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1. Introduction

Fractional calculus is a field of applied mathematics that deals with derivatives and integrals of
arbitrary orders [6, 9, 11, 17]. Recently, fractional partial differential equations play an important role
in interpretation and modeling of many of realism matters appear in applied mathematics and physics
including fluid mechanics, electrical circuits, diffusion, damping laws, relaxation processes, optimal
control theory, chemistry, biology, and so on [7, 13–16]. Therefore, the search of the solutions for
fractional partial differential equations is an important aspect of scientific research.

Many powerful and efficient methods have been proposed to obtain numerical solutions and
analytical solutions of fractional partial differential equations. The most commonly used ones are:
Adomian decomposition method (ADM) [5], variational iteration method (VIM) [18], new iterative
method (NIM) [8], fractional difference method (FDM) [11], reduced differential transform method
(RDTM) [1], homotopy analysis method (HAM) [3], homotopy perturbation method (HPM) [4].
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The main objective of this paper is to present a new numerical technique called modified generalized
Taylor fractional series method (MGTFSM) to obtain the approximate and exact solutions of Caputo
time-fractional biological population equation. The proposed algorithm provides the solution in a rapid
convergent series which may lead to the solution in a closed form. The main advantage of the proposed
method compare with the existing methods is, that method solves the nonlinear problems without using
linearization and any other restriction.

Consider the following Caputo time-fractional biological population equation

Dα
t u =

∂2u2

∂x2 +
∂2u2

∂y2 + F(u), (1.1)

with the initial condition
u(x, y, 0) = u0(x, y), (1.2)

where Dα
t =

∂α

∂tα
is the Caputo fractional derivative operator of order α, 0 < α ≤ 1, u = u(x, y, t), (x, y) ∈

R2, t > 0 denotes the population density and F represents the population supply due to birth and death,
α is a parameter describing the order of the fractional derivative.

The plan of our paper is as follows: In Section 2, we present some necessary definitions and
properties of the fractional calculus theory. In Section 3, we will propose an analysis of the modified
generalized Taylor fractional series method (MGTFSM) for solving the Caputo time-fractional
biological population equation (1.1) subject to the initial condition (1.2). In Section 4, we present
three numerical examples to show the efficiency and effectiveness of this method. In Section 5, we
discuss our obtained results represented by figures and tables. These results were verified with Matlab
(version R2016a). Section 6, is devoted to the conclusions on the work.

2. Basic definitions

In this section, we present some basic definitions and properties of the fractional calculus theory
which are used further in this paper . For more details see, [9, 11].
Definition 2.1. A real function u(X, t), X = (x1, x2, ..., xn) ∈ RN ,N ∈ N∗, t ∈ R+, is considered to be in
the space Cµ(RN × R+), µ ∈ R, if there exists a real number p > µ, so that u(X, t) = tpv(X, t), where v
∈ C

(
RN × R+

)
, and it is said to be in the space Cn

µ if u(n) ∈ Cµ(RN × R+), n ∈ N.
Definition 2.2. The Riemann-Liouville fractional integral operator of order α ≥ 0 of u ∈ Cµ(RN ×

R+), µ ≥ −1, is defined as follows

Iαt u(X, t) =


1

Γ(α)

t∫
0

(t − ξ)α−1 u(X, ξ)dξ, α > 0, t > ξ > 0,

u(X, t), α = 0,
(2.1)

where Γ(.) is the well-known Gamma function.
Definition 2.3. The Caputo time-fractional derivative operator of order α > 0 of u ∈ Cn

−1(RN ×R+), n ∈
N, is defined as follows

Dα
t u(X, t) =


1

Γ(n − α)

t∫
0

(t − ξ)n−α−1 u(n)(X, ξ)dξ, n − 1 < α < n,

u(n)(X, t), α = n.
(2.2)
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For this definition we have the following properties

(1)
Dα

t (c) = 0, where c is a constant.

(2)

Dα
t tβ =

{ Γ(β+1)
Γ(β−α+1) t

β−α if β > n − 1,
0, if β ≤ n − 1.

Definition 2.3. The Mittag-Leffler function is defined as follows

Eα (z) =

∞∑
n=0

zn

Γ(nα + 1)
, α ∈ C,Re(α) > 0. (2.3)

For α = 1, Eα (z) reduces to ez.

3. Analysis of modified generalized Taylor fractional series method (MGTFSM)

Theorem 3.1. Consider the Caputo time-fractional biological population equation of the form (1.1)
with the initial condition (1.2) .

Then, by MGTFSM the solution of equations (1.1)-(1.2) is given in the form of infinite series which
converges rapidly to the exact solution as follows

u(x, y, t) =

∞∑
i=0

ui(x, y)
tiα

Γ(iα + 1)
, (x, y) ∈ R2, t ∈ [0,R) ,

where ui(x, y) the coefficients of the series and R is the radius of convergence.
Proof. In order to achieve our goal, we consider the following Caputo time-fractional biological

population equation of the form (1.1) with the initial condition (1.2).
Assume that the solution takes the following infinite series form

u(x, y, t) =

∞∑
i=0

ui(x, y)
tiα

Γ(iα + 1)
. (3.1)

Consequently, the approximate solution of equations (1.1)-(1.2), can be written in the form of

un(x, y, t) =

n∑
i=0

ui(x, y)
tiα

Γ(iα + 1)
= u0(x, y) +

n∑
i=1

ui(x, y)
tiα

Γ(iα + 1)
. (3.2)

By applying the operator Dα
t on equation (3.2), and using the properties (1) and (2), we obtain the

formula

Dα
t un(x, y, t) =

n−1∑
i=0

ui+1(x, y)
tiα

Γ(iα + 1)
. (3.3)

Next, we substitute both (3.2) and (3.3) in (1.1). Therefore, we have the following recurrence
relations

0 =

n−1∑
i=0

ui+1(x, y)
tiα

Γ(iα + 1)
−
∂2

∂x2

 n∑
i=0

ui(x, y)
tiα

Γ(iα + 1)

2
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−
∂2

∂y2

 n∑
i=0

ui(x, y)
tiα

Γ(iα + 1)

2

− F

 n∑
i=0

ui(x, y)
tiα

Γ(iα + 1)

 .
We follow the same analogue used in obtaining the Taylor series coefficients. In particular, to

calculate the function un(x, y), n = 1, 2, 3, .., we have to solve the following

D(n−1)α
t {G(x, y, t, α, n)} ↓t=0= 0,

where

G(x, y, t, α, n) =

n−1∑
i=0

ui+1(x, y)
tiα

Γ(iα + 1)
−
∂2

∂x2

 n∑
i=0

ui(x, y)
tiα

Γ(iα + 1)

2

−
∂2

∂y2

 n∑
i=0

ui(x, y)
tiα

Γ(iα + 1)

2

− F

 n∑
i=0

ui(x, y)
tiα

Γ(iα + 1)

 .
Now, we calculate the first terms of the sequence {un(x, y)}N1 .

For n = 1 we have

G(x, y, t, α, 1) = u1(x, y) −
∂2

∂x2

(
u0(x, y) + u1(x, y)

tα

Γ(α + 1)

)2

−
∂2

∂y2

(
u0(x, y) + u1(x, y)

tα

Γ(α + 1)

)2

− F
(
u0(x, y) + u1(x, y)

tα

Γ(α + 1)

)
.

Solving G(x, y, 0, α, 1) = 0, yields

u1(x, y) =
∂2

∂x2 u2
0(x, y) +

∂2

∂y2 u2
0(x, y) + F (u0(x, y)) .

For n = 2 we have

G(x, y, t, α, 2) = u1(x, y) + u2(x, y)
tα

Γ(α + 1)

−
∂2

∂x2

(
u0(x, y) + u1(x, y)

tα

Γ(α + 1)
+ u2(x, y)

t2α

Γ(2α + 1)

)2

(3.4)

−
∂2

∂y2

(
u0(x, y) + u1(x, y)

tα

Γ(α + 1)
+ u2(x, y)

t2α

Γ(2α + 1)

)2

−F
(
u0(x, y) + u1(x, y)

tα

Γ(α + 1)
+ u2(x, y)

t2α

Γ(2α + 1)

)
.

Applying Dα
t on both sides of equation (3.4) gives

Dα
t G(x, y, t, α, 2) = u2(x, y) − 2

∂2

∂x2

[(
u0(x, y) + u1(x, y)

tα

Γ(α + 1)
+ u2(x, y)

t2α

Γ(2α + 1)

)
×

(
u1(x, y) + u2(x, y)

tα

Γ(α + 1)

)]
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−2
∂2

∂y2

[(
u0(x, y) + u1(x, y)

tα

Γ(α + 1)
+ u2(x, y)

t2α

Γ(2α + 1)

)
×

(
u1(x, y) + u2(x, y)

tα

Γ(α + 1)

)]
−

(
u1(x, y) + u2(x, y)

tα

Γ(α + 1)

)
×F′

(
u0(x, y) + u1(x, y)

tα

Γ(α + 1)
+ u2(x, y)

t2α

Γ(2α + 1)

)
.

Solving Dα
t {G(x, y, t, α, 2)} ↓t=0= 0, yields

u2(x, y) = 2
∂2

∂x2

[
u0(x, y)u1(x, y)

]
+ 2

∂2

∂y2

[
u0(x, y)u1(x, y)

]
+ u1(x, y)F′ (u0(x, y)) .

To calculate u3(x, y), we consider G(x, y, t, α, 3) and we solve

D2α
t {G(x, y, t, α, 3)} ↓t=0= 0,

we have

u3(x, y) = 2
∂2

∂x2

[
3u1(x, y)u2(x, y) + u0(x, y)u3(x, y)

]
+2

∂2

∂y2

[
3u1(x, y)u2(x, y) + u0(x, y)u3(x, y)

]
+u2(x, y)F′ (u0(x, y)) + u2

1(x, y)F
′′

(u0(x, y)) ,

and so on.
In general, to obtain the coefficient function uk(x, y) we solve

D(k−1)α
t {G(x, y, t, α, k)} ↓t=0= 0.

Finally, the solution of equations (1.1)-(1.2), can be expressed by

u(x, y, t) = lim
n→∞

un(x, y, t)

= lim
n→∞

n∑
i=0

ui(x, y)
tiα

Γ(iα + 1)

=

∞∑
i=0

ui(x, y)
tiα

Γ(iα + 1)
.

The proof is complete.

4. Test examples

In this section, we test the validity and efficiency of the proposed method to solve three numerical
examples of Caputo time-fractional biological population equation.

We define En to be the absolute error between the exact solution u and the approximate solution un,

as follows
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En(x, y, t) = |u(x, y, t) − un(x, y, t)| , n = 0, 1, 2, 3, ...

Example 4.1. Consider the Caputo time-fractional biological population equation in the form

Dα
t u =

∂2u2

∂x2 +
∂2u2

∂y2 + hu, (4.1)

with the initial condition

u(x, y, 0) = u0(x, y) =
√

xy. (4.2)

By applying the steps involved in the MGTFSM as presented in Section 3, we have the solution of
equations (4.1)-(4.2) in the form

u(x, y, t) =

∞∑
i=0

ui(x, y)
tiα

Γ(iα + 1)
,

and

ui(x, y) = hi√xy, for i = 0, 1, 2, 3, ...

So, the solution of equations (4.1)-(4.2), can be expressed by

u(x, y, t) =
√

xy
(
1 + h

tα

Γ(α + 1)
+ h2 t2α

Γ(2α + 1)
+ h3 t3α

Γ(3α + 1)
+ ...

)
(4.3)

=
√

xy
∞∑

i=0

(htα)i

Γ(iα + 1)
=
√

xyEα (htα) ,

where Eα (htα) is the Mittag-Leffler function, defined by (2.3).

Taking α = 1 in (4.3), we have

u(x, y, t) =
√

xy
(
1 + ht +

(ht)2

2!
+

(ht)3

3!
+ ...

)
=
√

xy exp(ht),

which is an exact solution to the standard form biological population equation [10].
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Figure 1. The surface graph of the exact solution u and the approximate solution u6 by
MGTFSM for different values of α for Example 4.1 when h = 1 and t = 1.5.
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Figure 2. The behavior of the exact solution u and the approximate solution u6 by MGTFSM
for different values of α for Example 4.1 when h = y = 1 and t = 1.5.

Table 1. Comparison of the absolute errors for the obtained results and the exact solution for
Example 4.1 when h = 1, n = 6 and α = 1.

t/x, y 0.1 0.3 0.5 0.7
0.1 1.4090 × 10−10 4.2269 × 10−10 7.0449 × 10−10 9.8629 × 10−10

0.3 1.0576 × 10−7 3.1727 × 10−7 5.2879 × 10−7 7.4030 × 10−7

0.5 2.3354 × 10−6 7.0062 × 10−6 1.1677 × 10−5 1.6348 × 10−5

0.7 1.8129 × 10−5 5.4387 × 10−5 9.0645 × 10−5 1.2690 × 10−4

0.9 8.4486 × 10−5 2.5346 × 10−4 4.2243 × 10−4 5.9140 × 10−4
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Example 4.2. Consider the Caputo time-fractional biological population equation in the form

Dα
t u =

∂2u2

∂x2 +
∂2u2

∂y2 + u, (4.4)

with the initial condition

u(x, y, 0) = u0(x, y) =
√

sin x sinh y. (4.5)

By applying the steps involved in the MGTFSM as presented in Section 3, we have the solution of
equations (4.4)-(4.5) in the form

u(x, y, t) =

∞∑
i=0

ui(x, y)
tiα

Γ(iα + 1)
,

and

ui(x, y) =
√

sin x sinh y, for i = 0, 1, 2, 3, ...

So, the solution of equations (4.4)-(4.5), can be expressed by

u(x, y, t) =
√

sin x sinh y
(
1 +

tα

Γ(α + 1)
+

t2α

Γ(2α + 1)
+

t3α

Γ(3α + 1)
+ ...

)
=

√
sin x sinh y

∞∑
i=0

tiα

Γ(iα + 1)
=

√
sin x sinh yEα (tα) , (4.6)

where Eα (tα) is the Mittag-Leffler function, defined by (2.3).
Taking α = 1 in (4.6), we have

u(x, y, t) =
√

sin x sinh y
(
1 + t +

t2

2!
+

t3

3!
+ ...

)
=

( √
sin x sinh y

)
exp(t),

which is an exact solution to the standard form biological population equation [12].

Table 2. Comparison of the absolute errors for the obtained results and the exact solution for
Example 4.2 when n = 6 and α = 1.

t/x, y 0.1 0.3 0.5 0.7
0.1 1.4090 × 10−10 4.2268 × 10−10 7.0425 × 10−10 9.8497 × 10−10

0.3 1.0576 × 10−7 3.1726 × 10−7 5.2860 × 10−7 7.3932 × 10−7

0.5 2.3354 × 10−6 7.0059 × 10−6 1.1673 × 10−5 1.6326 × 10−5

0.7 1.8129 × 10−5 5.4385 × 10−5 9.0614 × 10−5 1.2673 × 10−4

0.9 8.4486 × 10−5 2.5345 × 10−4 4.2228 × 10−4 5.9061 × 10−4
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Figure 3. The surface graph of the exact solution u and the approximate solution u6 by
MGTFSM for different values of α for Example 4.2 when t = 1.5.
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Figure 4. The behavior of the exact solution u and the approximate solution u6 by MGTFSM
for different values of α for Example 4.2 when y = 1 and t = 1.5.

Example 4.3 Consider the Caputo time-fractional biological population equation in the form

Dα
t u =

∂2u2

∂x2 +
∂2u2

∂y2 + hu(1 − ru), (4.7)

with the initial condition

u(x, y, 0) = u0(x, y) = exp

√hr
8

(x + y)

 . (4.8)

By applying the steps involved in the MGTFSM as presented in Section 3, we have the solution of
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equations (4.7)-(4.8) in the form

u(x, y, t) =

∞∑
i=0

ui(x, y)
tiα

Γ(iα + 1)
,

and

ui(x, y) = hi exp

√hr
8

(x + y)

 , for i = 0, 1, 2, 3, ...

So, the solution of equations (4.7)-(4.8), can be expressed by

u(x, y, t) = exp

√hr
8

(x + y)

 (1 + h
tα

Γ(α + 1)
+ h2 t2α

Γ(2α + 1)
+ h3 t3α

Γ(3α + 1)
+ ...

)
= exp

√hr
8

(x + y)

 ∞∑
i=0

(htα)i

Γ(iα + 1)
(4.9)

= exp

√hr
8

(x + y)

 Eα (htα) ,

where Eα (htα) is the Mittag-Leffler function, defined by (2.3).
Taking α = 1 in (4.9), we have

u(x, y, t) = exp

√hr
8

(x + y)

 (1 + ht +
(ht)2

2!
+

(ht)3

3!
+ ...

)
= exp

√hr
8

(x + y) + ht

 ,
which is an exact solution to the standard form biological population equation [2].
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Figure 5. The surface graph of the exact solution u and the approximate solution u6 by
MGTFSM for different values of α for Example 4.3 when h = 1, r = 2 and t = 1.5.

AIMS Mathematics Volume 4, Issue 5, 1307–1319.



1317

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

20

40

60

80

100

120

u

Exact solution

α=1

α=0.9

α=0.8

α=0.7

Figure 6. The behavior of the exact solution u and the approximate solution u6 by MGTFSM
for different values of α for Example 4.3 when h = y = 1, r = 2 and t = 1.5.

Table 3. Comparison of the absolute errors for the obtained results and the exact solution for
Example 4.3 when h = 1, r = 2, n = 6 and α = 1.

t/x, y 0.1 0.3 0.5 0.7
0.1 1.5572 × 10−9 1.9019 × 10−9 2.3230 × 10−9 2.8373 × 10−9

0.3 1.1688 × 10−6 1.4276 × 10−6 1.7436 × 10−6 2.1297 × 10−6

0.5 2.5810 × 10−5 3.1525 × 10−5 3.8504 × 10−5 4.7029 × 10−5

0.7 2.0036 × 10−4 2.4472 × 10−4 2.9890 × 10−4 3.6507 × 10−4

0.9 9.3372 × 10−4 1.1404 × 10−3 1.3929 × 10−3 1.7013 × 10−3

5. Numerical results and discussion

In this section the numerical results for Examples 4.1, 4.2 and 4.3 are presented. Figures 1, 3
and 5 represents the surface graph of the exact solution and the approximate solution u6(x, y, t) at
α = 0.6, 0.8, 1. Figures 2, 4 and 6 represents the behavior of the exact solution and the approximate
solution u6(x, y, t) at α = 0.7, 0.8, 0.9, 1. These figures affirm that when the order of the fractional
derivative α tends to 1, the approximate solutions obtained by MGTFSM tends continuously to the
exact solutions. Tables 1–3 show the absolute errors between the exact solution and the approximate
solution u6(x, y, t) at α = 1 for different values of x, y and t. These tables clarifies the convergence of
the approximate solutions to the exact solutions.

In addition, numerical results have confirmed the theoretical results and high accuracy of the
proposed scheme.

Remark 5.1. In this paper, we only apply Six terms to approximate the solutions, if we apply more
terms of the approximate solutions, the accuracy of the approximate solutions will be greatly improved.
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6. Conclusion

In this paper, a new numerical technique called modified generalized Taylor fractional series
method (MGTFSM) has been successfully applied for solving the Caputo time-fractional biological
population equation. The method was applied to three numerical examples. The results show that the
MGTFSM is an efficient and easy to use technique for finding approximate and exact solutions for
these problems. The obtained approximate solutions using the suggested method is in excellent
agreement with the exact solutions. This confirms our belief that the effciency of our technique gives
it much wider applicability for general classes of fractional problems.
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