Processing math: 90%
Research article Topical Sections

Development and evaluation of aerogel-filled BMI sandwich panels for thermal barrier applications

  • This study details a fabrication methodology envisaged to manufacture Glass/BMI honeycomb core aerogel-filled sandwich panels. Silica aerogel granules are used as core fillers to provide thermal insulation properties with little weight increase. Experimental heat transfer studies are conducted on these panels to study the temperature distribution between their two surfaces. Numerical studies are also carried out to validate the results. Despite exhibiting good thermal shielding capabilities, the Glass/BMI sandwich panels are found to oxidise at 180 ºC if exposed directly to heat. In order to increase the temperature bearing capacity and the operating temperature range for these panels, a way of coating them from outside with high temperature spray paint was tried. With a silicone-based coating, the temperature sustainability of these sandwich panels is found to increase to 350 ºC. This proved the effectiveness of the formed manufacturing process, selected high temperature coating, the coating method as well as the envisaged sandwich panel concept.

    Citation: Sunil C. Joshi, Abdullah A. Sheikh, A. Dineshkumar, Zhao Yong. Development and evaluation of aerogel-filled BMI sandwich panels for thermal barrier applications[J]. AIMS Materials Science, 2016, 3(3): 938-953. doi: 10.3934/matersci.2016.3.938

    Related Papers:

    [1] Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155
    [2] Djamila Chergui, Taki Eddine Oussaeif, Merad Ahcene . Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions. AIMS Mathematics, 2019, 4(1): 112-133. doi: 10.3934/Math.2019.1.112
    [3] Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015
    [4] Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593
    [5] Isra Al-Shbeil, Abdelkader Benali, Houari Bouzid, Najla Aloraini . Existence of solutions for multi-point nonlinear differential system equations of fractional orders with integral boundary conditions. AIMS Mathematics, 2022, 7(10): 18142-18157. doi: 10.3934/math.2022998
    [6] Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176
    [7] Yitao Yang, Dehong Ji . Properties of positive solutions for a fractional boundary value problem involving fractional derivative with respect to another function. AIMS Mathematics, 2020, 5(6): 7359-7371. doi: 10.3934/math.2020471
    [8] Xiulin Hu, Lei Wang . Positive solutions to integral boundary value problems for singular delay fractional differential equations. AIMS Mathematics, 2023, 8(11): 25550-25563. doi: 10.3934/math.20231304
    [9] Xiping Liu, Mei Jia, Zhanbing Bai . Nonlocal problems of fractional systems involving left and right fractional derivatives at resonance. AIMS Mathematics, 2020, 5(4): 3331-3345. doi: 10.3934/math.2020214
    [10] Najla Alghamdi, Bashir Ahmad, Esraa Abed Alharbi, Wafa Shammakh . Investigation of multi-term delay fractional differential equations with integro-multipoint boundary conditions. AIMS Mathematics, 2024, 9(5): 12964-12981. doi: 10.3934/math.2024632
  • This study details a fabrication methodology envisaged to manufacture Glass/BMI honeycomb core aerogel-filled sandwich panels. Silica aerogel granules are used as core fillers to provide thermal insulation properties with little weight increase. Experimental heat transfer studies are conducted on these panels to study the temperature distribution between their two surfaces. Numerical studies are also carried out to validate the results. Despite exhibiting good thermal shielding capabilities, the Glass/BMI sandwich panels are found to oxidise at 180 ºC if exposed directly to heat. In order to increase the temperature bearing capacity and the operating temperature range for these panels, a way of coating them from outside with high temperature spray paint was tried. With a silicone-based coating, the temperature sustainability of these sandwich panels is found to increase to 350 ºC. This proved the effectiveness of the formed manufacturing process, selected high temperature coating, the coating method as well as the envisaged sandwich panel concept.


    In this research, we mainly focused on wave equation to study and examine the coupled system. In this system, we assumed a bounded domain ΩRN where Ω indicates sufficiently smooth boundary of ΩRN and take the positive constants ξ0,ξ1,σ,β1,β3 where m1 for N=1,2, and 1<mN+2N2 for N3. The coupled system with these terms is given by

    {vtt(ξ0+ξ1v22+δ(v,vt)L2(Ω))Δv(t)+0g1(s)Δv(ts)ds+β1|vt(t)|m2vt(t)+τ2τ1|β2(r)||vt(tr)|m2vt(tr)dr+f1(v,w)=0.wtt(ξ0+ξ1w22+δ(w,wt)L2(Ω))Δw(t)+0g2(s)Δw(ts)ds+β3|wt(t)|m2wt(t)+τ2τ1|β4(r)||wt(tr)|m2wt(tr)dr+f2(v,w)=0.v(z,t)=v0(z),vt(z,0)=v1(z),w(z,t)=w0(z),wt(z,0)=w1(z),inΩvt(z,t)=j0(z,t),wt(z,t)=ϱ0(z,t),inΩ×(0,τ2)v(z,t)=w(z,t)=0,inΩ×(0,) (1.1)

    in which G=Ω×(τ1,τ2)×(0,) and τ1<τ2 are taken to be non-negative constants in a manner that β2, β4:[τ1,τ2]R indicates distributive time delay while gi, i=1,2 are positive.

    The viscoelastic damping term, whose kernel is the function g, is a physical term used to describe the link between the strain and stress histories in a beam that was inspired by the Boltzmann theory. There are several publications that discuss this subject and produce a lot of fresh and original findings [1,2,3,4,5], particularly the hypotheses regarding the initial condition [6,7,8,9,10,11,12] and the kernel. See [13,14,15,16,17]. As it concerns to the plate equation and the span problem, Balakrishnan and Taylor introduced a novel damping model in [18] that they dubbed the Balakrishnan-Taylor damping. Here are a few studies that specifically addressed the research of this dampening for further information [18,19,20,21,22,23].

    Several applications and real-world issues are frequently affected by the delay, which transforms numerous systems into interesting research topics. Numerous writers have recently studied the stability of the evolution systems with time delays, particularly the effect of distributed delay. See [24,25,26].

    In [1], the authors presented the stability result of the system over a considerably broader class of kernels in the absence of delay and Balakrishnan-Taylor damping ξ0=1,ξ1=δ=βi=0,i=1,,4.

    Based on everything said above, one specific problem may be solved by combining these damping terms (distributed delay terms, Balakrishnan-Taylor damping and infinite memory), especially when the past history and the distributed delay

    τ2τ1|βi(r)||ut(tr)|m2ut(tr)dr,    i=2,4

    are added. We shall attempt to throw light on it since we think it represents a fresh topic that merits investigation and analysis in contrast to the ones mentioned before. Our study is structured into multiple sections: in the second section, we establish the assumptions, notions, and lemmas we require; in the final section, we substantiate our major finding.

    In this section of the paper, we will introduce some basic results related to the theory for the analysis of our problem. Let us take the below:

    (G1) hi:R+R+ are a non-increasing C1 functions fulfills the following

    gi(0)>0,,ξ00hi(s)ds=li>0,i=1,2, (2.1)

    and

    g0=0h1(s)ds,ˆg0=0g2(s)ds,

    (G2) One can find a function C1 functions Gi:R+R+ holds true Gi(0)=Gi(0)=0.

    The functions Gi(t) are strictly increasing and convex of class C2(R+) on (0,ϱ],rgi(0) or linear in a manner that

    gi(t)ζi(t)Gi(gi(t)),t0,fori=1,2, (2.2)

    in which ζi(t) are a C1 functions fulfilling the below

    ζi(t)>0,ζi(t)0,t0. (2.3)

    (G3) β2, β4:[τ1,τ2]R are a bounded function fulfilling the below

    τ2τ1|β2(r)|dr<β1,τ2τ1|β4(r)|dr<β3. (2.4)

    (G4) fi:R2R are C1 functions with fi(0,0)=0, and one can find a function F in a way that

    f1(c,e)=dFdc(c,e),f2(c,e)=dFde(c,e),F0,af1(c,e)+ef2(c,e)=F(c,e)0, (2.5)

    and

    dfidc(c,e)+dfide(c,e)d(1+cpi1+epi1).(c,e)R2. (2.6)

    Take the below

    (gϕ)(t):=Ω0h(r)|ϕ(t)ϕ(tr)|2drdz,

    and

    M1(t):=(ξ0+ξ1v22+δ(v(t),vt(t))L2(Ω)),M2(t):=(ξ0+ξ1w22+δ(w(t),wt(t))L2(Ω)).

    Lemma 2.1. (Sobolev-Poincare inequality [27]). Assume that 2q< for n=1,2 and 2q<2nn2 for n3. Then, one can find c=c(Ω,q)>0 in a manner that

    vqcv2,vG10(Ω).

    Moreover, choose the below as in [26]:

    x(z,ρ,r,t)=vt(z,trρ),y(z,ρ,r,t)=wt(z,trρ)

    with

    {rxt(z,ρ,r,t)+xρ(z,ρ,r,t)=0,syt(z,ρ,r,t)+yρ(z,ρ,r,t)=0x(z,0,r,t)=vt(z,t),y(z,0,r,t)=wt(z,t). (2.7)

    Take the auxiliary variable (see [28])

    ηt(z,s)=v(z,t)v(z,ts),s0,ϑt(z,s)=w(z,t)w(z,ts),s0.

    Then

    ηtt(z,s)+ηts(z,s)=vt(z,t),ϑtt(z,s)+ϑts(z,s)=wt(z,t). (2.8)

    Rewrite the problem (1.1) as follows

    {vtt(l1+ξ1v22+δ(v,vt)L2(Ω))Δv(t)+0g1(s)Δηt(s)ds+β1|vt(t)|m2vt(t)+τ2τ1|β2(s)||x(z,1,r,t)|m2x(z,1,r,t)dr+f1(v,w)=0,wtt(l2+ξ1w22+δ(w,wt)L2(Ω))Δw(t)+0g2(s)Δϑt(s)ds+β3|wt(t)|m2wt(t)+τ2τ1|β4(r)||y(z,1,r,t)|m2y(z,1,r,t)dr+f2(v,w)=0,rxt(z,ρ,r,t)+xρ(z,ρ,r,t)=0,ryt(z,ρ,r,t)+yρ(z,ρ,r,t)=0,ηtt(z,s)+ηts(z,s)=vt(z,t)ϑtt(z,s)+ϑts(z,s)=wt(z,t), (2.9)

    where

    (z,ρ,r,t)Ω×(0,1)×(τ1,τ2)×(0,).

    with

    {v(z,t)=v0(z),vt(z,0)=v1(z),w(z,t)=w0(z),wt(z,0)=w1(z),inΩx(z,ρ,r,0)=j0(z,ρr),y(z,ρ,r,0)=ϱ0(z,ρr),inΩ×(0,1)×(0,τ2)v(z,t)=ηt(z,s)=0,zΩ,t,s(0,),ηt(z,0)=0,t0,η0(z,s)=η0(s)=0,s0,w(z,t)=ϑt(z,s)=0,zΩ,t,s(0,),ϑt(z,0)=0,t0,ϑ0(z,s)=ϑ0(s)=0,s0. (2.10)

    In the upcoming Lemma, the energy functional will be introduced.

    Lemma 2.2. Let the energy functional is symbolized by E, then it is given by

    E(t)=12(vt22+wt22)+ξ14(v(t)42+w(t)42)+ΩF(v,w)dz+12(l1v(t)22+l2w(t)22)+12((g1v)(t)+(g2w)(t))+m1m10τ2τ1s(|β2(r)|x(z,ρ,r,t)mm+|β4(r)|y(z,ρ,r,t)mm)drdρ. (2.11)

    The above fulfills the below

    E(t)γ0(vt(t)mm+wt(t)mm)+12((g1v)(t)+(g2w)(t))δ4{(ddt{v(t)22})2+(ddt{w(t)22})2}0, (2.12)

    in which γ0=min{β1τ2τ1|β2(r)|dr,β3τ2τ1|β4(r)|dr}.

    Proof. To prove the result, we take the inner product of (2.9) with vt,wt and after that integrating over Ω, the following is obtained

    (vtt(t),vt(t))L2(Ω)(M3(t)Δv(t),vt(t))L2(Ω)+(0h1(s)Δηt(s)ds,vt(t))L2(Ω)+β1(|vt|m2vt,vt)L2(Ω)+τ2τ1|β2(s)|(|x(z,1,r,t)|m2x(z,1,r,t),vt(t))L2(Ω)dr+(wtt(t),wt(t))L2(Ω)(M4(t)Δw(t),wt(t))L2(Ω)+(0h2(s)Δϑt(s)ds,wt(t))L2(Ω)+β3(|wt|m2wt,wt)L2(Ω)+τ2τ1|β4(s)|(|y(z,1,r,t)|m2y(z,1,r,t),wt(t))L2(Ω)dr+(f1(v,w),vt(t))L2(Ω)+(f2(v,w),wt(t))L2(Ω)=0. (2.13)

    in which

    M3(t):=(l1+ξ1v22+δ(v(t),vt(t))L2(Ω)),M4(t):=(l2+ξ1w22+δ(w(t),wt(t))L2(Ω)).

    Using mathematical skills, the following is obtained

    (vtt(t),vt(t))L2(Ω)=12ddt(vt(t)22), (2.14)

    further simplification leads us to the following

    (M3(t)Δv(t),vt(t))L2(Ω)=((l1+ξ1v22+δ(v(t),vt(t))L2(Ω))Δv(t),vt(t))L2(Ω)=(l1+ξ1v22+δ(v(t),vt(t))L2(Ω))Ωv(t).vt(t)dz=(l1+ξ1v22+δ(v(t),vt(t))L2(Ω))ddt{Ω|v(t)|2dz}=ddt{12(l1+ξ12v22)v(t)22}+δ4ddt{v(t)22}2. (2.15)

    The following is obtained after calculation

    (0g1(s)Δηt(s)ds,vt(t))L2(Ω)=Ωvt0g1(s)ηt(s)dsdz=0g1(s)Ωvtηt(s)dzds=0g1(s)Ω(ηtt+ηts)ηt(s)dzds=0g1(s)Ωηttηt(s)dzds+Ω0g1(s)ηtsηt()ddz=12ddt(g1v)(t)12(g1v)(t). (2.16)

    In the same way, we have

    (wtt(t),wt(t))L2(Ω)=12ddt(wt(t)22),(M4(t)Δw(t),wt(t))L2(Ω)=ddt{12(l2+ξ12w22)w(t)22}+δ4ddt{w(t)22}2,(0g2(s)Δϑt(s)ds,wt(t))L2(Ω)=12ddt(g2w)(t)12(g2w)(t). (2.17)

    Now, multiplying the equation (2.9) by x|β2(r)|,y|β4(r)|, and integrating over Ω×(0,1)×(τ1,τ2) and utilizing (2.7), the below is obtained

    ddtm1mΩ10τ2τ1r|β2(r)|.|x(z,ρ,r,t)|mdrdρdz=(m1)Ω10τ2τ1|β2(r)|.|y|m1xρdrdρdz=m1mΩ10τ2τ1|β2(r)|ddρ|x(z,ρ,r,t)|mdrdρdz=m1mΩτ2τ1|β2(r)|(|x(z,0,r,t)|m|x(z,1,r,t)|m)drdz=m1m(τ2τ1|β2(r)|dr)Ω|vt(t)|mdzm1mΩτ2τ1|β2(r)|.|x(z,1,r,t)|mdrdz=m1m(τ2τ1|β2(r)|dr)vt(t)mmm1mτ2τ1|β2(r)|x(z,1,r,t)mmdr. (2.18)

    Similarly, we have

    ddtm1mΩ10τ2τ1r|β4(r)|.|y(z,ρ,r,t)|mdrdρdz=m1m(τ2τ1|β4(r)|dr)wt(t)mmm1mτ2τ1|β4(r)|y(z,1,r,t)mmdr. (2.19)

    Here, we utilize the inequalities of Young as

    τ2τ1|β2(r)|(|x(z,1,r,t)|m2x(z,1,r,t),vt(t))L2(Ω)ds1m(τ2τ1|β2(r)|dr)vt(t)mm+m1mτ2τ1|β2(r)|x(z,1,r,t)mmdr, (2.20)

    and

    τ2τ1|β4(r)|(|y(z,1,r,t)|m2y(z,1,r,t),wt(t))L2(Ω)dr1m(τ2τ1|β4(r)|dr)wt(t)mm+m1mτ2τ1|β4(r)|y(z,1,r,t)mmdr. (2.21)

    Finally, we have

    (f1(v,w),vt(t))L2(Ω)+(f2(v,w),wt(t))L2(Ω)=ddtΩF(v,w)dz. (2.22)

    Thus, after replacement of (2.14)–(2.22) into (2.13), we determined (2.11) and (2.12). As a result, we obtained that E is a non-increasing function by (2.2)–(2.5), which is required.

    Theorem 2.3. Take the function U=(v,vt,w,wt,x,y,ηt,ϑt)T and assume that (2.1)–(2.5) holds true. Then, for any U0H, then one can find a unique solution U of problems (2.9) and (2.10) in a manner that

    UC(R+,G).

    If U0G1, then U fulfills the following

    UC1(R+,G)C(R+,G1),

    in which

    G=(G10(Ω)×L2(Ω))2×(L2(Ω,(0,1),(τ1,τ2)))2×(Lg1×Lg2).G1={UG/v,wG2G10,vt,wtG10(Ω),x,y,xρ,yρL2(Ω,(0,1),(τ1,τ2)),(ηt,ϑt)Lg1×Lg2,ηt(z,0)=ϑt(z,0)=0,x(z,0,r,t)=vt,y(z,0,r,t)=wt}.

    Here, the stability of the systems (2.9) and (2.10) will be established and investigated. For which the following lemma is needed

    Lemma 3.1. Let us suppose that (2.1) and (2.2) fulfills.

    Ω(0gi(s)(v(t)v(ts))ds)2dzCκ,i(hiv)(t),i=1,2. (3.1)

    where

    Cκi:=0g2i(s)κgi(s)gi(s)dshi(t):=κgi(t)gi(t),i=1,2.

    Proof.

    Ω(0gi(s)(v(t)v(ts))ds)2dz=Ω(tgi(ts)(v(t)v(ts))ds)2dz=Ω(tgi(ts)κgi(ts)gi(ts)κgi(ts)gi(ts)(v(t)v(s))ds)2dz (3.2)

    which is obtained through Young's inequality (Eq 3.1).

    Lemma 3.2. (Jensens inequality). Let f:Ω[c,e] and h:ΩR are integrable functions in a manner that for any zΩ, h(z)>0 and Ωh(z)dz=k>0. Furthermore, assume a convex function G such that G:[c,e]R. Then

    G(1kΩf(z)h(z)dz)<1kΩG(f(z))h(z)dz. (3.3)

    Lemma 3.3. It is mentioned in [12] that one can find a positive constant β, ˆβ in a manner that

    I1(t)=Ωtg1(s)|ηt(δ)|2dsdzβμ(t),I2(t)=Ωtg2(s)|ϑt(δ)|2dsdzˆβˆμ(t), (3.4)

    in which

    μ(t)=0g1(t+s)(1+Ωv20(z,s)dz)ds,ˆμ(t)=0g2(t+s)(1+Ωw20(z,s)dz)ds.

    Proof. As the function E(t) is decreasing and utilizing (2.11), we have the following

    Ω|ηt(s)|2dz=Ω(v(z,t)v(z,ts)2dz2Ωv2(z,t)dz+2Ωv2(z,ts)dz2sups>0Ωv2(z,s)dz+2Ωv2(z,tx)dz4E(0)l1+2Ωv2(z,ts)dz, (3.5)

    for any t,s0. Further, we have

    I1(t)4E(0)l1tg1(s)ds+2tg1(s)Ωv2(z,ts)dzds4E(0)l10g1(t+s)ds+20g1(t+s)Ωv20(z,s)dzdsβμ(t), (3.6)

    in which β=max{4E(0)l1,2} and μ(t)=0g1(t+s)(1+Ωu20(z,s)dz)ds.

    In the same way, we can deduce that

    I2(t)4E(0)l20g2(t+s)ds+20g2(t+s)Ωw20(z,s)dzdsˆβˆμ(t), (3.7)

    in which ˆβ=max{4E(0)l2,2} and ˆμ(t)=0g2(t+s)(1+Ωw20(z,s)dz)ds. In the upcoming part, we set the following

    Ψ(t):=Ω(v(t)vt(t)+w(t)wt(t))dz+δ4(v(t)42+w(t)42), (3.8)

    and

    Φ(t):=Ωvt0g1(s)(v(t)v(ts))dsdzΩwt0g2(s)(w(t)w(ts))dsdz, (3.9)

    and

    Θ(t):=10τ2τ1reρr(|β2(r)|.x(z,ρ,r,t)mm+|β4(r)|.y(z,ρ,r,t)mm)drdρ. (3.10)

    Lemma 3.4. In (3.8), the functional Ψ(t) fulfills the following

    Ψ(t)vt22+wt22(lε(c1+c2)σ1)(v22+w22)ξ1(v42+w42)+c(ε)(vtmm+wtmm)+c(σ1)(Cκ,1(g1v)(t)+Cκ,2(h2w)(t))ΩF(v,w)dz+c(ε)τ2τ1(|β2(r)x(z,1,r,t)mm+|β4(r)y(z,1,r,t)mm)dr. (3.11)

    for any ε,σ1>0 with l=min{l1,l2}.

    Proof. To prove the result, differentiate (3.8) first and then apply (2.9), we have the following

    Ψ(t)=vt22+Ωvttvdz+δv22Ωvtvdz+wt22+Ωwttwdz+δw22Ωwtwdz=vt22+wt22ξ0(v22+w22)ξ1(v42+w42)β1Ω|vt|m2vtvdzI11β3Ω|wt|m2wtwdzI12+Ωv(t)0g1(s)v(ts)dsdzI21+Ωw(t)0g2(s)w(ts)dsdzI22Ωτ2τ1|β2(r)||x(z,1,r,t)|m2x(z,1,r,t)vdrdzI31Ωτ2τ1|β4(r)||y(z,1,r,t)|m2y(z,1,r,t)wdrdzI32Ω(vf1(v,w)+wf2(v,w))dzI4. (3.12)

    We estimate the last 6 terms of the RHS of (3.12). The following is obtained by applying Young's, Sobolev-Poincare and Hölder's inequalities on (2.1) and (2.11), we have

    I11εβm1vmm+c(ε)vtmmεβm1cmpvm2+c(ε)vtmmεβm1cmp(E(0)l1)(m2)/2v22+c(ε)vtmmεc11v22+c(ε)vtmm. (3.13)

    In addition to this, for any σ1>0, by Lemma 3.1, we have the below

    I21(0g1(s)ds)v22Ωv(t)0g1(s)(v(t)v(ts))dsdz(ξ0l1+σ1)v22+cσ1Cκ,1(h1v)(t). (3.14)

    Taking same steps to I12, the below is obtained

    I31εc21v22+c(ε)τ2τ1|β2(r)|.x(z,1,r,t)mmdr. (3.15)

    Same steps for I11,I21 and I31, we have

    I12εc12w22+c(ε)wtmmI22(ξ0l2+σ1)w22+cσ1Cκ,2(h2w)(t),I32εc22w22+c(ε)τ2τ1|β4(r)|.y(z,1,r,t)mmdr. (3.16)

    Combining (3.13)–(3.21), (3.12) and (2.5), the required (3.11) is obtained.

    Lemma 3.5. For any σ,σ2,σ3>0, the functional Φ(t) introduced in (3.9) holds true

    Φ(t)(l0σ3)(vt22+wt22)+ξ1σ(v42+w42)+σ(ξ0+^l02+cˆl)v22+σ(ξ0+ˆh20+cl2)w22+σ22δE(0)(1l1(12ddtv22)2+1l2(12ddtw22)2)+c(σ,σ2,σ3)(Cκ,1(h1v)(t)+Cκ,2(h2w)(t))+c(σ)(vtmm+τ2τ1|β2(r)x(z,1,r,t)mmdr)+c(σ)(wtmm+τ2τ1|β4(r)y(z,1,r,t)mmdr). (3.17)

    where ˆl=max{l1,l2}, l0=min{g0,ˆg0} and ^l0=max{g0,ˆg0}.

    Proof. To prove the result, simplification of (3.9) and (2.9) through mathematical skills leads us to the following

    Φ(t)=Ωvtt0g1(s)(v(t)v(ts))dsdzΩvtt(0g1(s)(v(t)v(ts))ds)dzΩwtt0g2(s)(w(t)w(ts))dsdzΩwtt(0g2(s)(w(t)w(ts))ds)dz=(ξ0+ξ1v22)Ωv0g1(s)(v(t)v(ts))dsdzJ11+(ξ0+ξ1w22)Ωw0g2(s)(w(t)w(ts))dsdzJ12+δΩvvtdz.Ωv0g1(s)(v(t)v(ts))dsdzJ21+δΩwwtdz.Ωw0g2(s)(w(t)w(ts))dsdzJ22Ω(0g1(s)v(ts)ds).(0g1(s)(v(t)v(ts))ds)dzJ31Ω(0g2(s)w(ts)ds).(0g2(s)(w(t)w(ts))ds)dzJ32β1Ω|vt|m2vt(0g1(s)(v(t)v(ts))ds)dzJ41β3Ω|wt|m2wt(0g2(s)(w(t)w(ts))ds)dxJ42Ωτ2τ1|β2(r)||x(z,1,r,t)|m2x(z,1,r,t)×0g1(s)(v(t)v(ts))ds)dsdzJ51Ωτ2τ1|β4(r)||y(z,1,r,t)|m2y(z,1,r,t)×0g2(s)(w(t)w(ts))ds)dsdzJ51Ωvtt(0g(s)(v(t)v(ts))ds)dzJ61Ωwtt(0g2(s)(w(t)w(ts))ds)dzJ62Ωf1(v,w).(0g1(s)(v(t)v(ts))ds)dzJ71Ωf2(v,w).(0g2(s)(w(t)w(ts))ds)dzJ72. (3.18)

    Here, we will find our the approximation of the terms of the RHS of (3.18). Using the well-known Young's, Sobolev-Poincare and Hölder's inequalities on (2.1), (2.11) and Lemma 3.1, we proceed as follows

    |J11|(ξ0+ξ1v22)(σv22+14σCκ,1(h1v)(t))σξ0v22+σξ1v42+(ξ04σ+ξ1E(0)4l1ξ)Cκ,1(h1v)(t), (3.19)

    and

    J21σ2δ(Ωvvtdz)2v22+δ4σ2Cκ,1(h1v)(t)σ22δE(0)l1(12ddtv22)2+δ4σ2Cκ,1(h1v)(t), (3.20)
    |J31|Ω(0g1(s)v(t)ds)(0g1(s)(v(ts)v(t))ds)dzΩ(0g1(s)(v(t)v(ts))ds)2dzδg20v22+(1+14δ)Cκ,1(h1v)(t), (3.21)
    |J41|c(σ)vtmm+σβm1Ω(0g1(s)(v(t)v(ts))ds)mdzc(σ)vtmm+σ(βm1cmp[4g0E(0)l1](m2))Cκ,1(h1v)(t)c(σ)vtmm+σc3Cκ,1(h1v)(t). (3.22)

    In the same, we obtained the following

    J51c(σ)x(z,1,r,t)mm+σc4Cκ,1(h1v)(t), (3.23)

    and to find the approximation of J61, we have

    t(0g1(s)(v(t)v(ts))ds)=t(tg1(ts)(v(t)v(s))ds)=tg1(ts)(v(t)v(s))ds+(tg1(ts)ds)vt(t)=0g1(s)(v(t)v(ts))ds+g0vt(t),

    the (2.2) implies that

    J61(g0σ3)vt22+cσ3Cκ,1(h1v)(t). (3.24)

    In the same steps, the estimation of Ji2, i=1,..,6 are obtained and

    J71cσl1v22+c(σ)Cκ,1(h1v)(t)J72cσl2w22+c(σ)Cκ,2(h2v)(t). (3.25)

    Here, put (3.19)–(3.25) into (3.18), the required result is obtained.

    Lemma 3.6. The functional Θ(t) introduced in (3.10) fulfills the below

    Θ(t)γ110τ2τ1r(|β2(r)|.x(z,ρ,r,t)mm+|β4(r)|.y(z,ρ,r,t)mm)drdργ1τ2τ1(|β2(s)|.x(z,1,r,t)mm+|β4(r)|.y(z,1,r,t)mm)dr+β5(vt(t)mm+wt(t)mm). (3.26)

    in which β5=max{β1,β3}.

    Proof. To prove the result, using Θ(t), and (2.9), we obtained the following

    Θ(t)=mΩ10τ2τ1erρ|β2(r)|.|x|m1xρ(z,ρ,r,t)drdρdzmΩ10τ2τ1erρ|β4(r)|.|y|m1yρ(z,ρ,r,t)drdρdz=Ω10τ2τ1rerρ|β2(r)|.|x(z,ρ,r,t)|mdrdρdzΩτ2τ1|β2(r)|[er|x(z,1,r,t)|m|x(z,0,r,t)|m]drdzΩ10τ2τ1rerρ|β4(r)|.|y(z,ρ,r,t)|mdrdρdzΩτ2τ1|β4(r)|[er|y(z,1,r,t)|m|y(z,0,r,t)|m]drdz

    Utilizing x(z,0,r,t)=vt(z,t),y(z,0,r,t)=wt(z,t), and ererρ1, for any 0<ρ<1, moreover, select γ1=eτ2, we have

    Θ(t)γ1Ω10τ2τ1r(|β2(r)|.|z(z,ρ,r,t)|m+|β4(r)|.|y(z,ρ,r,t)|m)drdρdzγ1Ωτ2τ1(|β2(r)||x(z,1,r,t)|m+|β4(r)||y(z,1,r,t)|m)drdz+τ2τ1|β2(r)|drΩ|vt|m(t)dz+τ2τ1|β4(r)|drΩ|wt|m(t)dz,

    applying (2.4), the required proof is obtained. In the next step, we below functional are introduced

    A1(t):=Ωt0φ1(ts)v(s)2dsdz,A2(t):=Ωt0φ2(ts)w(s)2dsdz, (3.27)

    in which φ1(t)=tg1(s)ds,φ2(t)=tg2(s)ds.

    Lemma 3.7. Let us suppose that (2.1) and (2.2) satisfied. Then, the functional F1=A1+A2 and fulfills the following

    F1(t)12((g1v)(t)+(g2w)(t))+3g0Ωv2dz+3ˆg0Ωw2dz+12Ωtg1(s)(v(t)v(ts))2dsdz+12Ωtg2(s)(w(t)w(ts))2dsdz. (3.28)

    Proof. We can easily prove this lemma with the help of Lemma 3.7 in [13] and Lemma 3.4 in [15].

    Now, we have sufficient mathematical tools to prove the below mentioned Theorem.

    Theorem 3.8. Take (2.1)–(2.5), then one can find positive constants ςi,i=1,2,3 and positive function ς4(t) in a way that the energy functionalmentioned in (2.11) fulfills

    E(t)ς1D12(ς2+ς3t0ˆζ(ν)D4(ς4(ν)μ0(ν))dνt0ζ0(ν)dν), (3.29)

    in which

    D2(t)=tD(ε0t),D3(t)=tD1(t),D4(t)=¯D3(t), (3.30)

    and

    μ0=max{μ,ˆμ},ˆζ=max{ζ1,ζ2},ζ0=min{ζ1,ζ2},

    which are increasing and convex in (0, ϱ].

    Proof. For the proof, we define the below functional

    G(t):=NE(t)+N1Ψ(t)+N2Φ(t)+N3Θ(t), (3.31)

    we determined the positive constants N,Ni,i=1,2,3. Simplifying (3.36) and utilizing 2.12, the Lemmas 3.4–3.6, we have

    G(t):=NE(t)+N1Ψ(t)+N2Φ(t)+N3Θ(t){N2(l0σ3)N1}(vt22+wt22){N3ξ1N2ξ1σ}(v42+w42){N1(lε(c1+c2)σ1)N2σ(ξ0+^l02+cˆl)}(v22+w22){Nδ4N2σ22δE(0)l}[(12ddtv22)2+(12ddtw22)2]+{N1c(σ1)+N2c(σ,σ2,σ3)}(Cκ,1(h1v)(t)+Cκ,2(h2w)(t))+N2((g1v)(t)+(g2w)(t)){γ0NN1c(ε)N2c(σ)N3β5}(vtmm+wtmm)(γ1N3N1c(ε)N2c(σ))τ2τ1|β2(r)x(z,1,r,t)mmds)N3γ110τ2τ1r|β2(r)|.x(z,ρ,r,t)mmdrdρ(γ1N3N1c(ε)N2c(σ))τ2τ1|β4(r)y(z,1,r,t)mmdr)N3γ110τ2τ1r|β4(r)|.y(z,ρ,r,t)mmdrdρN1ΩF(v,w)dz. (3.32)

    We select the various constants at this point such that the values included in parenthesis are positive in this stage. Here, putting

    σ3=l02,ε=l4(c1+c2),σ1=l4,σ2=lN16E(0)N2,N1=l04N2.

    Thus, we arrive at

    H(t)l04N2(wt22+wt22)ζ1N2(l04δ)(w42+u42)N2(ll08δ(ζ0+^h02+cˆl))(w22+u22)Nδ8[(12ddtv22)2+(12ddtw22)2]+N2c(σ,σ1,σ2,σ3)(Cκ,1(h1v)(t)+Cκ,2(h2w)(t))+N2((g1v)(t)+(g2v)(t))N1ΩF(v,w)dz(γ0NN2c(σ,ε)N3β5)(vtmm+wtmm)(γ1N3N2c(σ,ε))τ2τ1|β2(r)x(z,1,r,t)mmds)N3γ110τ2τ1r|β2(r)|.x(z,ρ,r,t)mmdrdρ(γ1N3N2c(σ,ε))τ2τ1|β4(r)y(z,1,r,t)mmdr)N3γ110τ2τ1r|β4(r)|.y(z,ρ,r,t)mmdrdρ. (3.33)

    In the upcoming, we select σ in a manner that

    σ<min{l04,ll08(ξ0+^g02+cˆl)}.

    After that, we take N2 in a way that

    N2(ll08σ(ξ0+^g02+cˆl))>4l0,

    and take N3 large enough in a way that

    γ1N3N2c(σ,ε)>0.

    As a result, for positive constants di,i=1,2,3,4,5, (3.33) can be written as

    H(t)d1(vt22+wt22)d2(v42+w42)4l0(v22+w22)Nδ8[(12ddtv22)2+(12ddtw22)2](N2d3Cκ)((h1v)(t)+(h2w)(t))+Nκ2((g1v)(t)+(g2w)(t))(γ0Nc)(vtmm+wtmm)d5ΩF(v,w)dzd410τ2τ1s(|β2(r)|.x(z,ρ,r,t)mm+|β4(r)|.y(z,ρ,r,t)mm)drdρ, (3.34)

    in which Cκ=max{Cκ,1,Cκ,2}.

    We know that κg2i(s)κgi(s)gi(s)gi(s), then from from Lebesgue Dominated Convergence, we have the below

    limκ0+κCκ,i=limκ0+0κg2i(s)κgi(s)gi(s)ds=0,i=1,2 (3.35)

    which leads to

    limκ0+κCκ=0.

    As a result of this, one can find 0<κ0<1 in a manner that if κ<κ0, then

    κCκ1d3. (3.36)

    From (3.8)–(3.10) through mathematical skills, we have the following

    |H(t)NE(t)|N12(vt(t)22+wt(t)22+cpw(t)22+cpw(t)22)+δN14(v(t)42+w(t)42)+N22(vt(t)22+wt(t)22)+N22cp(Cκ,1(g1v)(t)+Cκ,2(g2w)(t))+N310τ2τ1reρr(|β2(r)|.x(z,ρ,r,t)mm+|β4(r)|.y(z,ρ,r,t)mm)drdρ. (3.37)

    By the fact eρr<1 and (2.2), we have the below

    |H(t)NE(t)|C(N1,N2,N3)E(t)=C1E(t). (3.38)

    that is

    (NC1)E(t)H(t)(N+C1)E(t). (3.39)

    Here, set κ=12N and take N large enough in a manner that

    NC1>0,,γ0Nc>0,12N12κ0>0,κ=12N<κ0,

    we find

    H(t)k2E(t)+14((g1v)(t)+(g2w)(t)) (3.40)

    for some k2>0, and

    c5E(t)H(t)c6E(t),t0 (3.41)

    for some c5,c6>0, we have

    H(t)E(t).

    After that, the below cases are considered:

    Case 3.9. Gi,i=1,2 are linear. Multiplying (3.40) by ζ0(t)=min{ζ1(t),ζ2(t)}, we find

    ζ0(t)H(t)k2ζ0(t)E(t)+14ζ0(t)((g1v)(t)+(g2w)(t))k2ζ0(t)E(t)+14ζ1(t)(g1v)(t)+14ζ2(t)(g2w)(t). (3.42)

    The last two terms in (3.42), we have

    ζ1(t)4(g1v)(t)=ζ1(t)4Ω0g1(δ)|ηt(s)|2dsdz=ζ1(t)4Ωt0g1(s)|ηt(s)|2dsdzI1+ζ1(t)4Ωtg1(s)|ηt(s)|2dsdzI2 (3.43)

    To estimate I1, using (2.11),

    I114Ωt0ζ1(s)g1(s)|ηt(s)|2dsdz=14Ωt0g1(s)|ηt(s)|2dsdz12l1E(t), (3.44)

    and by (3.4), we get

    I2β4ζ1(t)μ(t). (3.45)

    In the same way, we obtained

    ζ2(t)4(g2w)(t)12l2E(t)+ˆβ4ζ2(t)ˆμ(t). (3.46)

    As a result of this, we get

    ζ0(t)H(t)k2ζ0(t)E(t)1ˆlE(t)+2β0w(t), (3.47)

    where β0=max{β4,ˆβ4} and w(t)=ˆζ(t)μ0(t).

    Applying ζi(t)0, we get

    H1(t)k2ζ0(t)E(t)+2β0w(t), (3.48)

    with

    H1(t)=ζ0(t)H(t)+1ˆlE(t)E(t),

    we have

    k4E(t)H1(t)k5E(t), (3.49)

    then, the following is obtained from (3.48)

    k2E(T)T0ζ0(t)dtk2T0ζ0(t)E(t)dtH1(0)H1(T)+2β0T0w(t)dtH1(0)+2β0T0ˆζ(t)μ0(t)dt.

    Further analysis implies that

    E(T)1k2(G1(0)+2β0T0ˆξ(t)μ0(t)dtT0ξ0(t)dt),

    From the linearity of D, the linearity of the functions D2,D2 and D4 can easily be determined. This implies that

    E(T)λ1D12(H1(0)k2+2β0k2T0ˆζ(t)μ0(t)dtT0ζ0(t)dt), (3.50)

    which gives (3.29) with ς1=λ1, ς2=H1(0)k2, ς3=2β0λ2k2, and ς4(t)=Id(t)=t. Hence, the required proof is completed.

    Case 3.10. Let Hi,i=1,2 are nonlinear. Then, with the help of (3.28) and (3.40). Assume the positive functional

    H2(t)=H(t)+F1(t)

    then for all t0 and for some k3>0, the following holds true

    H2(t)k3E(t)+12Ωtg1(s)(v(t)v(ts))2dsdz+12Ωtg2(s)(w(t)w(ts))2dsdz, (3.51)

    with the help of (3.4), we have

    k3t0E(x)dxH2(0)H2(t)+β0t0μ0(ς)dςH2(0)+β0t0μ0(ς)dς. (3.52)

    Therefore

    t0E(x)dxk6μ1(t), (3.53)

    where k6=max{H2(0)k3,β0k3} and μ1(t)=1+t0μ0(ς)dς.

    Corollary 3.11. The following is obtained from (2.11) and (3.53):

    t0Ω|v(t)v(ts)|2dzds+t0Ω|w(t)w(ts)|2dzds2t0Ωv2(t)v2(ts)dzds+2t0Ωw2(t)w2(ts)dzds4l0t0E(t)E(ts)ds8l0t0E(x)dx8k6l0μ1(t). (3.54)

    Now, we define ϕi(t),i=1,2 by

    ϕ1(t):=B(t)t0Ω|v(t)v(ts)|2dzds,ϕ2(t):=B(t)t0Ω|w(t)w(ts)|2dzds (3.55)

    where B(t)=B0μ1(t) and 0<B0<min{1,l8k6}.

    Then, by (3.53), we have

    ϕi(t)<1,t>0,i=1,2 (3.56)

    Further, we suppose that ϕi(t)>0,t>0,i=1,2. In addition to this, we define another functional Γ1,Γ2 by

    Γ1(t):=t0g1(s)Ω|v(t)v(ts)|2dzds,Γ2(t):=t0g2(s)Ω|w(t)w(ts)|2dzds (3.57)

    Here, obviously Γi(t)cE(t),i=1,2. As Gi(0)=0,i=1,2 and Gi(t) are convex strictly on (0, ϱ], then

    Gi(λz)λGi(z),0<λ<1,z(0,ϱ],i=1,2. (3.58)

    Applying (2.3) and (3.56), we get

    Γ1(t)=1B(t)ϕ1(t)t0ϕ1(t)(g1(s))ΩB(t)|v(t)v(ts)|2dzds1B(t)ϕ1(t)t0ϕ1(t)ζ1(s)G1(g1(s))ΩB(t)|v(t)v(ts)|2dzdsζ1(t)B(t)ϕ1(t)t0G1(ϕ1(t)g1(s))ΩB(t)|v(t)v(ts)|2dzdsζ1(t)B(t)G1(1ϕ1(t)t0ϕ1(t)g1(s)ΩB(t)|v(t)v(ts)|2dzds)=ζ1(t)B(t)G1(B(t)t0g1(s)Ω|v(t)v(ts)|2dzds)=ζ1(t)B(t)¯G1(B(t)t0g1(s)Ω|v(t)v(ts)|2dzds). (3.59)
    Γ2(t)ζ2(t)B(t)¯G2(B(t)t0g2(s)Ω|w(t)w(ts)|2dzds). (3.60)

    Taking the same steps, ¯Gi,i=1,2 are C2-extension of Gi that are convex strictly and increasing strictlyon R+. From (3.59), we have the following

    t0g1(s)Ω|v(t)v(ts)|2dzds1B(t)¯G11(B(t)Γ1(t)ζ1(t))t0g2(s)Ω|w(t)w(ts)|2dzds1B(t)¯G21(B(t)Γ2(t)ζ2(t)). (3.61)

    Putting (3.61) and (3.4) into (3.40), we have

    H(t)k2E(t)+cB(t)¯G11(B(t)Γ1(t)ζ1(t))+cB(t)¯G21(B(t)Γ2(t)ζ2(t))+k6μ0(t) (3.62)

    Here, introduce K1(t) for ε0<r by

    K1(t)=D(ε0B(t)E(t)E(0))H(t)+E(t), (3.63)

    in which D=min{G1,G2} and is equivalent to E(t). Because of this E(t)0,¯Gi>0, and ¯Gi>0,i=1,2. Also applying (3.62), we obtained that

    K1(t)=ε0(E(t)B(t)E(0)+E(t)B(t)E(0))D(ε0E(t)B(t)E(0))H(t)+D(ε0E(t)B(t)E(0))H(t)+E(t)k2E(t)D(ε0B(t)E(t)E(0))+k6μ0(t)D(ε0B(t)E(t)E(0))+cB(t)¯G11(B(t)Γ1(t)ζ1(t)))D(ε0B(t)E(t)E(0))+cB(t)¯G21(B(t)Γ2(t)ζ2(t)))D(ε0B(t)E(t)E(0))+E(t) (3.64)

    According to [29], we introduce the conjugate function of ¯Gi by ¯Gi, which fulfills

    AB¯Gi(A)+¯Gi(B),i=1,2 (3.65)

    For A=D(ε0(E(t)B(t))/(E(0)))) and Bi=¯Gi1((B(t)Γi(t))/(ζi(t))),i=1,2 and applying (3.64), we have

    K1(t)k2E(t)D(ε0E(t)B(t)E(0))+k6μ0(t)D(ε0E(t)B(t)E(0))+cB(t)¯G1(D(ε0E(t)B(t)E(0)))+cB(t)B(t)Γ1(t)ζ1(t)+cB(t)¯G2(D(ε0E(t)B(t)E(0)))+cB(t)B(t)Γ2(t)ζ2(t)+E(t)k2E(t)D(ε0E(t)B(t)E(0))+k6μ0(t)D(ε0E(t)B(t)E(0))+cB(t)D(ε0E(t)B(t)E(0))(¯G1)1[D(ε0E(t)B(t)E(0))]+cB(t)D(ε0E(t)B(t)E(0))(¯G2)1[D(ε0E(t)B(t)E(0))]+cΓ1(t)ζ1(t)+cΓ2(t)ζ2(t). (3.66)

    Here, we multiply (3.66) by ζ0(t) and get

    ζ0(t)K1(t)k2ζ0(t)E(t)D(ε0E(t)B(t)E(0))+k6ζ0(t)μ0(t)D(ε0E(t)B(t)E(0))+2cζ0(t)B(t)ε0E(t)B(t)E(0)D(ε0E(t)B(t)E(0))+cΓ1(t)+cΓ2(t)k2ζ0(t)E(t)D(ε0E(t)B(t)E(0))+k6ζ0(t)μ0(t)D(ε0E(t)B(t)E(0))+2cζ0(t)B(t)ε0E(t)B(t)E(0)D(ε0E(t)B(t)E(0))cE(t) (3.67)

    where we utilized the following ε0(B(t)E(t)/E(0))<r, D=min{G1,G2} and Γi<cE(t),i=1,2, and define the functional K2(t) as

    K2(t)=ζ0(t)K1(t)+cE(t) (3.68)

    Effortlessly, one can prove that K2(t)E(t), i.e., one can find two positive constants m1 and m2 in a manner that

    m1K2(t)E(t)m2K2(t), (3.69)

    then, we have

    K2(t)β6ζ0(t)E(t)E(0)D(ε0E(t)B(t)E(0))+k6ζ0(t)μ0(t)D(ε0E(t)B(t)E(0))=β6ζ0(t)B(t)D2(E(t)B(t)E(0))+k6ζ0(t)μ0(t)D(ε0E(t)B(t)E(0)), (3.70)

    where β6=(k2E(0)2cε0) and D2(t)=tD(ε0t).

    Choosing ε0 so small such that β6>0, since D2(t)=D(ε0t)+ε0tD(ε0t). As D2(t),D2(t)>0 on (0, 1] and Gi on (0, ϱ] are strictly increasing. Applying Young's inequality (3.65) on the last term in (3.70)

    with A=D(ε0E(t)B(t)E(0)) and B=k6δμ(t), we find

    k6μ0(t)D(ε0E(t)B(t)E(0))=σB(t)(k6σB(t)μ0(t))(D(ε0E(t)B(t)E(0)))<σB(t)D3(k6σB(t)μ0(t))+σB(t)D3(D(ε0E(t)B(t)E(0)))<σB(t)D4(k6σB(t)μ0(t))+σB(t)(ε0E(t)B(t)E(0))D(ε0E(t)B(t)E(0))<σB(t)D4(k6σB(t)μ0(t))+σε0B(t)D2(ε0E(t)B(t)E(0)). (3.71)

    Here, choose \sigma small enough in a manner that \beta_{6}-\sigma\varepsilon_{0} > 0 andcombining (3.70) and (3.71), we have

    \begin{eqnarray} \mathcal{K}_{2}^{\prime}(t) &\leq&-\beta_{7} \frac{\zeta_{0}(t)}{\mathcal{B}(t)} D_{2}\left(\frac{ E(t) \mathcal{B}(t)}{E(0)}\right)+\frac{\sigma\zeta_{0}(t)}{\mathcal{B}(t)}D_{4}\bigg(\frac{k_{6}}{\delta}\mathcal{B}(t)\mu_{0}(t)\bigg). \end{eqnarray} (3.72)

    where \beta_{7} = \beta_{6}-\sigma \varepsilon_{0} > 0 , D_{3}(t) = t D'^{-1}\left(t\right) and D_{4}(t) = \overline{D}_{3}^{*}\left(t\right) .

    In light of fact E' < 0 and \mathcal{B}' < 0 , then D_{2}(\frac{E(t) \mathcal{B}(t)}{E(0)}) is decreasing. As a consequences of this, for 0\leq t\leq T , we have

    \begin{equation} D_{2}\bigg(\frac{E(T) \mathcal{B}(T)}{E(0)}\bigg) < D_{2}\bigg(\frac{E(t) \mathcal{B}(t)}{E(0)}\bigg). \end{equation} (3.73)

    In the next step, combine (3.72) with (3.73) and multiply by \mathcal{B}(t) , the following is obtained

    \begin{equation} \mathcal{B}(t)\mathcal{K}_{2}^{\prime}(t)+\beta_{7}\zeta_{0}(t) D_{2}\left(\frac{ E(T) \mathcal{B}(T)}{E(0)}\right) < \sigma\zeta_{0}(t)D_{4}\bigg(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t)\bigg). \end{equation} (3.74)

    Since \mathcal{B}' < 0 , then for any 0 < t < T

    \begin{eqnarray} (\mathcal{B}\mathcal{K}_{2})^{\prime}(t)+\beta_{7}\zeta_{0}(t) D_{2}\left(\frac{ E(T) \mathcal{B}(T)}{E(0)}\right)& < &\sigma \zeta_{0}(t)D_{4}\bigg(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t)\bigg)\\ & < &\sigma\widehat{\zeta}(t)D_{4}\bigg(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t)\bigg). \end{eqnarray} (3.75)

    Simplify (3.75) over [0, T] and apply \mathcal{B}(0) = 1 , the following is obtained

    \begin{equation} D_{2}\left(\frac{ E(T) \mathcal{B}(T)}{E(0)}\right)\int_{0}^{T}\zeta_{0}(t)dt < \frac{\mathcal{K}_{2}(0)}{\beta_{7}}+\frac{\sigma}{\beta_{7}}\int_{0}^{T}\widehat{\zeta}(t)D_{4}\bigg(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t)\bigg)dt. \end{equation} (3.76)

    Consequently, we have

    \begin{equation} D_{2}\left(\frac{ E(T) \mathcal{B}(T)}{E(0)}\right) < \frac{\frac{\mathcal{K}_{2}(0)}{\beta_{7}}+\frac{\sigma}{\beta_{7}}\int_{0}^{T}\widehat{\zeta}(t)D_{4}(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t))dt}{\int_{0}^{T}\zeta_{0}(t)dt}. \end{equation} (3.77)

    As a results of this, we obtain

    \begin{equation} \left(\frac{ E(T) \mathcal{B}(T)}{E(0)}\right) < D_{2}^{-1}\bigg(\frac{\frac{\mathcal{K}_{2}(0)}{\beta_{7}}+\frac{\sigma}{\beta_{7}}\int_{0}^{T}\widehat{\zeta}(t)D_{4}(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t))dt}{\int_{0}^{T}\zeta_{0}(t)dt}\bigg). \end{equation} (3.78)

    As a result of this, we get

    \begin{equation} E(T) < \frac{ E(0)}{\mathcal{B}(T)}D_{2}^{-1}\bigg(\frac{\frac{\mathcal{K}_{2}(0)}{\beta_{7}}+\frac{\sigma}{\beta_{7}}\int_{0}^{T}\widehat{\zeta}(t)D_{4}(\frac{k_{6}}{\sigma}\mathcal{B}(t)\mu_{0}(t))dt}{\int_{0}^{T}\zeta_{0}(t)dt}\bigg). \end{equation} (3.79)

    where, we have (3.29) with \varsigma_{1} = \frac{ E(0)}{\mathcal{B}(T)} , \varsigma_{2} = \frac{\mathcal{K}_{2}(0)}{\beta_{7}} , \varsigma_{3} = \frac{\sigma}{\beta_{7}} , and \varsigma_{4}(t) = \frac{k_{6}}{\sigma}\mathcal{B}(t) .

    Hence, the required result is obtained 3.8.

    The purpose of this work was to study when the coupled system of nonlinear viscoelastic wave equations with distributed delay components, infinite memory and Balakrishnan-Taylor damping. Assume the kernels g_{i} :{\bf R}_{+}\rightarrow {\bf R}_{+} holds true the below

    g_{i}'(t)\leq-\zeta_{i}(t)G_{i}(g_{i}(t)), \quad \forall t\in {\bf R}_{+}, \quad \text{for} \quad i = 1, 2,

    in which \zeta_{i} and G_{i} are functions. We prove the stability of the system under this highly generic assumptions on the behaviour of g_i at infinity and by dropping the boundedness assumptions in the historical data. This type of problem is frequently found in some mathematical models in applied sciences. Especially in the theory of viscoelasticity. What interests us in this current work is the combination of these terms of damping, which dictates the emergence of these terms in the problem. In the next work, we will try to using the same method with same problem. But in added of other dampings.

    The researchers would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project.

    The authors declare there is no conflicts of interest.

    [1] Pilato LA, Michno MJ (1994) Advanced composite materials. Berlin: New York: Springer-Verlag.
    [2] Seferis JC, Nicolais L (Eds.) (1983) The role of the polymeric matrix in the processing and structural properties of composite materials. New York: Plenum Press.
    [3] Vinson J (2001) Sandwich Structures. Appl Mech Rev 54: 201.
    [4] Smith S, Shivakumar K (2001) Modified mode-I cracked sandwich beam (CSB) fracture test. 19th AIAA Applied Aerodynamics Conference. Anaheim, CA, USA.
    [5] Smith S, Shivakumar K (2004) In situ fracture toughness testing of core materials in sandwich panels. J Compos Mater 38: 655–668.
    [6] Gibson L, Ashby M (1997) Cellular Solids: structure and properties. New York: Cambridge University Press.
    [7] Mujika F, Pujana J, Olave M (2011) Test Method: On the determination of out-of-plane elastic properties of honeycomb sandwich panels. Polym Test 30: 222–228.
    [8] Foo C, Chai G, Seah L (2007) Mechanical properties of Nomex material and Nomex honeycomb structure. Compos Struct 80: 588–594.
    [9] Foo C, Chai G, Seah L (2008) A model to predict low-velocity impact response and damage in sandwich composites. Compos Sci Technol 68: 1348–1356.
    [10] Herup E, Palazotto A (1998) Low-velocity impact damage initiation in graphite/epoxy/Nomex honeycomb-sandwich plates. Compos Sci Technol 57: 1581–1598.
    [11] Aktay L, Johnson A, Holzapfel M (2005) Prediction of impact damage on composite panels. Comput Mater Sci 32: 252–260.
    [12] Czabaj M, Zehnder A, Davidson B, et al. (2014) Compressive strength of honeycomb-stiffened graphite/epoxy sandwich panels with barely-visible indentation damage. J Compos Mater 48: 2455–2471.
    [13] Sadowski T, Bec J (2011) Effective properties for sandwich plates with aluminium foil honeycomb core and polymer foam filling – Static and dynamic response. Comput Mater Sci 50: 1269–1275.
    [14] Chen Z, Yan N, Sam-Brew S, et al. (2014) Investigation of mechanical properties of sandwich panels made of paper honeycomb core and wood composite skins by experimental testing and finite element (FE) modelling methods. Eur J Wood Wood Prod 72: 311–319.
    [15] Wang L, Liu W, Fang H, et al. (2015) Behavior of sandwich wall panels with GFRP face sheets and foam-GFRP web core loaded under four-point bending. J Compos Mater 49: 2765–2778.
    [16] Cahyono S, Widodo A, Anwar M, et al. (2016) Light-weight sandwich panel honeycomb core with hybrid carbon-glass fiber composite skin for electric vehicle application. AIP Conference Proceedings 040025-1-040025-5. doi:10.1063/1.4943468.
    [17] Feli S, Namdari Pour M (2012) An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact. Compos Part B Eng 43: 2439–2447.
    [18] Xiong J, Zhang M, Stocchi A, et al. (2014) Mechanical behaviors of carbon fiber composite sandwich columns with three dimensional honeycomb cores under in-plane compression. Compos Part B Eng 60: 350–358.
    [19] Wang B, Zhang G, He Q, et al. (2014) Technical report: Mechanical behavior of carbon fiber reinforced polymer composite sandwich panels with 2-D lattice truss cores. Mater Des 55: 591–596.
    [20] Stocchi A, Colabella L, Cisilino A, et al. (2014) Manufacturing and testing of sandwich panel honeycomb core reinforced with natural-fibre fabrics. Mater Des 55: 394–403.
    [21] Bitzer TN (1998) Recent honeycomb core developments. Sandwich Constructions 4, Proceedings of 4th International Conference on Sandwich Constructions, K-A Olsson (ed.) 555–563.
    [22] Bitzer T (1997) Honeycomb technology: materials, design, manufacturing, applications and testing. New York: Chapman & Hall.
    [23] Lonno A, Hellbratt S (1996) Use of carbon fibre in a 63M high speed vessel, YS2000, for the Swedish Navy. Sandwich Constructions 3, Proceedings of 3rd International Conference on Sandwich Constructions, EMAS Publication, UK.
    [24] Gu S, Lu T, Evans A (2001) On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity. Int J Heat Mass Transfer 44: 2163–2175.
    [25] Joshi S, Xu K (2010) Fabrication and thermal performance of aerogel-filled carbon composite sandwich structures. Innovative Materials for Processes in Energy Systems – For Fuel Cells, Heat Pumps and Sorption System, 301–305.
    [26] HTM®556 High Temperature BMI Matrix System, Adv Compos Group, umeco composites.
    [27] Nanogel™ Translucent Aerogel (Datasheet), CABOT.
    [28] Material Safety Data Sheet (2013) R J London Chemical (S) PTE. LTD.
    [29] Wang M (2011) Micromechanical analysis of thermally-induced deformations and stresses in unidirectional continuous carbon fibre reinforced composites. Master of Science dissertation, Faculty of Engineering and Physical Science, University of Manchester.
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8946) PDF downloads(1790) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog