Citation: Ali Khalouta, Abdelouahab Kadem. A new numerical technique for solving Caputo time-fractional biological population equation[J]. AIMS Mathematics, 2019, 4(5): 1307-1319. doi: 10.3934/math.2019.5.1307
[1] | O. Acana, M. M. Al Qurashib and D. Baleanu, Reduced differential transform method for solving time and space local fractional partial differential equations, J. Nonlinear Sci. Appl., 10 (2017), 5230-5238. doi: 10.22436/jnsa.010.10.09 |
[2] | A. A. M. Arafa, S. Z. Rida and H. Mohamed, Homotopy Analysis Method for Solving Biological Population Model, Commun. Theor. Phys., 56 (2011), 797-800. doi: 10.1088/0253-6102/56/5/01 |
[3] | A. Elsaid, Homotopy analysis method for solving a class of fractional partial differential equations, Commun. Nonlinear Sci., 16 (2011), 3655-3664. doi: 10.1016/j.cnsns.2010.12.040 |
[4] | A. M. A. El-Sayed, A. Elsaid, I. L. El-Kalla, et al. A homotopy perturbation technique for solving partial differential equations of fractional order in finite domains, Appl. Math. Comput., 218 (2012), 8329-8340. |
[5] | Z. Hammouch and T. Mekkaoui, Adomian decomposition method for solving a time-fractional Burger-Huxley's equation, Nonlinear Stud., 19 (2012), 489-496. |
[6] | R. Hilfer, Applications of fractional Calculus in Physics, World Scientific, 2000. |
[7] | M. M. Khader and K. M. Saad, A numerical study using Chebyshev collocation method for a problem of biological invasion: fractional Fisher equation, Int. J. Biomath., 11 (2018), 1850099. |
[8] | A. Khalouta and A. Kadem, Comparison of New Iterative Method and Natural Homotopy Perturbation Method for Solving Nonlinear Time-Fractional Wave-Like Equations with Variable Coefficients, Nonlinear Dyn. Syst. Theory, 19 (2019), 160-169. |
[9] | A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Differential equations, Elsevier, North-Holland, 2006. |
[10] | Y. Liu, Z. Li and Y. Zhang, Homotopy perturbation method to fractional biological population equation, Fractional Differential Calculus, 1 (2011), 117-124. |
[11] | I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. |
[12] | P. Roul, Application of Homotopy Perturbation Method to Perturbation Biological Population Model, Appl. Appl. Math., 5 (2010), 272-281. |
[13] | K. M. Saad, S. Deniz and D. Baleanu, On a new modified fractional analysis of Nagumo equation, Int. J. Biomath., 12 (2019), 1950034. |
[14] | K. M. Saad, M. M. Khader, J. F. Gómez-Aguilar, et al. Numerical solutions of the fractional Fisher's type equations with Atangana-Baleanu fractional derivative by using spectral collocation methods, Chaos, 29 (2019), 023116. |
[15] | K. M. Saad, D. Baleanu and A. Atangana, New fractional derivatives applied to the Korteweg-de Vries and Korteweg-de Vries-Burger's equations, Comput. Appl. Math., 37 (2018), 5203-5216. doi: 10.1007/s40314-018-0627-1 |
[16] | K. M. Saad and E. H. Faissal AL-Sharif, Comparative study of a cubic autocatalytic reaction via different analysis methods, Discrete & Continuous Dynamical Systems - S, 12 (2019), 665-684. |
[17] | S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, Switzerland, 1993. |
[18] | V. Turut and N. Güzel, On solving Partial Differential Equations of Fractional Order by Using the Variational Iteration Method and Multivariate Padé Approximations, Eur. J. Pure Appl. Math., 6 (2013), 147-171. |