Advection and cross-diffusion terms are obtained as dispersal strategies of biological species. The focus of the paper is their connection to a given population dynamics. In particular, meaningful parameter regimes as biological dispersal are obtained. Eventually, we obtain a systematic approach to construct an advection or a cross-diffusion term from a given population dynamics and find meaningful parameter regimes as biological advection and cross-diffusion.
Citation: Jaywan Chung, Yong-Jung Kim, Ohsang Kwon, Chang-Wook Yoon. Biological advection and cross-diffusion with parameter regimes[J]. AIMS Mathematics, 2019, 4(6): 1721-1744. doi: 10.3934/math.2019.6.1721
[1] | Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018 |
[2] | Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112 |
[3] | Ahmed Alsaedi, Bashir Ahmad, Afrah Assolami, Sotiris K. Ntouyas . On a nonlinear coupled system of differential equations involving Hilfer fractional derivative and Riemann-Liouville mixed operators with nonlocal integro-multi-point boundary conditions. AIMS Mathematics, 2022, 7(7): 12718-12741. doi: 10.3934/math.2022704 |
[4] | Pinghua Yang, Caixia Yang . The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative. AIMS Mathematics, 2023, 8(5): 11837-11850. doi: 10.3934/math.2023599 |
[5] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[6] | Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013 |
[7] | Ravi Agarwal, Snezhana Hristova, Donal O'Regan . Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS Mathematics, 2022, 7(2): 2973-2988. doi: 10.3934/math.2022164 |
[8] | Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593 |
[9] | Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155 |
[10] | Muath Awadalla, Manigandan Murugesan, Subramanian Muthaiah, Bundit Unyong, Ria H Egami . Existence results for a system of sequential differential equations with varying fractional orders via Hilfer-Hadamard sense. AIMS Mathematics, 2024, 9(4): 9926-9950. doi: 10.3934/math.2024486 |
Advection and cross-diffusion terms are obtained as dispersal strategies of biological species. The focus of the paper is their connection to a given population dynamics. In particular, meaningful parameter regimes as biological dispersal are obtained. Eventually, we obtain a systematic approach to construct an advection or a cross-diffusion term from a given population dynamics and find meaningful parameter regimes as biological advection and cross-diffusion.
Segre [1] made a pioneering attempt in the development of special algebra. He conceptualized the commutative generalization of complex numbers, bicomplex numbers, tricomplex numbers, etc. as elements of an infinite set of algebras. Subsequently, in the 1930s, researchers contributed in this area [2,3,4]. The next fifty years failed to witness any advancement in this field. Later, Price [5] developed the bicomplex algebra and function theory. Recent works in this subject [6,7] find some significant applications in different fields of mathematical sciences as well as other branches of science and technology. An impressive body of work has been developed by a number of researchers. Among these works, an important work on elementary functions of bicomplex numbers has been done by Luna-Elizaarrarˊas et al. [8]. Choi et al. [9] proved some common fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces. Jebril [10] proved some common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued metric spaces. In 2017, Dhivya and Marudai [11] introduced the concept of a complex partial metric space, suggested a plan to expand the results and proved some common fixed point theorems under a rational expression contraction condition. In 2019, Mani and Mishra [12] proved coupled fixed point theorems on a complex partial metric space using different types of contractive conditions. In 2021, Gunaseelan et al. [13] proved common fixed point theorems on a complex partial metric space. In 2021, Beg et al.[14] proved fixed point theorems on a bicomplex valued metric space. In 2021, Zhaohui et al. [15] proved common fixed theorems on a bicomplex partial metric space. In this paper, we prove coupled fixed point theorems on a bicomplex partial metric space. An example is provided to verify the effectiveness and applicability of our main results. An application of these results to Fredholm integral equations and nonlinear integral equations is given.
Throughout this paper, we denote the set of real, complex and bicomplex numbers, respectively, as C0, C1 and C2. Segre [1] defined the complex number as follows:
z=ϑ1+ϑ2i1, |
where ϑ1,ϑ2∈C0, i21=−1. We denote the set ofcomplex numbers C1 as:
C1={z:z=ϑ1+ϑ2i1,ϑ1,ϑ2∈C0}. |
Let z∈C1; then, |z|=(ϑ21+ϑ22)12. The norm ||.|| of an element in C1 is the positive real valued function ||.||:C1→C+0 defined by
||z||=(ϑ21+ϑ22)12. |
Segre [1] defined the bicomplex number as follows:
ς=ϑ1+ϑ2i1+ϑ3i2+ϑ4i1i2, |
where ϑ1,ϑ2,ϑ3,ϑ4∈C0, and independent units i1,i2 are such that i21=i22=−1 and i1i2=i2i1. We denote the set of bicomplex numbers C2 as:
C2={ς:ς=ϑ1+ϑ2i1+ϑ3i2+ϑ4i1i2,ϑ1,ϑ2,ϑ3,ϑ4∈C0}, |
i.e.,
C2={ς:ς=z1+i2z2,z1,z2∈C1}, |
where z1=ϑ1+ϑ2i1∈C1 and z2=ϑ3+ϑ4i1∈C1. If ς=z1+i2z2 and η=ω1+i2ω2 are any two bicomplex numbers, then the sum is ς±η=(z1+i2z2)±(ω1+i2ω2)=z1±ω1+i2(z2±ω2), and the product is ς.η=(z1+i2z2)(ω1+i2ω2)=(z1ω1−z2ω2)+i2(z1ω2+z2ω1).
There are four idempotent elements in C2: They are 0,1,e1=1+i1i22,e2=1−i1i22 of which e1 and e2 are nontrivial, such that e1+e2=1 and e1e2=0. Every bicomplex number z1+i2z2 can be uniquely expressed as the combination of e1 and e2, namely
ς=z1+i2z2=(z1−i1z2)e1+(z1+i1z2)e2. |
This representation of ς is known as the idempotent representation of a bicomplex number, and the complex coefficients ς1=(z1−i1z2) and ς2=(z1+i1z2) are known as the idempotent components of the bicomplex number ς.
An element ς=z1+i2z2∈C2 is said to be invertible if there exists another element η in C2 such that ςη=1, and η is said to be inverse (multiplicative) of ς. Consequently, ς is said to be the inverse(multiplicative) of η. An element which has an inverse in C2 is said to be a non-singular element of C2, and an element which does not have an inverse in C2 is said to be a singular element of C2.
An element ς=z1+i2z2∈C2 is non-singular if and only if ||z21+z22||≠0 and singular if and only if ||z21+z22||=0. When it exists, the inverse of ς is as follows.
ς−1=η=z1−i2z2z21+z22. |
Zero is the only element in C0 which does not have a multiplicative inverse, and in C1, 0=0+i10 is the only element which does not have a multiplicative inverse. We denote the set of singular elements of C0 and C1 by O0 and O1, respectively. However, there is more than one element in C2 which does not have a multiplicative inverse: for example, e1 and e2. We denote this set by O2, and clearly O0={0}=O1⊂O2.
A bicomplex number ς=ϑ1+ϑ2i1+ϑ3i2+ϑ4i1i2∈C2 is said to be degenerated (or singular) if the matrix
(ϑ1ϑ2ϑ3ϑ4) |
is degenerated (or singular). The norm ||.|| of an element in C2 is the positive real valued function ||.||:C2→C+0 defined by
||ς||=||z1+i2z2||={||z21||+||z22||}12=[|z1−i1z2|2+|z1+i1z2|22]12=(ϑ21+ϑ22+ϑ23+ϑ24)12, |
where ς=ϑ1+ϑ2i1+ϑ3i2+ϑ4i1i2=z1+i2z2∈C2.
The linear space C2 with respect to a defined norm is a normed linear space, and C2 is complete. Therefore, C2 is a Banach space. If ς,η∈C2, then ||ςη||≤√2||ς||||η|| holds instead of ||ςη||≤||ς||||η||, and therefore C2 is not a Banach algebra. For any two bicomplex numbers ς,η∈C2, we can verify the following:
1. ς⪯i2η⟺||ς||≤||η||,
2. ||ς+η||≤||ς||+||η||,
3. ||ϑς||=|ϑ|||ς||, where ϑ is a real number,
4. ||ςη||≤√2||ς||||η||, and the equality holds only when at least one of ς and η is degenerated,
5. ||ς−1||=||ς||−1 if ς is a degenerated bicomplex number with 0≺ς,
6. ||ςη||=||ς||||η||, if η is a degenerated bicomplex number.
The partial order relation ⪯i2 on C2 is defined as follows. Let C2 be the set of bicomplex numbers and ς=z1+i2z2, η=ω1+i2ω2∈C2. Then, ς⪯i2η if and only if z1⪯ω1 and z2⪯ω2, i.e., ς⪯i2η if one of the following conditions is satisfied:
1. z1=ω1, z2=ω2,
2. z1≺ω1, z2=ω2,
3. z1=ω1, z2≺ω2,
4. z1≺ω1, z2≺ω2.
In particular, we can write ς⋦i2η if ς⪯i2η and ς≠η, i.e., one of 2, 3 and 4 is satisfied, and we will write ς≺i2η if only 4 is satisfied.
Now, let us recall some basic concepts and notations, which will be used in the sequel.
Definition 2.1. [15] A bicomplex partial metric on a non-void set U is a function ρbcpms:U×U→C+2, where C+2={ς:ς=ϑ1+ϑ2i1+ϑ3i2+ϑ4i1i2,ϑ1,ϑ2,ϑ3,ϑ4∈C+0} and C+0={ϑ1∈C0|ϑ1≥0} such that for all φ,ζ,z∈U:
1. 0⪯i2ρbcpms(φ,φ)⪯i2ρbcpms(φ,ζ) (small self-distances),
2. ρbcpms(φ,ζ)=ρbcpms(ζ,φ) (symmetry),
3. ρbcpms(φ,φ)=ρbcpms(φ,ζ)=ρbcpms(ζ,ζ) if and only if φ=ζ (equality),
4. ρbcpms(φ,ζ)⪯i2ρbcpms(φ,z)+ρbcpms(z,ζ)−ρbcpms(z,z) (triangularity) .
A bicomplex partial metric space is a pair (U,ρbcpms) such that U is a non-void set and ρbcpms is a bicomplex partial metric on U.
Example 2.2. Let U=[0,∞) be endowed with bicomplex partial metric space ρbcpms:U×U→C+2 with ρbcpms(φ,ζ)=max, where e^{i_{2}\theta} = \cos \theta +i_{2}\sin \theta , for all \varphi, \zeta\in \mathcal{U} and 0\leq \theta\leq \frac{\pi}{2} . Obviously, (\mathcal{U}, \rho_{bcpms}) is a bicomplex partial metric space.
Definition 2.3. [15] A bicomplex partial metric space \mathcal{U} is said to be a T_{0} space if for any pair of distinct points of \mathcal{U} , there exists at least one open set which contains one of them but not the other.
Theorem 2.4. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space; then, (\mathcal{U}, \rho_{bcpms}) is T_{0} .
Definition 2.5. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space. A sequence \{\varphi_{\tau}\} in \mathcal{U} is said to be convergent and converges to \varphi\in\mathcal{U} if for every 0\prec_{i_{2}}\epsilon\in \mathscr{C}^{+}_{2} there exists \mathcal{N}\in \mathbb{N} such that \varphi_{\tau}\in \mathfrak{B}_{ \rho_{bcpms}}(\varphi, \epsilon) = \{\omega\in \mathcal{U}:\rho_{bcpms}(\varphi, \omega) < \epsilon+\rho_{bcpms}(\varphi, \varphi)\} for all \tau\geq \mathcal{N} , and it is denoted by \lim\limits_{\tau\rightarrow \infty} \varphi_{\tau} = \varphi .
Lemma 2.6. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space. A sequence \{\varphi_{\tau}\}\in \mathcal{U} is converges to \varphi\in \mathcal{U} iff \rho_{bcpms}(\varphi, \varphi) = \lim\limits_{\tau \to \infty} \rho_{bcpms}(\varphi, \varphi_{\tau}) .
Definition 2.7. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space. A sequence \{\varphi_{\tau}\} in \mathcal{U} is said to be a Cauchy sequence in (\mathcal{U}, \rho_{bcpms}) if for any \epsilon > 0 there exist \vartheta\in \mathscr{C}^{+}_{2} and \mathcal{N}\in \mathbb{N} such that || \rho_{bcpms}(\varphi_{\tau}, \varphi_{\upsilon})-\vartheta|| < \epsilon for all \tau, \upsilon\geq\mathcal{N} .
Definition 2.8. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space. Let \{\varphi_{\tau}\} be any sequence in \mathcal{U} . Then,
1. If every Cauchy sequence in \mathcal{U} is convergent in \mathcal{U} , then (\mathcal{U}, \rho_{bcpms}) is said to be a complete bicomplex partial metric space.
2. A mapping \mathcal{S}:\mathcal{U} \to \mathcal{U} is said to be continuous at \varphi_{0}\in \mathcal{U} if for every \epsilon > 0 , there exists \delta > 0 such that \mathcal{S}(\mathfrak{B}_{ \rho_{bcpms}}(\varphi_{0}, \delta))\subset \mathfrak{B}_{ \rho_{bcpms}}(\mathcal{S}(\varphi_{0}, \epsilon)) .
Lemma 2.9. [15] Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space and \{\varphi_{\tau}\} be a sequence in \mathcal{U} . Then, \{\varphi_{\tau}\} is a Cauchy sequence in \mathcal{U} iff \lim\limits_{\tau, \upsilon\to \infty} \rho_{bcpms}(\varphi_{\tau}, \varphi_{\upsilon}) = \rho_{bcpms}(\varphi, \varphi) .
Definition 2.10. Let (\mathcal{U}, \rho_{bcpms}) be a bicomplex partial metric space. Then, an element (\varphi, \zeta)\in \mathcal{U}\times \mathcal{U} is said to be a coupled fixed point of the mapping \mathcal{S}: \mathcal{U}\times \mathcal{U}\to \mathcal{U} if \mathcal{S}(\varphi, \zeta) = \varphi and \mathcal{S}(\zeta, \varphi) = \zeta .
Theorem 2.11. [15] Let (\mathcal{U}, \rho_{bcpms}) be a complete bicomplex partial metric space and \mathcal{S}, \mathcal{T} \colon \mathcal{ U} \rightarrow \mathcal{U} be two continuous mappings such that
\begin{align*} \rho_{bcpms}(\mathcal{S} \varphi, \mathcal{T} \zeta) &\preceq_{i_{2}} \mathfrak{l} \max\{ \rho_{bcpms}(\varphi, \zeta), \rho_{bcpms}(\varphi, \mathcal{S} \varphi), \rho_{bcpms}(\zeta, \mathcal{T} \zeta), \notag \\ &\; \; \; \; \dfrac{1}{2}( \rho_{bcpms}(\varphi, \mathcal{T} \zeta)+ \rho_{bcpms}(\zeta, \mathcal{S} \varphi))\}, \label{e1} \end{align*} |
for all \varphi, \zeta \in \mathcal{U} , where 0\leq \mathfrak{l} < 1 . Then, the pair (\mathcal{S}, \mathcal{T}) has a unique common fixed point, and \rho_{bcpms}(\varphi^{*}, \varphi^{*}) = 0 .
Inspired by Theorem 2.11, here we prove coupled fixed point theorems on a bicomplex partial metric space with an application.
Theorem 3.1. Let (\mathcal{U}, \rho_{bcpms}) be a complete bicomplex partial metric space. Suppose that the mapping \mathcal{S}:\mathcal{U}\times \mathcal{U}\to \mathcal{U} satisfies the following contractive condition:
\begin{equation*} \rho_{bcpms}(\mathcal{S}(\varphi , \zeta), \mathcal{S}(\nu, \mu)) \preceq_{i_{2}} \lambda\rho_{bcpms}(\mathcal{S}(\varphi, \zeta) , \varphi )+ \mathfrak{l}\rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu), \end{equation*} |
for all \varphi, \zeta, \nu, \mu\in \mathcal{U} , where \lambda, \mathfrak{l} are nonnegative constants with \lambda+\mathfrak{l} < 1 . Then, \mathcal{S} has a unique coupled fixed point.
Proof. Choose \nu_{0}, \mu_{0}\in \mathcal{U} and set \nu_{1} = \mathcal{S}(\nu_{0}, \mu_{0}) and \mu_{1} = \mathcal{S}(\mu_{0}, \nu_{0}) . Continuing this process, set \nu_{\tau+1} = \mathcal{S}(\nu_{\tau}, \mu_{\tau}) and \mu_{\tau+1} = \mathcal{S}(\mu_{\tau}, \nu_{\tau}) . Then,
\begin{align*} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})& = \rho_{bcpms}(\mathcal{S}(\nu_{\tau-1}, \mu_{\tau-1}), \mathcal{S}(\nu_{\tau}, \mu_{\tau}))\\ &\preceq_{i_{2}} \lambda\rho_{bcpms}(\mathcal{S}(\nu_{\tau-1}, \mu_{\tau-1}), \nu_{\tau-1})+\mathfrak{l}\rho_{bcpms}(\mathcal{S}(\nu_{\tau}, \mu_{\tau}), \nu_{\tau})\\ & = \lambda\rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})+\mathfrak{l}\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau})\\ \rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})&\preceq_{i_{2}} \frac{\lambda}{1-\mathfrak{l}}\rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1}), \end{align*} |
which implies that
\begin{align} \lvert\lvert\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})\rvert \rvert\leq \mathfrak{z} \lvert\lvert\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})\rvert\rvert \end{align} | (3.1) |
where \mathfrak{z} = \frac{\lambda}{1-\mathfrak{l}} < 1 . Similarly, one can prove that
\begin{align} ||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||\leq \mathfrak{z}\lvert \lvert\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})\rvert\rvert. \end{align} | (3.2) |
From (3.1) and (3.2), we get
\begin{align*} \lvert\lvert\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})\rvert\rvert+ ||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||&\leq \mathfrak{z} (\lvert\lvert\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})\rvert\rvert\\ &+\lvert\lvert \rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||), \end{align*} |
where \mathfrak{z} < 1 .
Also,
\begin{align} ||\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau+2})||\leq \mathfrak{z}||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})|| \end{align} | (3.3) |
\begin{align} ||\rho_{bcpms}(\mu_{\tau+1}, \mu_{\tau+2})||\leq \mathfrak{z}||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||. \end{align} | (3.4) |
From (3.3) and (3.4), we get
\begin{align*} ||\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau+2})||+||\rho_{bcpms}(\mu_{\tau+1}, \mu_{\tau+2})||&\leq \mathfrak{z}(||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||\\ &+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||). \end{align*} |
Repeating this way, we get
\begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||&\leq \mathfrak{z}(||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||)\\ &\leq \mathfrak{z}^{2}(||\rho_{bcpms}(\mu_{\tau-2}, \mu_{\tau-1})||\\ &+||\rho_{bcpms}(\nu_{\tau-2}, \nu_{\tau-1})||)\\ &\leq \dots \leq \mathfrak{z}^{\tau}(||\rho_{bcpms}(\mu_{0}, \mu_{1})||\\ &+||\rho_{bcpms}(\nu_{0}, \nu_{1})||). \end{align*} |
Now, if ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})|| = \gamma_{\tau} , then
\begin{align} \gamma_{\tau}\leq \mathfrak{z} \gamma_{\tau-1} \leq \dots \leq \mathfrak{z}^\tau\gamma_{0}. \end{align} | (3.5) |
If \gamma_{0} = 0 , then ||\rho_{bcpms}(\nu_{0}, \nu_{1})||+||\rho_{bcpms}(\mu_{0}, \mu_{1})|| = 0 . Hence, \nu_{0} = \nu_{1} = \mathcal{S}(\nu_{0}, \mu_{0}) and \mu_{0} = \mu_{1} = \mathcal{S}(\mu_{0}, \mu_{0}) , which implies that (\nu_{0}, \mu_{0}) is a coupled fixed point of \mathcal{S} . Let \gamma_{0} > 0 . For each \tau\geq \upsilon , we have
\begin{align*} \rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})&\preceq_{i_{2}} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})+\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})-\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-1})\\ &+\rho_{bcpms}(\nu_{\tau-2}, \nu_{\tau-3})+\rho_{bcpms}(\nu_{\tau-3}, \nu_{\tau-4})-\rho_{bcpms}(\nu_{\tau-3}, \nu_{\tau-3})\\ &+\dots +\rho_{bcpms}(\nu_{\upsilon+2}, \nu_{\upsilon+1})+\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon})-\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon+1})\\ &\preceq_{i_{2}} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})+\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})+\dots+\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon}), \end{align*} |
which implies that
\begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})||&\leq ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})||+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})||\\ &+\dots+||\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon})||. \end{align*} |
Similarly, one can prove that
\begin{align*} ||\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon})||&\leq ||\rho_{bcpms}({\mu_{\tau}, \mu_{\tau-1}})||+||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau-2})||\\ &+\dots +||\rho_{bcpms}(\mu_{\upsilon+1}, \mu_{\upsilon})||. \end{align*} |
Thus,
\begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon})||&\leq \gamma_{\tau-1}+\gamma_{\tau-2}+\gamma_{\tau-3}+\dots +\gamma_{\upsilon}\\ &\leq (\mathfrak{z}^{\tau-1}+\mathfrak{z}^{\tau-2}+\dots +\mathfrak{z}^{\upsilon})\gamma_{0}\\ &\leq \frac{\mathfrak{z}^{\upsilon}}{1-\mathfrak{z}}\gamma_{0}\rightarrow 0\, \, \text{as}\, \, \upsilon\rightarrow \infty, \end{align*} |
which implies that \{\nu_{\tau}\} and \{\mu_{\tau}\} are Cauchy sequences in (\mathcal{U}, \rho_{bcpms}) . Since the bicomplex partial metric space (\mathcal{U}, \rho_{bcpms}) is complete, there exist \nu, \mu\in \mathcal{U} such that \{\nu_{\tau}\}\rightarrow \nu and \{\mu_{\tau}\}\rightarrow \mu as \tau \rightarrow \infty , and
\begin{align*} \rho_{bcpms}(\nu, \nu) = \lim\limits_{\tau \rightarrow \infty }\rho_{bcpms}(\nu, \nu_{\tau}) = \lim\limits_{\tau, \upsilon \rightarrow \infty }\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon}) = 0, \\ \rho_{bcpms}(\mu, \mu) = \lim\limits_{\tau \rightarrow \infty }\rho_{bcpms}(\mu, \mu_{\tau}) = \lim\limits_{\tau, \upsilon \rightarrow \infty }\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon}) = 0. \end{align*} |
We now show that \nu = \mathcal{S}(\nu, \mu) . We suppose on the contrary that \nu\neq \mathcal{S}(\nu, \mu) and \mu\neq \mathcal{S} (\mu, \nu) , so that 0\prec_{i_{2}} \rho_{bcpms}(\nu, \mathcal{S}(\nu, \mu)) = \mathfrak{l}_{1} and 0\prec_{i_{2}}\rho_{bcpms}(\mu, \mathcal{S}(\mu, \nu)) = \mathfrak{l}_{2} . Then,
\begin{align*} \mathfrak{l}_{1} = \rho_{bcpms}(\nu, \mathcal{S}(\nu, \mu))&\preceq_{i_{2}} \rho_{bcpms}(\nu, \nu_{\tau+1})+\rho_{bcpms}(\nu_{\tau+1}, \mathcal{S}(\nu, \mu))\\ & = \rho_{bcpms}(\nu, \nu_{\tau+1})+\rho_{bcpms}(\mathcal{S}(\nu_{\tau}, \mu_{\tau}), \mathcal{S}(\nu, \mu))\\ &\preceq_{i_{2}} \rho_{bcpms}(\nu, \nu_{\tau+1})+\lambda\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})+\mathfrak{l}\rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu)\\ &\preceq_{i_{2}}\frac{1}{1-\mathfrak{l}} \rho_{bcpms}(\nu, \nu_{\tau+1})+\frac{\lambda}{1-\mathfrak{l}}\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau}), \end{align*} |
which implies that
\begin{align*} \lvert \lvert\mathfrak{l}_{1}\rvert\rvert\leq \frac{1}{1-\mathfrak{l}} \lvert\lvert\rho_{bcpms}(\nu, \nu_{\tau+1})\rvert\rvert+\frac{\lambda}{1-\mathfrak{l}}\lvert\lvert\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})\rvert\rvert. \end{align*} |
As \tau\rightarrow \infty , \lvert\lvert \mathfrak{l}_{1}\rvert\rvert\leq 0 . This is a contradiction, and therefore \lvert\lvert\rho_{bcpms}(\nu, \mathcal{S}(\nu, \mu))\rvert\rvert = 0 implies \nu = \mathcal{S}(\nu, \mu) . Similarly, we can prove that \mu = \mathcal{S}(\mu, \nu) . Thus (\nu, \mu) is a coupled fixed point of \mathcal{S} . Now, if (\mathfrak{g}, \mathfrak{h}) is another coupled fixed point of \mathcal{S} , then
\begin{align*} \rho_{bcpms}(\nu, \mathfrak{g}) = \rho_{bcpms}(\mathcal{S}(\nu, \mu), \mathcal{S}(\mathfrak{g}, \mathfrak{h})) &\preceq_{i_{2}} \lambda\rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu)+\mathfrak{l}\rho_{bcpms}(\mathcal{S}(\mathfrak{g}, \mathfrak{h}), \mathfrak{g})\\ & = \lambda\rho_{bcpms}(\nu, \nu)+\mathfrak{l}\rho_{bcpms}(\mathfrak{g}, \mathfrak{g}) = 0. \end{align*} |
Thus, we have \mathfrak{g} = \nu . Similarly, we get \mathfrak{h} = \mu . Therefore \mathcal{S} has a unique coupled fixed point.
Corollary 3.2. Let (\mathcal{U}, \rho_{bcpms}) be a complete bicomplex partial metric space. Suppose that the mapping \mathcal{S}:\mathcal{U}\times \mathcal{U} \to \mathcal{U} satisfies the following contractive condition:
\begin{equation} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \mu))\preceq_{i_{2}} \lambda(\rho_{bcpms}(\mathcal{S}(\varphi, \zeta) , \varphi)+\rho_{bcpms}( \mathcal{S}(\nu, \mu), \nu)), \end{equation} | (3.6) |
for all \varphi, \zeta, \nu, \mu\in \mathcal{U} , where 0\leq \lambda < \frac{1 }{2} . Then, \mathcal{S} has a unique coupled fixed point.
Theorem 3.3. Let (\mathcal{U}, \rho_{bcpms}) be a complete complex partial metric space. Suppose that the mapping \mathcal{S}:\mathcal{U}\times \mathcal{U}\to \mathcal{U} satisfies the following contractive condition:
\begin{equation*} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \mu))\preceq_{i_{2}} \lambda\rho_{bcpms}(\varphi, \nu)+\mathfrak{l}\rho_{bcpms}(\zeta, \mu), \end{equation*} |
for all \varphi, \zeta, \nu, \mu\in \mathcal{U} , where \lambda, \mathfrak{l} are nonnegative constants with \lambda+\mathfrak{l} < 1 . Then, \mathcal{S} has a unique coupled fixed point.
Proof. Choose \nu_{0}, \mu_{0}\in \mathcal{U} and set \nu_{1} = \mathcal{S}(\nu_{0}, \mu_{0}) and \mu_{1} = \mathcal{S}(\mu_{0}, \nu_{0}) . Continuing this process, set \nu_{\tau+1} = \mathcal{S}(\nu_{\tau}, \mu_{\tau}) and \mu_{\tau+1} = \mathcal{S}(\mu_{\tau}, \nu_{\tau}) . Then,
\begin{align*} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})& = \rho_{bcpms}(\mathcal{S}(\nu_{\tau-1}, \mu_{\tau-1}), \mathcal{S}(\nu_{\tau}, \mu_{\tau}))\\ &\preceq_{i_{2}} \lambda\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})+\mathfrak{l}\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau}), \end{align*} |
which implies that
\begin{align} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||\leq \lambda||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||+\mathfrak{l}||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||. \end{align} | (3.7) |
Similarly, one can prove that
\begin{align} ||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||\leq \lambda||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||+\mathfrak{l}||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||. \end{align} | (3.8) |
From (3.7) and (3.8), we get
\begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||&\leq (\lambda+\mathfrak{l})(||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||\\ &+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||)\\ & = \alpha(||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||\\ &+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||), \end{align*} |
where \alpha = \lambda+\mathfrak{l} < 1 . Also,
\begin{align} ||\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau+2})||\leq \lambda||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||+\mathfrak{l}||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})|| \end{align} | (3.9) |
\begin{align} ||\rho_{bcpms}(\mu_{\tau+1}, \mu_{\tau+2})||\leq \lambda||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||+\mathfrak{l}||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||. \end{align} | (3.10) |
From (3.9) and (3.10), we get
\begin{align*} ||\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau+2})||+||\rho_{bcpms}(\mu_{\tau+1}, \mu_{\tau+2})||&\leq (\lambda+\mathfrak{l})(||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||\\ &+||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||)\\ & = \alpha(||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||\\ &+||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||). \end{align*} |
Repeating this way, we get
\begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{n+1})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})||&\leq\alpha(||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau})||\\ &+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau})||)\\ &\leq \alpha^{2}(||\rho_{bcpms}(\mu_{\tau-2}, \mu_{\tau-1})||\\ &+||\rho_{bcpms}(\nu_{\tau-2}, \nu_{\tau-1})||)\\ &\leq \dots \leq \alpha^{\tau}(||\rho_{bcpms}(\mu_{0}, \mu_{1})||\\ &+||\rho_{bcpms}(\nu_{0}, \nu_{1})||). \end{align*} |
Now, if ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau+1})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\tau+1})|| = \gamma_{\tau} , then
\begin{align} \gamma_{\tau}\leq \alpha \gamma_{\tau-1} \leq \dots \leq \alpha^{\tau}\gamma_{0}. \end{align} | (3.11) |
If \gamma_{0} = 0 , then ||\rho_{bcpms}(\nu_{0}, \nu_{1})||+||\rho_{bcpms}(\mu_{0}, \mu_{1})|| = 0 . Hence, \nu_{0} = \nu_{1} = \mathcal{S}(\nu_{0}, \mu_{0}) and \mu_{0} = \mu_{1} = \mathcal{S}(\mu_{0}, \nu_{0}) , which implies that (\nu_{0}, \mu_{0}) is a coupled fixed point of \mathcal{S} . Let \gamma_{0} > 0 . For each \tau\geq \upsilon , we have
\begin{align*} \rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})&\preceq_{i_{2}} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})+\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})-\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-1})\\ &+\rho_{bcpms}(\nu_{\tau-2}, \nu_{\tau-3})+\rho_{bcpms}(\nu_{\tau-3}, \nu_{\tau-4})-\rho_{bcpms}(\nu_{\tau-3}, \nu_{\tau-3})\\ &+\dots +\rho_{bcpms}(\nu_{\upsilon+2}, \nu_{\upsilon+1})+\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon})-\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon+1})\\ &\preceq_{i_{2}} \rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})+\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})+\dots+\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon}), \end{align*} |
which implies that
\begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})||&\leq ||\rho_{bcpms}(\nu_{\tau}, \nu_{\tau-1})||+||\rho_{bcpms}(\nu_{\tau-1}, \nu_{\tau-2})||\\ &+\dots+||\rho_{bcpms}(\nu_{\upsilon+1}, \nu_{\upsilon})||. \end{align*} |
Similarly, one can prove that
\begin{align*} ||\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon})||&\leq ||\rho_{bcpms}({\mu_{\tau}, \mu_{\tau-1}})||+||\rho_{bcpms}(\mu_{\tau-1}, \mu_{\tau-2})||\\ &+\dots+||\rho_{bcpms}(\mu_{\upsilon+1}, \mu_{\upsilon})||. \end{align*} |
Thus,
\begin{align*} ||\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon})||+||\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon})||&\leq \gamma_{\tau-1}+\gamma_{\tau-2}+\gamma_{\tau-3}+\dots +\gamma_{\upsilon}\\ &\leq (\alpha^{\tau-1}+\alpha^{\tau-2}+\dots +\alpha^{\upsilon})\gamma_{0}\\ &\leq \frac{\alpha^{\upsilon}}{1-\alpha}\gamma_{0}\, \, {\rm{as}}\, \, \tau\to \infty, \end{align*} |
which implies that \{\nu_{\tau}\} and \{\mu_{\tau}\} are Cauchy sequences in (\mathcal{U}, \rho_{bcpms}) . Since the bicomplex partial metric space (\mathcal{U}, \rho_{bcpms}) is complete, there exist \nu, \mu\in \mathcal{U} such that \{\nu_{\tau}\}\rightarrow \nu and \{\mu_{\tau}\}\rightarrow \mu as \tau \rightarrow \infty , and
\begin{align*} \rho_{bcpms}(\nu, \nu) = \lim\limits_{\tau \rightarrow \infty }\rho_{bcpms}(\nu, \nu_{\tau}) = \lim\limits_{\tau, \upsilon \rightarrow \infty }\rho_{bcpms}(\nu_{\tau}, \nu_{\upsilon}) = 0, \\ \rho_{bcpms}(\mu, \mu) = \lim\limits_{\tau \rightarrow \infty }\rho_{bcpms}(\mu, \mu_{\tau}) = \lim\limits_{\tau, \upsilon \rightarrow \infty }\rho_{bcpms}(\mu_{\tau}, \mu_{\upsilon}) = 0. \end{align*} |
Therefore,
\begin{align*} \rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu)&\leq \rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu_{\tau+1})+\rho_{bcpms}(\nu_{\tau+1}, \nu)-\rho_{bcpms}(\nu_{\tau+1}, \nu_{\tau+1}), \\ &\leq \rho_{bcpms}(\mathcal{S}(\nu, \mu)), \mathcal{S}(\nu_{\tau}, \mu_{\tau})+\rho_{bcpms}(\nu_{\tau+1}, \nu)\\ &\leq \lambda\rho_{bcpms}(\nu_{\tau}, \nu)+\mathfrak{l}\rho_{bcpms}(\mu_{\tau}, \mu)+\rho_{bcpms}(\nu_{\tau+1}, \nu). \end{align*} |
As \tau \rightarrow \infty , from (3.6) and (3.12) we obtain \rho_{bcpms}(\mathcal{S}(\nu, \mu), \nu) = 0 . Therefore \mathcal{S}(\nu, \mu) = \nu . Similarly, we can prove \mathcal{S}(\mu, \nu) = \mu , which implies that (\nu, \mu) is a coupled fixed point of \mathcal{S} . Now, if (\mathfrak{g}_{1}, \mathfrak{h}_{1}) is another coupled fixed point of \mathcal{S} , then
\begin{align*} \rho_{bcpms}(\mathfrak{g}_{1}, \nu) = \rho_{bcpms}(\mathcal{S}(\mathfrak{g}_{1}, \mathfrak{h}_{1}), \mathcal{S}(\nu, \mu)) &\preceq_{i_{2}} \lambda\rho_{bcpms}(\mathfrak{g}_{1}, \nu)+\mathfrak{l}\rho_{bcpms}(\mathfrak{h}_{1}, \mu), \\ \rho_{bcpms}(\mathfrak{h}_{1}, \mu) = \rho_{bcpms}(\mathcal{S}(\mathfrak{h}_{1}, \mathfrak{g}_{1}), \mathcal{S}(\mu, \nu))&\preceq_{i_{2}} \lambda\rho_{bcpms}(\mathfrak{h}_{1}, \mu)+\mathfrak{l}\rho_{bcpms}(\mathfrak{g}_{1}, \nu), \end{align*} |
which implies that
\begin{align} \lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert&\leq \lambda\lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert+\mathfrak{l}\lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert, \end{align} | (3.12) |
\begin{align} \lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert&\leq \lambda\lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert+\mathfrak{l}\lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert. \end{align} | (3.13) |
From (3.12) and (3.13), we get
\begin{align*} \lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert+\lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert\leq (\lambda+\mathfrak{l})[\lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert+\lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert]. \end{align*} |
Since \lambda+\mathfrak{l} < 1 , this implies that \lvert\lvert\rho_{bcpms}(\mathfrak{g}_{1}, \nu)\rvert\rvert+\lvert\lvert\rho_{bcpms}(\mathfrak{h}_{1}, \mu)\rvert\rvert = 0 . Therefore, \nu = \mathfrak{g}_{1} and \mu = \mathfrak{h}_{1} . Thus, \mathcal{S} has a unique coupled fixed point.
Corollary 3.4. Let (\mathcal{U}, \rho_{bcpms}) be a complete bicomplex partial metric space. Suppose that the mapping \mathcal{S}:\mathcal{U}\times \mathcal{U} \to \mathcal{U} satisfies the following contractive condition:
\begin{equation} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \mu))\preceq_{i_{2}} \lambda(\rho_{bcpms}(\varphi, \nu)+\rho_{bcpms}(\zeta, \mu)), \end{equation} | (3.14) |
for all \varphi, \zeta, \nu, \mu\in \mathcal{U} , where 0\leq \lambda < \frac{1 }{2} . Then, \mathcal{S} has a unique coupled fixed point.
Example 3.5. Let \mathcal{U} = [0, \infty) and define the bicomplex partial metric \rho_{bcpms} :\mathcal{U}\times\mathcal{U}\to \mathscr{C}_{2}^{+} defined by
\begin{align*} \rho_{bcpms}(\varphi, \zeta) = \max\{\varphi, \zeta\}e^{i_{2}\theta}, \, \, 0\leq\theta\leq\frac{\pi}{2}. \end{align*} |
We define a partial order \preceq in \mathscr{C}_{2}^{+} as \varphi \preceq \zeta iff \varphi \leq \zeta . Clearly, (\mathcal{U}, \rho_{bcpms}) is a complete bicomplex partial metric space.
Consider the mapping \mathcal{S}:\mathcal{U}\times \mathcal{U}\to \mathcal{U } defined by
\begin{align*} \mathcal{S}(\varphi, \zeta) = \frac{\varphi+\zeta}{4}\, \, \, \forall \varphi, \zeta\in \mathcal{U}. \end{align*} |
Now,
\begin{align*} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \mu))& = \rho_{bcpms} \bigg(\frac{\varphi+\zeta}{4}, \frac{\nu+\mu}{4}\bigg) \\ & = \frac{1}{4}\max\{\varphi+\zeta, \nu+\mu\} e^{i_{2}\theta} \\ &\preceq_{i_{2}}\frac{1}{4}\bigg[\max\{\varphi, \nu\}+\max\{\zeta, \mu\}\bigg] e^{i_{2}\theta} \\ & = \frac{1}{4}\bigg[\rho_{bcpms}(\varphi, \nu)+\rho_{bcpms}(\zeta, \mu)\bigg] \\ & = \lambda\bigg(\rho_{bcpms}(\varphi, \nu)+\rho_{bcpms}(\zeta, \mu)\bigg), \end{align*} |
for all \varphi, \zeta, \nu, \mu\in \mathcal{U} , where 0\leq\lambda = \frac{1 }{4} < \frac{1}{2} . Therefore, all the conditions of Corollary 3.4 are satisfied, then the mapping \mathcal{S} has a unique coupled fixed point (0, 0) in \mathcal{U} .
As an application of Theorem 3.3, we find an existence and uniqueness result for a type of the following system of nonlinear integral equations:
\begin{align} \varphi (\mu )& = \int_{0}^{\mathcal{M}}\kappa (\mu , \mathfrak{p})[\mathcal{G} _{1}(\mathfrak{p}, \varphi (\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \zeta (\mathfrak{p}))]d\mathfrak{p}+\delta (\mu ), \\ \zeta (\mu )& = \int_{0}^{\mathcal{M}}\kappa (\mu , \mathfrak{p})[\mathcal{G} _{1}(\mathfrak{p}, \zeta (\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \varphi (\mathfrak{p}))]d\mathfrak{p}+\delta (\mu ), \, \, \mu , \in \lbrack 0, \mathcal{M }], \mathcal{M}\geq1. \end{align} | (4.1) |
Let \mathcal{U} = C([0, \mathcal{M}], \mathbb{R}) be the class of all real valued continuous functions on [0, \mathcal{M}] . We define a partial order \preceq in \mathscr{C}_{2}^{+} as x\preceq y iff x \leq y . Define \mathcal{S}:\mathcal{U}\times\mathcal{U}\to \mathcal{U} by
\begin{align*} \mathcal{S}(\varphi, \zeta)(\mu) = \int^{\mathcal{M}}_{0}\kappa(\mu, \mathfrak{p} )[\mathcal{G}_{1}(\mathfrak{p}, \varphi(\mathfrak{p}))+\mathcal{G}_{2}( \mathfrak{p}, \zeta(\mathfrak{p}))] d\mathfrak{p}+\delta(\mu). \end{align*} |
Obviously, (\varphi(\mu), \zeta(\mu)) is a solution of system of nonlinear integral equations (4.1) iff (\varphi(\mu), \zeta(\mu)) is a coupled fixed point of \mathcal{S} . Define \rho _{bcpms}:\mathcal{U} \times \mathcal{U}\rightarrow \mathscr{C}_{2} by
\begin{equation*} \rho _{bcpms}(\varphi , \zeta ) = (|\varphi -\zeta |+1)e^{i_{2}\theta }, \end{equation*} |
for all \varphi, \zeta \in \mathcal{U} , where 0\leq \theta \leq \frac{\pi }{2} . Now, we state and prove our result as follows.
Theorem 4.1. Suppose the following:
1. The mappings \mathcal{G}_{1}:[0, \mathcal{M}]\times\mathbb{R}\to \mathbb{R} , \mathcal{G}_{2}:[0, \mathcal{M}]\times\mathbb{R}\to\mathbb{R} , \delta:[0, \mathcal{M}]\to \mathbb{R} and \kappa:[0, \mathcal{M}]\times \mathbb{R}\to [0, \infty) are continuous.
2. There exists \eta > 0 , and \lambda, \mathfrak{l} are nonnegative constants with \lambda+ \mathfrak{l} < 1 , such that
\begin{align*} |\mathcal{G}_{1}(\mathfrak{p}, \varphi(\mathfrak{p}))-\mathcal{G}_{1}( \mathfrak{p}, \zeta(\mathfrak{p}))|&\preceq_{i_{2}}\eta\lambda (|\varphi-\zeta|+1)-\frac{1}{2}, \\ |\mathcal{G}_{2}(\mathfrak{p}, \zeta(\mathfrak{p}))-\mathcal{G}_{2}(\mathfrak{ p}, \varphi(\mathfrak{p}))|&\preceq_{i_{2}}\eta\mathfrak{l} (|\zeta-\varphi|+1)-\frac{1}{2}. \end{align*} |
3. \int^{\mathcal{M}}_{0}\eta|\kappa(\mu, \mathfrak{p})|d\mathfrak{p} \preceq_{i_{2}}1 .
Then, the integral equation (4.1) has a unique solution in \mathcal{U} .
Proof. Consider
\begin{align*} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \varPhi))& = (|\mathcal{S}(\varphi, \zeta)-\mathcal{S}(\nu, \varPhi)|+1)e^{i_{2}\theta}\\ & = \bigg(|\int^{\mathcal{M}}_{0}\kappa(\mu, \mathfrak{p})[\mathcal{G}_{1}(\mathfrak{p}, \varphi(\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \zeta(\mathfrak{p}))] d\mathfrak{p}+\delta(\mu)\\ &-\bigg(\int^{\mathcal{M}}_{0}\kappa(\mu, \mathfrak{p})[\mathcal{G}_{1}(\mathfrak{p}, \nu(\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \varPhi(\mathfrak{p}))] d\mathfrak{p}+\delta(\mu)\bigg)|+1\bigg)e^{i_{2}\theta}\\ & = \bigg(|\int^{\mathcal{M}}_{0}\kappa(\mu, \mathfrak{p})[\mathcal{G}_{1}(\mathfrak{p}, \varphi(\mathfrak{p}))-\mathcal{G}_{1}(\mathfrak{p}, \nu(\mathfrak{p}))\\ &+\mathcal{G}_{2}(\mathfrak{p}, \zeta(\mathfrak{p}))-\mathcal{G}_{2}(\mathfrak{p}, \varPhi(\mathfrak{p}))] d\mathfrak{p}|+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}}\bigg(\int^{\mathcal{M}}_{0}|\kappa(\mu, \mathfrak{p})|[|\mathcal{G}_{1}(\mathfrak{p}, \varphi(\mathfrak{p}))-\mathcal{G}_{1}(\mathfrak{p}, \nu(\mathfrak{p}))|\\ &+|\mathcal{G}_{2}(\mathfrak{p}, \zeta(\mathfrak{p}))-\mathcal{G}_{2}(\mathfrak{p}, \varPhi(\mathfrak{p}))|] d\mathfrak{p}+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}}\bigg(\int^{\mathcal{M}}_{0}|\kappa(\mu, \mathfrak{p})|d\mathfrak{p}(\eta\lambda (|\varphi-\nu|+1)-\frac{1}{2}\\ &+\eta\mathfrak{l} (|\zeta-\varPhi|+1)-\frac{1}{2})+1\bigg)e^{i_{2}\theta}\\ & = \bigg(\int^{\mathcal{M}}_{0}\eta|\kappa(\mu, \mathfrak{p})|d\mathfrak{p}(\lambda (|\varphi-\nu|+1)\\ &+\mathfrak{l} (|\zeta-\varPhi|+1))\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}} \bigg(\lambda (|\varphi-\nu|+1)+\mathfrak{l} (|\zeta-\varPhi|+1)\bigg)e^{i_{2}\theta}\\ & = \lambda\rho_{bcpms}(\varphi, \nu)+\mathfrak{l}\rho_{bcpms}(\zeta, \varPhi) \end{align*} |
for all \varphi, \zeta, \nu, \varPhi\in \mathcal{U} . Hence, all the hypotheses of Theorem 3.3 are verified, and consequently, the integral equation (4.1) has a unique solution.
Example 4.2. Let \mathcal{U} = C([0, 1], \mathbb{R}) . Now, consider the integral equation in \mathcal{U} as
\begin{align} \varphi(\mu) = \int_{0}^{1}\frac{\mathfrak{\mu p}}{23(\mu+5)}\bigg[\frac{1}{ 1+\varphi(\mathfrak{p})}+\frac{1}{2+\zeta(\mathfrak{p})}\bigg]d\mathfrak{p}+ \frac{6\mu^{2}}{5} \\ \zeta(\mu) = \int_{0}^{1}\frac{ \mathfrak{\mu p}}{23(\mu+5)}\bigg[\frac{1}{ 1+\zeta(\mathfrak{p})}+\frac{1}{ 2+\varphi(\mathfrak{p})}\bigg]d\mathfrak{p}+ \frac{6\mu^{2}}{5}. \end{align} | (4.2) |
Then, clearly the above equation is in the form of the following equation:
\begin{align} \varphi (\mu )& = \int_{0}^{\mathcal{M}}\kappa (\mu , \mathfrak{p})[\mathcal{G} _{1}(\mathfrak{p}, \varphi (\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \zeta (\mathfrak{p}))]d\mathfrak{p}+\delta (\mu ), \\ \zeta (\mu )& = \int_{0}^{\mathcal{M}}\kappa (\mu , \mathfrak{p})[\mathcal{G} _{1}(\mathfrak{p}, \zeta (\mathfrak{p}))+\mathcal{G}_{2}(\mathfrak{p}, \varphi (\mathfrak{p}))]d\mathfrak{p}+\delta (\mu ), \, \, \mu , \in \lbrack 0, \mathcal{M }], \end{align} | (4.3) |
where \delta(\mu) = \frac{6\mu^{2}}{5} , \kappa(\mu, \mathfrak{p}) = \frac{ \mathfrak{\mu p}}{23(\mu+5)} , \mathcal{G}_{1}(\mathfrak{p}, \mu) = \frac{1}{ 1+\mu} , \mathcal{G}_{2}(\mathfrak{p}, \mu) = \frac{1}{2+\mu} and \mathcal{M} = 1 . That is, (4.2) is a special case of (4.1) in Theorem 4.1. Here, it is easy to verify that the functions \delta(\mu) , \kappa(\mu, \mathfrak{p}) , \mathcal{G}_{1}(\mathfrak{p}, \mu) and \mathcal{ G}_{2}(\mathfrak{p}, \mu) are continuous. Moreover, there exist \eta = 10 , \lambda = \frac{1}{3} and \mathfrak{l} = \frac{1}{4} with \lambda+\mathfrak{l } < 1 such that
\begin{align*} |\mathcal{G}_{1}(\mathfrak{p}, \varphi)-\mathcal{G}_{1}(\mathfrak{p} , \zeta)|&\leq\eta\lambda (|\varphi-\zeta|+1)-\frac{1}{2}, \\ |\mathcal{G}_{2}(\mathfrak{p}, \zeta)-\mathcal{G}_{2}(\mathfrak{p} , \varphi)|&\leq\eta\mathfrak{l} (|\zeta-\varphi|+1)-\frac{1}{2} \end{align*} |
and \int^{\mathcal{M}}_{0}\eta|\kappa(\mu, \mathfrak{p})|d\mathfrak{p} = \int^{1}_{0}\frac{\eta\mu\mathfrak{p}}{23(\mu+5)}d\mathfrak{p} = \frac{\mu\eta }{23(\mu+5)} < 1 . Therefore, all the conditions of Theorem 3.3 are satisfied. Hence, system (4.2) has a unique solution (\varphi^{*}, \zeta^{*}) in \mathcal{U}\times\mathcal{U} .
As an application of Corollary 3.4, we find an existence and uniqueness result for a type of the following system of Fredholm integral equations:
\begin{align} \varphi (\mu )& = \int_{\mathcal{E}}\mathcal{G}(\mu , \mathfrak{p}, \varphi ( \mathfrak{p}), \zeta (\mathfrak{p}))d\mathfrak{p}+\delta (\mu ), \, \, \mu , \mathfrak{p}\in \mathcal{E}, \\ \zeta (\mu )& = \int_{\mathcal{E}}\mathcal{G}(\mu , \mathfrak{p}, \zeta ( \mathfrak{p}), \varphi (\mathfrak{p}))d\mathfrak{p}+\delta (\mu ), \, \, \mu , \mathfrak{p}\in \mathcal{E}, \end{align} | (4.4) |
where \mathcal{E} is a measurable, \mathcal{G}:\mathcal{E}\times \mathcal{ E}\times \mathbb{R}\times \mathbb{R}\rightarrow \mathbb{R} , and \delta \in \mathcal{L}^{\infty }(\mathcal{E}) . Let \mathcal{U} = \mathcal{L}^{\infty }(\mathcal{E}) . We define a partial order \preceq in \mathscr{C}_{2}^{+} as x\preceq y iff x\leq y. Define \mathcal{S}:\mathcal{U}\times \mathcal{U}\to \mathcal{U} by
\begin{align*} \mathcal{S}(\varphi, \zeta)(\mu) = \int_{\mathcal{E}}\mathcal{G}(\mu , \mathfrak{ p}, \varphi (\mathfrak{p}), \zeta (\mathfrak{p}))d\mathfrak{p}+\delta (\mu ). \end{align*} |
Obviously, (\varphi(\mu), \zeta(\mu)) is a solution of the system of Fredholm integral equations (4.4) iff (\varphi(\mu), \zeta(\mu)) is a coupled fixed point of \mathcal{S} . Define \rho _{bcpms}:\mathcal{U}\times \mathcal{U}\rightarrow \mathscr{C}_{2} by
\begin{equation*} \rho _{bcpms}(\varphi , \zeta ) = (|\varphi -\zeta |+1)e^{i_{2}\theta }, \end{equation*} |
for all \varphi, \zeta \in \mathcal{U} , where 0\leq \theta \leq \frac{\pi }{2} . Now, we state and prove our result as follows.
Theorem 4.3. Suppose the following:
1. There exists a continuous function \kappa:\mathcal{E}\times\mathcal{E} \to \mathbb{R} such that
\begin{align*} |\mathcal{G}(\mu, \mathfrak{p}, \varphi(\mathfrak{p}), \zeta(\mathfrak{p}))- \mathcal{G}(\mu, \mathfrak{p}, \nu(\mathfrak{p}), \varPhi(\mathfrak{p} ))|&\preceq_{i_{2}} |\kappa(\mu, \mathfrak{p})|(|\varphi(\mathfrak{p})-\nu( \mathfrak{p})| \\ &+|\zeta(\mathfrak{p})-\varPhi(\mathfrak{p})|-2), \end{align*} |
for all \varphi, \zeta, \nu, \varPhi\in \mathcal{U} , \mu, \mathfrak{p}\in \mathcal{E} .
2. \int_{\mathcal{E}}|\kappa(\mu, \mathfrak{p})|d\mathfrak{p} \preceq_{i_{2}} \frac{1}{4}\preceq_{i_{2}}1 .
Then, the integral equation (4.4) has a unique solution in \mathcal{U} .
Proof. Consider
\begin{align*} \rho_{bcpms}(\mathcal{S}(\varphi, \zeta), \mathcal{S}(\nu, \varPhi))& = (|\mathcal{S}(\varphi, \zeta)-\mathcal{S}(\nu, \varPhi)|+1)e^{i_{2}\theta}\\ & = \bigg(|\int_{\mathcal{E}}\mathcal{G}(\mu, \mathfrak{p}, \varphi(\mathfrak{p}), \zeta(\mathfrak{p}))d\mathfrak{p}+\delta(\mu)\\ &-\bigg(\int_{\mathcal{E}}\mathcal{G}(\mu, \mathfrak{p}, \nu(\mathfrak{p}), \varPhi(\mathfrak{p}))d\mathfrak{p}+\delta(\mu)\bigg)|+1\bigg)e^{i_{2}\theta}\\ & = \bigg(|\int_{\mathcal{E}}\bigg(\mathcal{G}(\mu, \mathfrak{p}, \varphi(\mathfrak{p}), \zeta(\mathfrak{p}))\\ &-\mathcal{G}(\mu, \mathfrak{p}, \nu(\mathfrak{p}), \varPhi(\mathfrak{p}))\bigg)d\mathfrak{p}|+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}}\bigg(\int_{\mathcal{E}}|\mathcal{G}(\mu, \mathfrak{p}, \varphi(\mathfrak{p}), \zeta(\mathfrak{p}))-\mathcal{G}(\mu, \mathfrak{p}, \nu(\mathfrak{p}), \varPhi(\mathfrak{p}))|d\mathfrak{p}+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}}\bigg(\int_{\mathcal{E}}|\kappa(\mu, \mathfrak{p})|(|\varphi(\mathfrak{p})-\nu(\mathfrak{p})|+|\zeta(\mathfrak{p})-\varPhi(\mathfrak{p})|-2)d\mathfrak{p}+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}}\bigg(\int_{\mathcal{E}}|\kappa(\mu, \mathfrak{p})|d\mathfrak{p}(|\varphi(\mathfrak{p})-\nu(\mathfrak{p})|+|\zeta(\mathfrak{p})-\varPhi(\mathfrak{p})|-2)+1\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}} \frac{1}{4}\bigg(|\varphi(\mathfrak{p})-\nu(\mathfrak{p})|+|\zeta(\mathfrak{p})-\varPhi(\mathfrak{p})|-2+4\bigg)e^{i_{2}\theta}\\ &\preceq_{i_{2}} \frac{1}{4}(\rho_{bcpms}(\varphi, \nu)+\rho_{bcpms}(\zeta, \varPhi))\\ & = \lambda(\rho_{bcpms}(\varphi, \nu)+\rho_{bcpms}(\zeta, \varPhi)), \end{align*} |
for all \varphi, \zeta, \nu, \varPhi\in \mathcal{U} , where 0\leq\lambda = \frac{1}{4} < \frac{1}{2} . Hence, all the hypotheses of Corollary 3.4 are verified, and consequently, the integral equation (4.4) has a unique solution.
In this paper, we proved coupled fixed point theorems on a bicomplex partial metric space. An illustrative example and an application on a bicomplex partial metric space were given.
The authors declare no conflict of interest.
[1] | R. S. Cantrell and C. Cosner, Spatial ecology via reaction-diffusion equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons Ltd., Chichester, 2003. |
[2] | J. Cebrian, Energy flows in ecosystems, Science, 349 (2015), 1053-1054. |
[3] | E. Cho and Y.-J. Kim, Starvation driven diffusion as a survival strategy of biological organisms, Bull. Math. Biol., 75 (2013), 845-870. |
[4] | D. Cohen and S. A. Levin, Dispersal in patchy environments: the effects of temporal and spatial structure, Theoret. Population Biol., 39 (1991), 63-99. |
[5] | L. Desvillettes, Y.-J. Kim, A. Trescases, et al. A logarithmic chemotaxis model featuring global existence and aggregation, Nonlinear Analysis: Real World Applications, 50 (2019), 562-582. |
[6] | U. Dieckman, B. O'Hara and W. Weisser, The evolutionary ecology of dispersal, Trends Ecol. Evol., 14 (1999), 88-90. |
[7] | J. Dockery, V. Hutson, K. Mischaikow, et al. The evolution of slow dispersal rates: a reaction diffusion model, J. Math. Biol., 37 (1998), 61-83. |
[8] | I. A. Hatton, K. S. McCann, J. M. Fryxell, et al. The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes, Science, 349 (2015). |
[9] | R. Holt and M. McPeek, Chaotic population dynamics favors the evolution of dispersal, The American Naturalist, 148 (1996), 709-718. |
[10] | V. Hutson, K. Mischaikow and P. Poláčik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 43 (2001), 501-533. |
[11] | M. Johnson and M. Gaines, Evolution of dispersal: Theoretical models and empirical tests using birds and mammels, Ann. Rev. Ecol. Syst., 21 (1990), 449-480. |
[12] | M. Keeling, Spatial models of interacting populations, advanced ecological theory: Principles and applications, J. McGlade, ed. Blackwell Science, Oxford, 1999. |
[13] | E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234. |
[14] | E. F. Keller, L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971), 235-248. |
[15] | Y.-J. Kim, O. Kwon and F. Li, Evolution of dispersal toward fitness, Bull. Math. Biol., 75 (2013), 2474-2498. |
[16] | Y.-J. Kim, O. Kwon and F. Li, Global asymptotic stability and the ideal free distribution in a starvation driven diffusion, J. Math. Biol., 68 (2014), 1341-1370. |
[17] | Y.-J. Kim and H. Seo, Model for heterogeneous diffusion, SIAM Appl. Math., 2019. |
[18] | Y.-J. Kim, H. Seo and C. Yoon, Asymmetric dispersal and evolutional selection in two-patch system, Discrete Contin. Dyn. Syst., 2019. |
[19] | K.-Y. Lam and W.-M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst., 28 (2010), 1051-1067. |
[20] | M. McPeek and R. Holt, The evolution of dispersal in spatially and temporally varying environments, The American Naturalist, 140 (1992), 1010-1027. |
[21] | J. D. Murray, Non-existence of wave solutions for the class of reaction-diffusion equations given by the Volterra interacting-population equations with diffusion, J. Theoret. Biol., 52 (1975), 459-469. |
[22] | T. Nagylaki, Introduction to theoretical population genetics, Biomathematics, vol. 21, SpringerVerlag, Berlin, 1992. |
[23] | W.-M. Ni, The mathematics of diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. |
[24] | A. Okubo and S. A. Levin, Diffusion and ecological problems: modern perspectives, second ed., Interdisciplinary Applied Mathematics, vol. 14, Springer-Verlag, New York, 2001. |
[25] | J. G. Skellam, Some phylosophical aspects of mathematical modelling in empirical science with special reference to ecology, Mathematical Models in Ecology, Blackwell Sci. Publ., London, 1972. |
[26] | J. G. Skellam, The formulation and interpretation of mathematical models of diffusionary processes in population biology, The mathematical theory of the dynamics of biological populations, Academic Press, New York, 1973. |
[27] | J. M. J. Travis and C. Dytham, Habitat persistence, habitat availability and the evolution of dispersal, Proc. Roy. Soc. London B., 266 (1999), 723-728. |
1. | Sunisa Theswan, Sotiris K. Ntouyas, Bashir Ahmad, Jessada Tariboon, Existence Results for Nonlinear Coupled Hilfer Fractional Differential Equations with Nonlocal Riemann–Liouville and Hadamard-Type Iterated Integral Boundary Conditions, 2022, 14, 2073-8994, 1948, 10.3390/sym14091948 |