu_2)}(M_2-m_2)+\frac{\nu_2}{\mathfrak{N}(\nu_2)}m_2l\approx0.9823 > 0,
    \overline{\mathcal{M}_1} = b_1^{p_1-1}+\frac{1-\nu_1}{\mathfrak{N}(\nu_1)}(M_1-m_1)+\frac{\nu_1}{\mathfrak{N}(\nu_1)}M_1l\approx1.0436,
    \overline{\mathcal{M}_2} = b_2^{p_2-1}+\frac{1-\nu_2}{\mathfrak{N}(\nu_2)}(M_2-m_2)+\frac{\nu_2}{\mathfrak{N}(\nu_2)}M_2l\approx1.1239,
    \overline{\kappa_1} = \Theta_1(q_1-1)\overline{\mathcal{M}_1}^{q_1-2}(\|\mathcal{L}_{11}\|_l+\|\mathcal{L}_{12}\|_l)\approx0.0587 < 1,
    \overline{\kappa_2} = \Theta_2(q_2-1)\overline{\mathcal{M}_2}^{q_2-2}(\|\mathcal{L}_{21}\|_l+\|\mathcal{L}_{22}\|_l)\approx0.3202 < 1.

    Thus, all conditions of Theorem 3.1 are fulfilled. From Theorem 3.1 and Theorem 4.1, we claim that system (5.1) has a unique solution and is GUH-stable.

    Case 2: When p_1 = \frac{3}{2} , p_2 = 5 , then q_1 = 3 > 2 , 1 < q_2 = \frac{5}{4} < 2 , and the values of \underline{\mathcal{M}_1} , \underline{\mathcal{M}_2} , \overline{\mathcal{M}_1} , \overline{\mathcal{M}_2} and \overline{\kappa_1} are same as Case 1, as well as

    \underline{\kappa_2} = \Theta_2(q_2-1)\underline{\mathcal{M}_2}^{q_2-2}(\|\mathcal{L}_{21}\|_l+\|\mathcal{L}_{22}\|_l)\approx0.0214 < 1.

    Thus, all conditions of Theorem 3.1 are fulfilled. From Theorem 3.1 and Theorem 4.1, we claim that system (5.1) has a unique solution and is GUH-stable.

    Case 3: When p_1 = 3 , p_2 = \frac{5}{4} , then 1 < q_1 = \frac{3}{2} < 2 , q_2 = 5 > 2 , and the values of \underline{\mathcal{M}_1} , \underline{\mathcal{M}_2} , \overline{\mathcal{M}_1} , \overline{\mathcal{M}_2} and \overline{\kappa_2} are same as Case 1, as well as

    \underline{\kappa_1} = \Theta_1(q_1-1)\underline{\mathcal{M}_1}^{q_1-2}(\|\mathcal{L}_{11}\|_l+\|\mathcal{L}_{12}\|_l)\approx0.0142 < 1,

    Thus, all conditions of Theorem 3.1 are fulfilled. From Theorem 3.1 and Theorem 4.1, we claim that system (5.1) has a unique solution and is GUH-stable.

    Case 4: When p_1 = 3 , p_2 = 5 , then 1 < q_1 = \frac{3}{2} < 2 , 1 < q_2 = \frac{5}{4} < 2 , and the values of \underline{\mathcal{M}_1} , \underline{\mathcal{M}_2} , \overline{\mathcal{M}_1} , \overline{\mathcal{M}_2} , \underline{\kappa_1} and \underline{\kappa_2} are same as Cases 1–3. Thus, all conditions of Theorem 3.1 are fulfilled. From Theorem 3.1 and Theorem 4.1, we claim that system (5.1) has a unique solution and is GUH-stable.

    The integer order differential equation with p -Laplacian is a class of special second-order ordinary differential equations that have been extensively and deeply studied. Some scholars have also conducted some research on Riemann-Liouville or Caputo fractional differential equations with p -Laplacian. However, the study on CF-fractional differential equations p -Laplacian has not been seen so far. Therefore, it is novel and interesting for us to choose the system (1.1) as the research object. We establish the existence, uniqueness, and GUH-stability of the solution for problem (1.1) by using the Banach's contraction mapping principle and the direct analysis method. From the proof of Lemma 2.3 and Theorem 3.1, it can be seen that our difficulty lies in establishing the integral equation corresponding to system (1.1) and verifying the contractility of vector operator \mathscr{T} defined by (3.1)–(3.3). The methods and steps used in this manuscript can be summarized as follows: (i) Convert differential system (1.1) to integral system (2.1); (ii) Define an operator \mathscr{T} according to integral system (2.1); (iii) Prove that the operator \mathscr{T} is contractive. The above methods and steps can be used for reference in the study of other types of fractional differential equations. In addition, illuminated by some of the latest achievements [42,43,44,45,46,47,48], we intend to apply fractional calculus theory and diffusion partial differential equation theory to the study of some ecosystems in the future.

    The author would like to express his heartfelt gratitude to the editors and reviewers for their constructive comments. The APC was funded by research start-up funds for high-level talents of Taizhou University.

    All authors declare that they have no competing interests.



    [1] S. Dharmaraja, Y. Wang, G. Strang, Optimal stability for trapezoidal-backward difference splitsteps, IMA J. Numer. Anal., 30 (2010), 141-148. doi: 10.1093/imanum/drp022
    [2] W. J. F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, Society for Industrial and Applied Mathematics, 2000.
    [3] E. Hairer, C. Lubich, G. Wanner, Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations, Springer-Verlag, 2006.
    [4] E. Hairer, S. P. Nørsett, G. Wanner, Solving ordinary differential equations I: Nonstiff problems., Springer-Verlag, 1993.
    [5] A. Stuart, A.R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, 1998.
    [6] J. E. Marsden and M. West, Discrete Mechanics and Variational Integrators, Acta Numer., 10 (2001), 357-514. doi: 10.1017/S096249290100006X
    [7] G. W. Patrick, C. Cuell, Error analysis of variational integrators of unconstrained Lagrangian systems, Numer. Math., 113 (2009), 243-264. doi: 10.1007/s00211-009-0245-3
    [8] P. Deuflhard, B. Fiedler, P. Kunkel, Efficient Numerical Pathfollowing Beyond Critical Points, SIAM J. Numer. Anal., 24 (1987), 912-927. doi: 10.1137/0724059
    [9] U. M. Ascher, R. M. M. Mattheij, R. D. Russell, Numerical solution of boundary value problems for ordinary differential equations, Industrial and Applied Mathematics (SIAM), 1995.
    [10] C. B. Haselgrove, The Solution of Non-Linear Equations and of Differential Equations with TwoPoint Boundary Conditions, The Computer Journal, 4 (1961), 255-259. doi: 10.1093/comjnl/4.3.255
    [11] P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, Springer Publishing Company, 2011.
    [12] G. W. Patrick, C. Cuell, R. J. Spiteri, et al. On converting any one-step method to a variational integrator of the same order, ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 4 (2009), 341-349.
    [13] G. W. Patrick, Variational discretizations: discrete tangent bundles, local error analysis, and arbitrary order variational integrators, AIP Conference Proceedings, 1168 (2009), 1013-1016.
    [14] A. R. Humphries, Spurious solutions of numerical methods for initial value problems, IMA J. Numer. Anal., 13 (1993), 263-290. doi: 10.1093/imanum/13.2.263
    [15] A. Iserles, A. T. Peplow, A. M. Stuart, A unified approach to spurious solutions introduced by time discretisation. I: Basic theory, SIAM J. Numer. Anal., 28 (1991), 1723-1751. doi: 10.1137/0728086
    [16] R. Schreiber, H. B. Keller, Spurious solutions in driven cavity calculations, J. Comput. Phys., 49 (1983), 165-172. doi: 10.1016/0021-9991(83)90119-5
    [17] T. Murdoch, C. J. Budd, Convergent and spurious solutions of nonlinear elliptic equations, IMA J. Numer. Anal., 12 (1992), 365-386. doi: 10.1093/imanum/12.3.365
    [18] A. B. Stephens, G. R. Shubin, Multiple Solutions and Bifurcation of Finite Difference Approximations to Some Steady Problems of Fluid Dynamics, SIAM Journal on Scientific and Statistical Computing, 2 (1981), 404-415. doi: 10.1137/0902033
    [19] D. F. Griffiths, P. K. Sweby, H. C. Yee, On spurious asymptotic numerical solutions of explicit Runge-Kutta methods, IMA J. Numer. Anal., 12 (1992), 319-338. doi: 10.1093/imanum/12.3.319
    [20] E. Hairer, Variable time step integration with symplectic methods, Appl. Numer. Math., 25 (1997), 219-227. doi: 10.1016/S0168-9274(97)00061-5
    [21] S. Blanes, C. J. Budd, Adaptive Geometric Integrators for Hamiltonian Problems with Approximate Scale Invariance, SIAM Journal on Scientific Computing, 26 (2005), 1089-1113. doi: 10.1137/S1064827502416630
    [22] E. Hairer, G. Söderlind, Explicit, time reversible, adaptive step size control, SIAM J. Sci. Comput., 26 (2005), 1838-1851.
    [23] B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics, Cambridge University Press, 2004.
    [24] M. Schatzman, Numerical analysis: A mathematical introduction, Clarendon Press, Oxford, 2002.
    [25] A. Iserles, A first course in the numerical analysis of differential equations, Cambridge University Press, Cambridge, 2009.
    [26] J. Guchenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcation of vector fields, Springer-Verlag, 1983.
    [27] Y. A. Kuznetsov, Elements of applied bifurcation theory, Springer-Verlag, 2004.
    [28] U. Kirchgraber, Multistep methods are essentially one-step methods, Numerische Mathematik, 48 (1986), 85-90. doi: 10.1007/BF01389443
    [29] J. C. Phillips, R. Braun, W. Wang, et al. Scalable molecular dynamics with NAMD, J. Comput. Chem., 26 (2005), 1781-1802. doi: 10.1002/jcc.20289
    [30] C. D. Cantwell, D. Moxey, A. Comerford, et al. Nektar plus plus: An open-source spectral/hp element framework, Comput. Phys. Commun., 192 (2015), 205-219. doi: 10.1016/j.cpc.2015.02.008
    [31] J. Pitt-Francis, M. O. Bernabeu, J. Cooper, et al. Chaste: using agile programming techniques to develop computational biology software, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366 (1878), 3111-3136.
    [32] J. Juno, A. Hakim, J. TenBarge, et al. Discontinuous Galerkin algorithms for fully kinetic plasmas, J. Comput. Phys., 353 (2018), 110-147. doi: 10.1016/j.jcp.2017.10.009
    [33] S. Reich, Backward error analysis for numerical integrators, SIAM J. Numer. Anal., 36 (1999), 1549-1570. doi: 10.1137/S0036142997329797
  • This article has been cited by:

    1. Zun Li, Binqiang Xue, Youyuan Chen, Event-Triggered State Estimation for Uncertain Systems with Binary Encoding Transmission Scheme, 2023, 11, 2227-7390, 3679, 10.3390/math11173679
    2. Kaihong Zhao, Asymptotic stability of a periodic GA-predation system with infinite distributed lags on time scales, 2024, 97, 0020-7179, 1542, 10.1080/00207179.2023.2214251
    3. Najat Chefnaj, Khalid Hilal, Ahmed Kajouni, The existence, uniqueness and Ulam–Hyers stability results of a hybrid coupled system with \Psi -Caputo fractional derivatives, 2024, 70, 1598-5865, 2209, 10.1007/s12190-024-02038-y
    4. Kaihong Zhao, Solvability, Approximation and Stability of Periodic Boundary Value Problem for a Nonlinear Hadamard Fractional Differential Equation with p-Laplacian, 2023, 12, 2075-1680, 733, 10.3390/axioms12080733
    5. Zakaria Yaagoub, El Mehdi Farah, Shabir Ahmad, Three-strain epidemic model for influenza virus involving fractional derivative and treatment, 2024, 1598-5865, 10.1007/s12190-024-02284-0
    6. Kaihong Zhao, Global asymptotic stability for a classical controlled nonlinear periodic commensalism AG-ecosystem with distributed lags on time scales, 2023, 37, 0354-5180, 9899, 10.2298/FIL2329899Z
    7. Kaihong Zhao, Attractor of a nonlinear hybrid reaction–diffusion model of neuroendocrine transdifferentiation of human prostate cancer cells with time-lags, 2023, 8, 2473-6988, 14426, 10.3934/math.2023737
    8. Ahmed M. A. El-Sayed, Malak M. S. Ba-Ali, Eman M. A. Hamdallah, Asymptotic Stability and Dependency of a Class of Hybrid Functional Integral Equations, 2023, 11, 2227-7390, 3953, 10.3390/math11183953
    9. Luchao Zhang, Xiping Liu, Zhensheng Yu, Mei Jia, The existence of positive solutions for high order fractional differential equations with sign changing nonlinearity and parameters, 2023, 8, 2473-6988, 25990, 10.3934/math.20231324
    10. Ping Tong, Qunjiao Zhang, Existence of solutions to Caputo fractional differential inclusions of 1 < \alpha < 2 with initial and impulsive boundary conditions, 2023, 8, 2473-6988, 21856, 10.3934/math.20231114
    11. Kaihong Zhao, Juqing Liu, Xiaojun Lv, A Unified Approach to Solvability and Stability of Multipoint BVPs for Langevin and Sturm–Liouville Equations with CH–Fractional Derivatives and Impulses via Coincidence Theory, 2024, 8, 2504-3110, 111, 10.3390/fractalfract8020111
    12. Mei Wang, Baogua Jia, Finite-time stability and uniqueness theorem of solutions of nabla fractional (q, h) -difference equations with non-Lipschitz and nonlinear conditions, 2024, 9, 2473-6988, 15132, 10.3934/math.2024734
    13. Keyu Zhang, Qian Sun, Donal O'Regan, Jiafa Xu, Positive solutions for a Riemann-Liouville-type impulsive fractional integral boundary value problem, 2024, 9, 2473-6988, 10911, 10.3934/math.2024533
    14. Maosong Yang, Michal Fečkan, JinRong Wang, Ulam’s Type Stability of Delayed Discrete System with Second-Order Differences, 2024, 23, 1575-5460, 10.1007/s12346-023-00868-y
    15. Kaihong Zhao, Study on the stability and its simulation algorithm of a nonlinear impulsive ABC-fractional coupled system with a Laplacian operator via F-contractive mapping, 2024, 2024, 2731-4235, 10.1186/s13662-024-03801-y
    16. Kaihong Zhao, Generalized UH-stability of a nonlinear fractional coupling (\mathcalligra{p}_{1},\mathcalligra{p}_{2})-Laplacian system concerned with nonsingular Atangana–Baleanu fractional calculus, 2023, 2023, 1029-242X, 10.1186/s13660-023-03010-3
    17. Luchao Zhang, Xiping Liu, Mei Jia, Zhensheng Yu, Piecewise conformable fractional impulsive differential system with delay: existence, uniqueness and Ulam stability, 2024, 70, 1598-5865, 1543, 10.1007/s12190-024-02017-3
    18. Vladislav Kovalnogov, Ruslan Fedorov, Tamara Karpukhina, Theodore Simos, Charalampos Tsitouras, On Reusing the Stages of a Rejected Runge-Kutta Step, 2023, 11, 2227-7390, 2589, 10.3390/math11112589
    19. Xiaojun Lv, Kaihong Zhao, Haiping Xie, Stability and Numerical Simulation of a Nonlinear Hadamard Fractional Coupling Laplacian System with Symmetric Periodic Boundary Conditions, 2024, 16, 2073-8994, 774, 10.3390/sym16060774
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5842) PDF downloads(332) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog