In this article, we focus on the next generation of green batteries that are closely related to semi-metallic tellurium and its deposits. We briefly summarize the chemical and geochemical characteristics of tellurium that ordinary readers are not familiar with or have never heard of, and its important role in many fields such as high-tech and medical care, current global resource distribution, major mineral extraction and purification technologies and market evolution, etc. The spatiotemporal distribution of the two main types of tellurium deposits, namely associated tellurium deposits and independent tellurium deposits, is introduced in detail. The geological and geochemical characteristics of the only independent tellurium deposit in the world are introduced in detail, so that relevant researchers can use this deposit as an example to discover more independent tellurium deposits around the world, meeting people's increasingly urgent demand for tellurium and realizing the sustainable development of human society. We believe that humans will discover more and more new energy metals in the near future to meet the dual goals of protecting the earth's environment and developing the economy, which are contradictory and mutually reinforcing. New generation of energy metal batteries must be small, compact, easy to carry, charge quickly, and have a long life.
Citation: Jianzhao Yin, Haoyu Yin, Yuhong Chao, Hongyun Shi. Energy and tellurium deposits[J]. AIMS Geosciences, 2024, 10(1): 28-42. doi: 10.3934/geosci.2024002
[1] | Muqeem Ahmad, Mobin Ahmad, Fatemah Mofarreh . Bi-slant lightlike submanifolds of golden semi-Riemannian manifolds. AIMS Mathematics, 2023, 8(8): 19526-19545. doi: 10.3934/math.2023996 |
[2] | Aliya Naaz Siddiqui, Meraj Ali Khan, Amira Ishan . Contact CR δ-invariant: an optimal estimate for Sasakian statistical manifolds. AIMS Mathematics, 2024, 9(10): 29220-29234. doi: 10.3934/math.20241416 |
[3] | Biswabismita Bag, Meraj Ali Khan, Tanumoy Pal, Shyamal Kumar Hui . Geometric analysis on warped product semi-slant submanifolds of a locally metallic Riemannian space form. AIMS Mathematics, 2025, 10(4): 8131-8143. doi: 10.3934/math.2025373 |
[4] | Mehmet Gülbahar . Qualar curvatures of pseudo Riemannian manifolds and pseudo Riemannian submanifolds. AIMS Mathematics, 2021, 6(2): 1366-1376. doi: 10.3934/math.2021085 |
[5] | Oğuzhan Bahadır . On lightlike geometry of indefinite Sasakian statistical manifolds. AIMS Mathematics, 2021, 6(11): 12845-12862. doi: 10.3934/math.2021741 |
[6] | Richa Agarwal, Fatemah Mofarreh, Sarvesh Kumar Yadav, Shahid Ali, Abdul Haseeb . On Riemannian warped-twisted product submersions. AIMS Mathematics, 2024, 9(2): 2925-2937. doi: 10.3934/math.2024144 |
[7] | Fatimah Alghamdi, Fatemah Mofarreh, Akram Ali, Mohamed Lemine Bouleryah . Some rigidity theorems for totally real submanifolds in complex space forms. AIMS Mathematics, 2025, 10(4): 8191-8202. doi: 10.3934/math.2025376 |
[8] | Fatemah Mofarreh, S. K. Srivastava, Anuj Kumar, Akram Ali . Geometric inequalities of PR-warped product submanifold in para-Kenmotsu manifold. AIMS Mathematics, 2022, 7(10): 19481-19509. doi: 10.3934/math.20221069 |
[9] | Mehmet Atçeken, Tuğba Mert . Characterizations for totally geodesic submanifolds of a K-paracontact manifold. AIMS Mathematics, 2021, 6(7): 7320-7332. doi: 10.3934/math.2021430 |
[10] | Yusuf Dogru . η-Ricci-Bourguignon solitons with a semi-symmetric metric and semi-symmetric non-metric connection. AIMS Mathematics, 2023, 8(5): 11943-11952. doi: 10.3934/math.2023603 |
In this article, we focus on the next generation of green batteries that are closely related to semi-metallic tellurium and its deposits. We briefly summarize the chemical and geochemical characteristics of tellurium that ordinary readers are not familiar with or have never heard of, and its important role in many fields such as high-tech and medical care, current global resource distribution, major mineral extraction and purification technologies and market evolution, etc. The spatiotemporal distribution of the two main types of tellurium deposits, namely associated tellurium deposits and independent tellurium deposits, is introduced in detail. The geological and geochemical characteristics of the only independent tellurium deposit in the world are introduced in detail, so that relevant researchers can use this deposit as an example to discover more independent tellurium deposits around the world, meeting people's increasingly urgent demand for tellurium and realizing the sustainable development of human society. We believe that humans will discover more and more new energy metals in the near future to meet the dual goals of protecting the earth's environment and developing the economy, which are contradictory and mutually reinforcing. New generation of energy metal batteries must be small, compact, easy to carry, charge quickly, and have a long life.
The concept of lightlike submanifolds in geometry was initially established and expounded upon in a work produced by Duggal and Bejancu [1]. A nondegenerate screen distribution was employed in order to produce a nonintersecting lightlike transversal vector bundle of the tangent bundle. They defined the CR-lightlike submanifold as a generalization of lightlike real hypersurfaces of indefinite Kaehler manifolds and showed that CR-lightlike submanifolds do not contain invariant and totally real lightlike submanifolds. Further, they defined and studied GCR-lightlike submanifolds of Kaehler manifolds as an umbrella of invariant submanifolds, screen real submanifolds, and CR-lightlike and SCR-lightlike submanifolds in [2,3], respectively. Subsequently, B. Sahin and R. Gunes investigated geodesic property of CR-lightlike submanifolds [4] and the integrability of distributions in CR-lightlike submanifolds [5]. In the year 2010, Duggal and Sahin published a book [6]pertaining to the field of differential geometry, specifically focusing on the study of lightlike submanifolds. This book provides a comprehensive examination of recent advancements in lightlike geometry, encompassing novel geometric findings, accompanied by rigorous proofs, and exploring their practical implications in the field of mathematical physics. The investigation of the geometric properties of lightlike hypersurfaces and lightlike submanifolds has been the subject of research in several studies (see [7,8,9,10,11,12,13,14]).
Crasmareanu and Hretcanu[15] created a special example of polynomial structure [16] on a differentiable manifold, and it is known as the golden structure (¯M,g). Hretcanu C. E. [17] explored Riemannian submanifolds with the golden structure. M. Ahmad and M. A. Qayyoom studied geometrical properties of Riemannian submanifolds with golden structure [18,19,20,21] and metallic structure [22,23]. The integrability of golden structures was examined by A. Gizer et al. [24]. Lightlike hypersurfaces of a golden semi-Riemannian manifold was investigated by N. Poyraz and E. Yasar [25]. The golden structure was also explored in the studies [26,27,28,29].
In this research, we investigate the CR-lightlike submanifolds of a golden semi-Riemannian manifold, drawing inspiration from the aforementioned studies. This paper has the following outlines: Some preliminaries of CR-lightlike submanifolds are defined in Section 2. We establish a number of properties of CR-lightlike submanifolds on golden semi-Riemannian manifolds in Section 3. In Section 4, we look into several CR-lightlike submanifolds characteristics that are totally umbilical. We provide a complex illustration of CR-lightlike submanifolds of a golden semi-Riemannian manifold in the final section.
Assume that (¯ℵ,g) is a semi-Riemannian manifold with (k+j)-dimension, k,j≥1, and g as a semi-Riemannian metric on ¯ℵ. We suppose that ¯ℵ is not a Riemannian manifold and the symbol q stands for the constant index of g.
[15] Let ¯ℵ be endowed with a tensor field ψ of type (1,1) such that
ψ2=ψ+I, | (2.1) |
where I represents the identity transformation on Γ(Υ¯ℵ). The structure ψ is referred to as a golden structure. A metric g is considered ψ-compatible if
g(ψγ,ζ)=g(γ,ψζ) | (2.2) |
for all γ, ζ vector fields on Γ(Υ¯ℵ), then (¯ℵ,g,ψ) is called a golden Riemannian manifold. If we substitute ψγ into γ in (2.2), then from (2.1) we have
g(ψγ,ψζ)=g(ψγ,ζ)+g(γ,ζ). | (2.3) |
for any γ,ζ∈Γ(Υ¯ℵ).
If (¯ℵ,g,ψ) is a golden Riemannian manifold and ψ is parallel with regard to the Levi-Civita connection ¯∇ on ¯ℵ:
¯∇ψ=0, | (2.4) |
then (¯ℵ,g,ψ) is referred to as a semi-Riemannian manifold with locally golden properties.
The golden structure is the particular case of metallic structure [22,23] with p=1, q=1 defined by
ψ2=pψ+qI, |
where p and q are positive integers.
[1] Consider the case where ℵ is a lightlike submanifold of k of ¯ℵ. There is the radical distribution, or Rad(Υℵ), on ℵ that applies to this situation such that Rad(Υℵ)=Υℵ∩Υℵ⊥, ∀ p∈ℵ. Since RadΥℵ has rank r≥0, ℵ is referred to as an r-lightlike submanifold of ¯ℵ. Assume that ℵ is a submanifold of ℵ that is r-lightlike. A screen distribution is what we refer to as the complementary distribution of a Rad distribution on Υℵ, then
Υℵ=RadΥℵ⊥S(Υℵ). |
As S(Υℵ) is a nondegenerate vector sub-bundle of Υ¯ℵ|ℵ, we have
Υ¯ℵ|ℵ=S(Υℵ)⊥S(Υℵ)⊥, |
where S(Υℵ)⊥ consists of the orthogonal vector sub-bundle that is complementary to S(Υℵ) in Υ¯ℵ|ℵ. S(Υℵ),S(Υℵ⊥) is an orthogonal direct decomposition, and they are nondegenerate.
S(Υℵ)⊥=S(Υℵ⊥)⊥S(Υℵ⊥)⊥. |
Let the vector bundle
tr(Υℵ)=ltr(Υℵ)⊥S(Υℵ⊥). |
Thus,
Υ¯ℵ=Υℵ⊕tr(Υℵ)=S(Υℵ)⊥S(Υℵ⊥)⊥(Rad(Υℵ)⊕ltr(Υℵ). |
Assume that the Levi-Civita connection is ¯∇ on ¯ℵ. We have
¯∇γζ=∇γζ+h(γ,ζ),∀γ,ζ∈Γ(Υℵ) | (2.5) |
and
¯∇γζ=−Ahζ+∇⊥γh,∀γ∈Γ(Υℵ)andh∈Γ(tr(Υℵ)), | (2.6) |
where {∇γζ,Ahγ} and {h(γ,ζ),∇⊥γh} belongs to Γ(Υℵ) and Γ(tr(Υℵ)), respectively.
Using projection L:tr(Υℵ)→ltr(Υℵ), and S:tr(Υℵ)→S(Υℵ⊥), we have
¯∇γζ=∇γζ+hl(γ,ζ)+hs(γ,ζ), | (2.7) |
¯∇γℵ=−Aℵγ+∇lγℵ+λs(γ,ℵ), | (2.8) |
and
¯∇γχ=−Aχγ+∇sγ+λl(γ,χ) | (2.9) |
for any γ,ζ∈Γ(Υℵ),ℵ∈Γ(ltr(Υℵ)), and χ∈Γ(S(Υℵ⊥)), where hl(γ,ζ)=Lh(γ,ζ),hs(γ,ζ)=Sh(γ,ζ),∇lγℵ,λl(γ,χ)∈Γ(ltr(Tℵ)),∇sγλs(γ,ℵ)∈Γ(S(Υℵ⊥)), and ∇γζ,Aℵγ,Aχγ∈Γ(Υℵ).
The projection morphism of Υℵ on the screen is represented by P, and we take the distribution into consideration.
∇γPζ=∇∗γPζ+h∗(γ,Pζ),∇γξ=−A∗ξγ+∇∗tγξ, | (2.10) |
where γ,ζ∈Γ(Υℵ),ξ∈Γ(Rad(Υℵ)).
Thus, we have the subsequent equation.
g(h∗(γ,Pζ),ℵ)=g(Aℵγ,Pζ), | (2.11) |
Consider that ¯∇ is a metric connection. We get
(∇γg)(ζ,η)=g(hl(γ,ζ),η)+g(hl(γ,ζη),ζ). | (2.12) |
Using the characteristics of a linear connection, we can obtain
(∇γhl)(ζ,η)=∇lγ(hl(ζ,η))−hl(¯∇γζ,η)−hl(ζ,¯∇γη), | (2.13) |
(∇γhs)(ζ,η)=∇sγ(hs(ζ,η))−hs(¯∇γζ,η)−hs(ζ,¯∇γη). | (2.14) |
Based on the description of a CR-lightlike submanifold in [4], we have
Υℵ=λ⊕λ′, |
where λ=Rad(Υℵ)⊥ψRad(Υℵ)⊥λ0.
S and Q stand for the projection on λ and λ′, respectively, then
ψγ=fγ+wγ |
for γ,ζ∈Γ(Υℵ), where fγ=ψSγ and wγ=ψQγ.
On the other hand, we have
ψζ=Bζ+Cζ |
for any ζ∈Γ(tr(Υℵ)), Bζ∈Γ(Υℵ) and Cζ∈Γ(tr(Υℵ)), unless ℵ1 and ℵ2 are denoted as ψL1 and ψL2, respectively.
Lemma 2.1. Assume that the screen distribution is totally geodesic and that ℵ is a CR-lightlike submanifold of the golden semi-Riemannian manifold, then ∇γζ∈Γ(S(ΥN)), where γ,ζ∈Γ(S(Υℵ)).
Proof. For γ,ζ∈Γ(S(Υℵ)),
g(∇γζ,ℵ)=g(¯∇γζ−h(γ,ζ),ℵ)=−g(ζ,¯∇γℵ). |
Using (2.8),
g(∇γζ,ℵ)=−g(ζ,−Aℵγ+∇⊥γℵ)=g(ζ,Aℵγ). |
Using (2.11),
g(∇γζ,ℵ)=g(h∗(γ,ζ),ℵ). |
Since screen distribution is totally geodesic, h∗(γ,ζ)=0,
g(¯∇γζ,ℵ)=0. |
Using Lemma 1.2 in [1] p.g. 142, we have
∇γζ∈Γ(S(Υℵ)), |
where γ,ζ∈Γ(S(Υℵ)).
Theorem 2.2. Assume that ℵ is a locally golden semi-Riemannian manifold ¯ℵ with CR-lightlike properties, then ∇γψγ=ψ∇γγ for γ∈Γ(λ0).
Proof. Assume that γ,ζ∈Γ(λ0). Using (2.5), we have
g(∇γψγ,ζ)=g(¯∇γψγ−h(γ,ψγ),ζ)g(∇γψγ,ζ)=g(ψ(¯∇γγ),ζ)g(∇γψγ,ζ)=g(ψ(∇γγ),ζ),g(∇γψγ−ψ(∇γγ),ζ)=0. |
Nondegeneracy of λ0 implies
∇γψγ=ψ(∇γγ), |
where γ∈Γ(λ0).
Definition 3.1. [4] A CR-lightlike submanifold of a golden semi-Riemannian manifold is mixed geodesic if h satisfies
h(γ,α)=0, |
where h stands for second fundamental form, γ∈Γ(λ), and α∈Γ(λ′).
For γ,ζ∈Γ(λ) and α,β∈Γ(λ′) if
h(γ,ζ)=0 |
and
h(α,β)=0, |
then it is known as λ-geodesic and λ′-geodesic, respectively.
Theorem 3.2. Assume ℵ is a CR-lightlike submanifold of ¯ℵ, which is a golden semi-Riemannian manifold. ℵ is totally geodesic if
(Lg)(γ,ζ)=0 |
and
(Lχg)(γ,ζ)=0 |
for α,β∈Γ(Υℵ),ξ∈Γ(Rad(Υℵ)), and χ∈Γ(S(Υℵ⊥)).
Proof. Since ℵ is totally geodesic, then
h(γ,ζ)=0 |
for γ,ζ∈Γ(Υℵ).
We know that h(γ,ζ)=0 if
g(h(γ,ζ),ξ)=0 |
and
g(h(γ,ζ),χ)=0. |
g(h(γ,ζ),ξ)=g(¯∇γζ−∇γζ,ξ)=−g(ζ,[γ,ξ]+¯∇ξγ=−g(ζ,[γ,ξ])+g(γ,[ξ,ζ])+g(¯∇ζξ,γ)=−(Lξg)(γ,ζ)+g(¯∇ζξ,γ)=−(Lξg)(γ,ζ)−g(ξ,h(γ,ζ)))2g(h(γ,ζ)=−(Lξg)(γ,ζ). |
Since g(h(γ,ζ),ξ)=0, we have
(Lξg)(γ,ζ)=0. |
Similarly,
g(h(γ,ζ),χ)=g(¯∇γζ−∇γζ,χ)=−g(ζ,[γ,χ])+g(γ,[χ,ζ])+g(¯∇ζχ,γ)=−(Lχg)(γ,ζ)+g(¯∇ζχ,γ)2g(h(γ,ζ),χ)=−(Lχg)(γ,ζ). |
Since g(h(γ,ζ),χ)=0, we get
(Lχg)(γ,ζ)=0 |
for χ∈Γ(S(Υℵ⊥)).
Lemma 3.3. Assume that ¯ℵ is a golden semi-Riemannian manifold whose submanifold ℵ is CR-lightlike, then
g(h(γ,ζ),χ)=g(Aχγ,ζ) |
for γ∈Γ(λ),ζ∈Γ(λ′) and χ∈Γ(S(Υℵ⊥)).
Proof. Using (2.5), we get
g(h(γ,ζ),χ)=g(¯∇γζ−∇γζ,χ)=g(ζ,¯∇γχ). |
From (2.9), it follows that
g(h(γ,ζ),χ)=−g(ζ,−Aχγ+∇sγχ+λs(γ,χ))=g(ζ,Aχγ)−g(ζ,∇sγχ)−g(ζ,λs(γ,χ))g(h(γ,ζ),χ)=g(ζ,Aχγ), |
where γ∈Γ(λ),ζ∈Γ(λ′),χ∈Γ(S(Υℵ⊥)).
Theorem 3.4. Assume that ℵ is a CR-lightlike submanifold of the golden semi-Riemannian manifold and ¯ℵ is mixed geodesic if
A∗ξγ∈Γ(λ0⊥ψL1) |
and
Aχγ∈Γ(λ0⊥Rad(Υℵ)⊥ψL1) |
for γ∈Γ(λ),ξ∈Γ(Rad(Υℵ)), and χ∈Γ(S(Υℵ⊥)).
Proof. For γ∈Γ(λ),ζ∈Γ(λ′), and χ∈Γ(S(Υℵ⊥)), we get
Using (2.5),
g(h(γ,ζ),ξ)=g(¯∇γζ−∇γζ,ξ)=−g(ζ,¯∇γξ). |
Again using (2.5), we obtain
g(h(γ,ζ),ξ)=−g(ζ,∇γξ+h(γ,ξ))=−g(ζ,∇γξ). |
Using (2.10), we have
g(h(γ,ζ),ξ)=−g(ζ,−A∗ξγ+∇∗tγξ)g(ζ,A∗ξγ)=0. |
Since the CR-lightlike submanifold ℵ is mixed geodesic, we have
g(h(γ,ζ),ξ)=0 |
⇒g(ζ,A∗ξγ)=0 |
⇒A∗ξγ∈Γ(λ0⊥ψL1), |
where γ∈Γ(λ),ζ∈Γ(λ′).
From (2.5), we get
g(h(γ,ζ),χ)=g(¯∇γζ−∇γζ,χ)=−g(ζ,¯∇γχ). |
From (2.9), we get
g(h(γ,ζ),χ)=−g(ζ,−Aχγ+∇sγχ+λl(γ,χ))g(h(γ,ζ),χ)=g(ζ,Aχγ). |
Since, ℵ is mixed geodesic, then g(h(γ,ζ),χ)=0
⇒g(ζ,Aχγ)=0. |
Aχγ∈Γ(λ0⊥Rad(Υℵ)⊥ψ1). |
Theorem 3.5. Suppose that ℵ is a CR-lightlike submanifold of a golden semi-Riemannian manifold ¯ℵ, then ℵ is λ′-geodesic if Aχη and A∗ξη have no component in ℵ2⊥ψRad(Υℵ) for η∈Γ(λ′),ξ∈Γ(Rad(Υℵ)), and χ∈Γ(S(Υℵ⊥)).
Proof. From (2.5), we obtain
g(h(η,β),χ)=g(¯∇ηβ−∇γζ,χ)=−¯g(∇γζ,χ), |
where χ,β∈Γ(λ′).
Using (2.9), we have
g(h(η,β),χ)=−g(β,−Aχη+∇sη+λl(η,χ))g(h(η,β),χ)=g(β,Aχη). | (3.1) |
Since ℵ is λ′-geodesic, then g(h(η,β),χ)=0.
From (3.1), we get
g(β,Aχη)=0. |
Now,
g(h(η,β),ξ)=g(¯∇ηβ−∇ηβ,ξ)=g(¯∇ηβ,ξ)=−g(β,¯∇ηξ). |
From (2.10), we get
g(h(η,β),ξ)=−g(η,−A∗ξη+∇∗tηξ)g(h(η,β),ξ)=g(A∗ξβ,η). |
Since ℵ is λ′- geodesic, then
g(h(η,β),ξ)=0 |
⇒g(A∗ξβ,η)=0. |
Thus, Aχη and A∗ξη have no component in M2⊥ψRad(Υℵ).
Lemma 3.6. Assume that ¯ℵ is a golden semi-Riemannian manifold that has a CR-lightlike submanifold ℵ. Due to the distribution's integrability, the following criteria hold.
(ⅰ) ψg(λl(ψγ,χ),ζ)−g(λl(γ,χ),ψζ)=g(Aχψγ,ζ)−g(Aχγ,ψζ),
(ⅱ) g(λl(ψγ),ξ)=g(Aχγ,ψξ),
(ⅲ) g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)−g(Aχγ,ψξ),
where γ,ζ∈Γ(Υℵ),ξ∈Γ(Rad(Υℵ)), and χ∈Γ(S(Υℵ⊥)).
Proof. From Eq (2.9), we obtain
g(λl(ψγ,χ),ζ)=g(¯∇ψγχ+Aχψγ−∇sψγχ,ζ)=−g(χ,¯∇ψγζ)+g(Aχψγ,ζ). |
Using (2.5), we get
g(λl(ψγ,χ),ζ)=−g(χ,∇ψγζ+h(ψγ,ζ))+g(Aχψγ,ζ)=−g(χ,h(γ,ψζ))+g(Aχψγ,ζ). |
Again, using (2.5), we get
g(λl(ψγ,χ),ζ)=−g(χ,¯∇γψζ−∇γψζ)+g(Aχψγ,ζ)=g(¯∇γχ,ψζ)+g(Aχψγ,ζ). |
Using (2.9), we have
g(λl(ψγ,χ),ζ)=g(−Aχγ+∇sγχ+λl(γ,χ),ψζ)+g(λl(ψγ,χ),ζ)−g(λl(γ,χ),ψζ)=g(Aχψγ,ζ)−g(Aχγ,ψζ). |
(ⅱ) Using (2.9), we have
g(λl(ψγ,χ),ξ)=g(Aχψγ−∇sψγχ+∇ψγχ,ξ)=g(Aχψγ,ξ)−g(χ,¯∇ψγξ). |
Using (2.10), we get
g(λl(ψγ,χ),ξ)=g(Aχψγ,ξ)+g(χ,A∗ξψγ)−g(χ,∇∗tψγ,ξ)g(λl(ψγ),ξ)=g(Aχγ,ψξ). |
(ⅲ) Replacing ζ by ψξ in (ⅰ), we have
ψg(λl(ψγ,χ),ψξ)−g(λl(γ,χ),ψ2ξ)=g(Aχψγ,ψξ)−g(Aχγ,ψ2ξ). |
Using Definition 2.1 in [18] p.g. 9, we get
ψg(λl(ψγ,χ),ψξ)−g(λl(γ,χ),(ψ+I)ξ)=g(Aχψγ,ψξ)−g(Aχγ,(ψ+I)ξ)ψg(λl(ψγ,χ),ψξ)−g(λl(γ,χ),ψξ)−g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)−g(Aχγ,ψξ)−g(Aχγ,ξ).g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)−g(Aχγ,ψξ). |
Definition 4.1. [12] A CR-lightlike submanifold of a golden semi-Riemannian manifold is totally umbilical if there is a smooth transversal vector field H∈tr Γ(Υℵ) that satisfies
h(χ,η)=Hg(χ,η), |
where h is stands for second fundamental form and χ, η∈ Γ(Υℵ).
Theorem 4.2. Assume that the screen distribution is totally geodesic and that ℵ is a totally umbilical CR-lightlike submanifold of the golden semi-Riemannian manifold ¯ℵ, then
Aψηχ=Aψχη,∀χ,η∈Γλ′. |
Proof. Given that ¯ℵ is a golden semi-Riemannian manifold,
ψ¯∇ηχ=¯∇ηψχ. |
Using (2.5) and (2.6), we have
ψ(∇ηχ)+ψ(h(η,χ))=−Aψχη+∇tηψχ. | (4.1) |
Interchanging η and χ, we obtain
ψ(∇χη)+ψ(h(χ,η))=−Aψηχ+∇tχψη. | (4.2) |
Subtracting Eqs (4.1) and (4.2), we get
ψ(∇ηχ−∇χη)−∇tηψχ+∇tχψη=Aψηχ−Aψχη. | (4.3) |
Taking the inner product with γ∈Γ(λ0) in (4.3), we have
g(ψ(∇χη,γ)−g(ψ(∇χη,γ)=g(Aψηχ,γ)−g(Aψχη,γ).g(Aψηχ−Aψχη,γ)=g(∇χη,−ψγ)g(∇χη,ψγ). | (4.4) |
Now,
g(∇χη,ψγ)=g(¯∇χη−h(χ,η),ψγ)g(∇χη,ψγ)=−g(η,(¯∇χψ)γ−ψ(¯∇χγ)). |
Since ψ is parallel to ¯∇, i.e., ¯∇γψ=0,
g(∇χη,ψγ)=−ψ(¯∇χγ)). |
Using (2.7), we have
g(∇χη,ψγ)=−g(ψη,∇χγ+hs(χ,γ)+hl(χ,γ))g(∇χη,ψγ)=−g(ψη,∇χγ)−g(ψη,hs(χ,γ))−g(ψη,hl(χ,γ)). | (4.5) |
Since ℵ is a totally umbilical CR-lightlike submanifold and the screen distribution is totally geodesic,
hs(χ,γ)=Hsg(χ,γ)=0 |
and
hl(χ,γ)=Hlg(χ,γ)=0, |
where χ∈Γ(λ′) and γ∈Γ(λ0).
From (4.5), we have
g(∇χη,ψγ)=−g(ψη,∇χγ). |
From Lemma 2.1, we get
g(∇χη,ψγ)=0. |
Similarly,
g(∇ηχ,ψγ)=0 |
Using (4.4), we have
g(Aψηχ−Aψχη,γ)=0. |
Since λ0 is nondegenerate,
Aψηχ−Aψχη=0 |
⇒Aψηχ=Aψχη. |
Theorem 4.3. Let ℵ be the totally umbilical CR-lightlike submanifold of the golden semi-Riemannian manifold ¯ℵ. Consequently, ℵ's sectional curvature, which is CR-lightlike, vanishes, resulting in ¯K(π)=0, for the entire CR-lightlike section π.
Proof. We know that ℵ is a totally umbilical CR-lightlike submanifold of ¯ℵ, then from (2.13) and (2.14),
(∇γhl)(ζ,ω)=g(ζ,ω)∇lγHl−Hl{(∇γg)(ζ,ω)}, | (4.6) |
(∇γhs)(ζ,ω)=g(ζ,ω)∇sγHs−Hs{(∇γg)(ζ,ω)} | (4.7) |
for a CR-lightlike section π=γ∧ω,γ∈Γ(λ0),ω∈Γ(λ′).
From (2.12), we have (∇Ug)(ζ,ω)=0. Therefore, from (4.6) and (4.7), we get
(∇γhl)(ζ,ω)=g(ζ,ω)∇lγHl, | (4.8) |
(∇γhs)(ζ,ω)=g(ζ,ω)∇sγHs. | (4.9) |
Now, from (4.8) and (4.9), we get
{¯R(γ,ζ)ω}tr=g(ζ,ω)∇lγHl−g(γ,ω)∇lζHl+g(ζ,ω)λl(γ,Hs)−g(γ,ω)λl(ζ,Hs)+g(ζ,ω)∇sγHs−g(γ,ω)∇sζHs+g(ζ,ω)λs(γ,Hl)−g(γ,ω)λs(ζ,Hl). | (4.10) |
For any β∈Γ(tr(Υℵ)), from Equation (4.10), we get
¯R(γ,ζ,ω,β)=g(ζ,ω)g(∇lγHl,β)−g(γ,ω)g(∇lζHl,β)+g(ζ,ω)g(λl(γ,Hs),ζ)−g(γ,ω)g(λl(ζ,Hs),β)+g(ζ,ω)g(∇sγHs,β)−g(γ,ω)g(∇sζHs,β)+g(ζ,ω)g(λs(γ,Hl),β)−g(γ,ω)g(λs(ζ,Hl,β). |
R(γ,ω,ψγ,ψω)=g(ω,ψγ)g(∇lγHl,ψω)−g(γ,ψγ)g(∇lωHl,ψω)+g(ω,ψγ)g(λl(γ,Hs),ψω)−g(γ,ψγ)g(λl(ω,Hs),ψω)+g(ω,ψγ)g(∇sγHs,ψω)−g(γ,ψγ)g(∇sωHs,ψω)+g(ω,ψγ)g(λs(γ,Hl),ψω)−g(γ,ψγ)g(λs(ω,Hl,ψU). |
For any unit vectors γ∈Γ(λ) and ω∈Γ(λ′), we have
¯R(γ,ω,ψγ,ψω)=¯R(γ,ω,γ,ω)=0. |
We have
K(γ)=KN(γ∧ζ)=g(¯R(γ,ζ)ζ,γ), |
where
¯R(γ,ω,γ,ω)=g(¯R(γ,ω)γ,ω) |
or
¯R(γ,ω,ψγ,ψω)=g(¯R(γ,ω)ψγ,ψω) |
i.e.,
¯K(π)=0 |
for all CR-sections π.
Example 5.1. We consider a semi-Riemannian manifold R62 and a submanifold ℵ of co-dimension 2 in R62, given by equations
υ5=υ1cosα−υ2sinα−υ3z4tanα, |
υ6=υ1sinα−υ2cosα−υ3υ4, |
where α∈R−{π2+kπ; k∈z}. The structure on R62 is defined by
ψ(∂∂υ1,∂∂υ2,∂∂υ3,∂∂υ4,∂∂υ5,∂∂υ6)=(¯ϕ ∂∂υ1,¯ϕ∂∂υ2,ϕ∂∂υ3,ϕ∂∂υ4,ϕ∂∂υ5,ϕ∂∂υ6). |
Now,
ψ2(∂∂υ1,∂∂υ2,∂∂υ3,∂∂υ4,∂∂υ5,∂∂υ6)=((¯ϕ+1) ∂∂υ1,(¯ϕ+1)∂∂υ2,(ϕ+1)∂∂υ3,(ϕ+1)∂∂υ4, |
(ϕ+1)∂∂υ5,(ϕ+1)∂∂υ6) |
ψ2=ψ+I. |
It follows that (R62,ψ) is a golden semi-Reimannian manifold.
The tangent bundle Υℵ is spanned by
Z0=−sinα ∂∂υ5−cosα ∂∂υ6−ϕ ∂∂υ2, |
Z1=−ϕ sinα ∂∂υ5−ϕ cosα ∂∂υ6+ ∂∂υ2, |
Z2=∂∂υ5−¯ϕ sinα ∂∂υ2+∂∂υ1, |
Z3=−¯ϕ cosα ∂∂υ2+∂∂υ4+i∂∂υ6. |
Thus, ℵ is a 1-lightlike submanifold of R62 with RadΥℵ=Span{X0}. Using golden structure of R62, we obtain that X1=ψ(X0). Thus, ψ(RadΥℵ) is a distribution on ℵ. Hence, the ℵ is a CR-lightlike submanifold.
In general relativity, particularly in the context of the black hole theory, lightlike geometry finds its uses. An investigation is made into the geometry of the ℵ golden semi-Riemannian manifolds that are CR-lightlike in nature. There are many intriguing findings on completely umbilical and completely geodesic CR-lightlike submanifolds that are examined. We present a required condition for a CR-lightlike submanifold to be completely geodesic. Moreover, it is demonstrated that the sectional curvature K of an entirely umbilical CR-lightlike submanifold ℵ of a golden semi-Riemannian manifold ¯ℵ disappears.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The present work (manuscript number IU/R&D/2022-MCN0001708) received financial assistance from Integral University in Lucknow, India as a part of the seed money project IUL/IIRC/SMP/2021/010. All of the authors would like to express their gratitude to the university for this support. The authors are highly grateful to editors and referees for their valuable comments and suggestions for improving the paper. The present manuscript represents the corrected version of preprint 10.48550/arXiv.2210.10445. The revised version incorporates the identities of all those who have made contributions, taking into account their respective skills and understanding.
Authors have no conflict of interests.
[1] |
Feng XD, Chen WC (2016) Research progress of cadmium telluride solar cells. J Nanjing Univ Technol 38: 123–128. https://doi.org/10.3969/j.issn.1671-7627.2016.01.020 doi: 10.3969/j.issn.1671-7627.2016.01.020
![]() |
[2] |
Cheng ZY, Zhu XM, Zeng Y, et al. (2020) Current status of tellurium extraction and utilization. Miner Prot Util 40: 76–89. (in Chines). https://doi.org/10.13779/j.cnki.issn1001-0076.2020.05.010 doi: 10.13779/j.cnki.issn1001-0076.2020.05.010
![]() |
[3] | Zhang S, Wang XP, Wang LJ, et al. (2010) Research progress of thin film solar cells. Mater Herald 24: 6. |
[4] | Yan YF (2015) Latest research progress and challenges in thin film solar cell research. Opt Optoelectron Technol 6: 1–4. |
[5] | Li T (1976) Abundance of chemical elements in the Earth. Geochemistry 3: 167–174. (in Chinese) |
[6] | Li T, Ni SB (1990) Abundance of chemical elements in the Earth and crust, Beijing: Geological Publishing House, 136. (in Chinese) |
[7] | Li T, Yuan HY, Wu SX, et al. (1999) Regional abundance of chemical elements of crust bodies in China. Geotecton Metallog 23: 101–107. (in Chinese) |
[8] | Yin JZ, Chen YC, Zhou JX (1995) Introduction of tellurium resources in the world. J Hebei Coll Geol 18: 348–354. (in Chinese) |
[9] | Yin JZ (1996) On the paragenetic model and mineralizing mechanism of the Dashuigou independent tellurium deposit in Shimian County, Sichuan Province, China-the only independent tellurium deposit in the world, Chongqing: Chongqing Publishing House, 190. (in Chinese) |
[10] |
Yin JZ, Shi HY (2020) Mineralogy and stable isotopes of tetradymite from the Dashuigou tellurium deposit, Tibet Plateau, southwest China. Sci Rep 10: 4634. https://doi.org/10.1038/s41598-020-61581-3 doi: 10.1038/s41598-020-61581-3
![]() |
[11] | Tu GC, Gao ZM, Hu RZ, et al. (2004) Dispersed element geochemistry and mineralization mechanism, Beijing: Geological Publishing House, 430. |
[12] |
Nassar NT, Kim H, Frenzel M, et al. (2022) Global tellurium supply potential from electrolytic copper refining. Resour Conserv Recycl 184: 106434. https://doi.org/10.1016/j.resconrec.2022.106434 doi: 10.1016/j.resconrec.2022.106434
![]() |
[13] |
Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59: 1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2 doi: 10.1016/0016-7037(95)00038-2
![]() |
[14] |
Yin JZ, Shi HY (2021) Fluid inclusions and metallogenic conditions of the Dashuigou tellurium deposit, Tibet Plateau, southwest China. Geol Earth Mar Sci 3: 1–15. https://doi.org/10.31038/GEMS.2021331 doi: 10.31038/GEMS.2021331
![]() |
[15] |
Qian HD, Chen W, Xie JD, et al. (2000) Tellurium mineral review. J Geol Univer 6: 178–187. https://doi.org/10.3969/j.issn.1006-7493.2000.02.011 doi: 10.3969/j.issn.1006-7493.2000.02.011
![]() |
[16] | Shao J, Tao WP (2014) Mineral Resources Industry Requirements Manual, Beijing: Geological Publishing House, 952. |
[17] |
Hu XL, Yao SZ, He MZ, et al. (2021) An Overview of Advances in Tellurium Mineralization in Telluride-Rich Gold Deposits. Earth Sci 46: 3807–3817. https://doi.org/10.3799/dqkx.2021.002 doi: 10.3799/dqkx.2021.002
![]() |
[18] |
Wang XM, Sun ZX (2009) Production status and development prospects of selenium and tellurium. China Nonferrous Metall, 38–43. https://doi.org/10.3969/j.issn.1672-6103.2009.01.011 doi: 10.3969/j.issn.1672-6103.2009.01.011
![]() |
[19] |
Xing X, Guo JQ (2009) Application of tellurium and its resource distribution. Miner Prot Util, 19–22. https://doi.org/10.3969/j.issn.1001-0076.2009.03.005 doi: 10.3969/j.issn.1001-0076.2009.03.005
![]() |
[20] |
Jiang HL, Dai T (2016) Analysis and suggestions of tellurium's supply and demand of China in the future. China Mining 25: 7–10. https://doi.org/10.3969/j.issn.1004-4051.2016.10.002 doi: 10.3969/j.issn.1004-4051.2016.10.002
![]() |
[21] | USGS, Selenium and Tellurium Statistics and Information. Natiuonal Mineral Informatiuon Center, 2023. Available from: https://www.usgs.gov/centers/national-minerals-information-center/selenium-and-tellurium-statistics-and-information. |
[22] | USGS, Tellurium. 2003. Available from: https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-tellurium.pdf. |
[23] | Goldfarb RJ, Berger BR, George MW, et al. (2017) Tellurium, Critical Mineral Resources of the United States-Economic and Environmental Geology and Prospects for Future Supply, U.S. Geological Survey Professional Paper 1802, R1–R27. |
[24] | Zhao T, Liu C (2018) Atlas of Three Rare Resources at Home and Abroad, Beijing: Geological Press. |
[25] |
Xiao P, Wang HJ, Ye FC, et al. (2020) Current status and prospects of recovery technology of scattered metal selenium and tellurium. Met Min 4: 52–60. https://doi.org/10.19614/j.cnki.jsks.202004009 doi: 10.19614/j.cnki.jsks.202004009
![]() |
[26] | Liu JJ, Zhai DG, Wang DZ, et al. (2020) Au-(Ag)-Te-Se mineralization system and mineralization. Geosci Front 27: 79–98. |
[27] | Chen YC, Mao JW, Zhou JX, et al. (1993) Dashuigou tellurium gold deposit in Shimian County, Sichuan Province—the world's first independent tellurium deposit mainly composed of tellurium. Proceedings of the Fifth National Conference on Mineral Deposits, Beijing: Geological Publishing House, 437–439. (in Chinese) |
[28] | Luo YN, Cao ZM (1994) The world's first independent tellurium deposit was discovered in Sichuan Province. China Geol, 27–28. (in Chines) |
[29] |
Yin JZ, Xiang SP, Chao YH, et al. (2022) Petrochemical eigenvalues and diagrams for the identification of metamorphic rocks' protolith, taking the host rocks of Dashuigou tellurium deposit in China as an example. Acta Geochim 42: 103–124. https://doi.org/10.1007/s11631-022-00583-6 doi: 10.1007/s11631-022-00583-6
![]() |
[30] | Luo YN, Fu DM, Zhou SD (1994) Genesis of the Dashuigou tellurium deposit in Sichuan Province of China. Bull Sichuan Geol 14: 101–110. (in Chines) |
[31] | Cao ZM, Luo YN (1993) Geological characteristics and material composition of the Shimian Te (Se) deposit in Sichuan Province. Proceedings of the Fifth National Conference on Mineral Deposits, Beijing: Geological Publishing House, 476–476. (in Chinese) |
[32] | Yin JZ, Zhou JX, Yang BC (1994) Rock-forming minerals and ore-forming minerals of the Dashuigou tellurium ore deposit unique in the world—A preliminary study. Sci Geol Sinica 3: 197–210. |
[33] | Yin JZ, Chen YC, Zhou JX (1994) Mineralogical research of the Dashuigou independent tellurium deposit in Sichuan Province, China. Bull Mineral Petrol Geochem 3: 153–155. (in Chinese) |
[34] | Yin JZ, Zhou JX, Yang BC (1994) Geological characteristics of the Dashuigou tellurium deposit in Sichuan Province, China. Earth Sci Front 1: 241–243. (in Chinese) |
[35] | Chen YC, Yin, JZ, Zhou JX (1994) The first and only independent tellurium ore deposit in Dashuigou, Shimian County, Sichuan Province, China. Sci Geol Sinica 3: 109–113. (in Chinese) |
[36] | Chen YC, Yin JZ, Zhou JX (1994) Geology of the Dashuigou independent tellurium deposit of Sichuan Province. Acta Geoscientia Sinica 29: 165–167. (in Chinese) |
[37] | Cao ZM, Luo YN (1994) Mineral sequence and ore genesis of the Sichuan telluride lode deposit in China. New Research Progresses of the Mineralogy, Petrology and Geochemistry in China. Lanzhou: Lanzhou University Publishing House, 476–478. (in Chinese) |
[38] | Luo YN, Fu DM, Zhou SD, et al. (1994) Geology and genesis of the Dashuigou tellurium deposit in Shimian County, Sichuan Province. Sichuan Geol J 14: 1–10. (in Chinese) |
[39] | Yin JZ, Chen YC, Zhou JX (1995) The metallogenic age of the world's first independent tellurium deposit. Chin Sci Bull 40: 766–767. (in Chinese) |
[40] | Yin JZ, Chen YC, Zhou JX (1995) K-Ar isotope evidence for age of the first and only independent tellurium deposit. Chin Sci Bull 22: 1933–1934. |
[41] | Yin JZ, Chen YC, Zhou JX (1995) Original rock of the host rock of the Dashuigou independent tellurium deposit in Sichuan Province, China. Bull Mineral Petrol Geochem, 114–115. (in Chinese) |
[42] | Cao ZM, Wen CQ, Li BH (1995) Genesis of the Dashuigou tellurium deposit in Sichuan Province of China. Sci China B 25: 647–654. (in Chinese) |
[43] | Wang RC, Shen WZ, Xu XJ, et al.(1995)Isotopic geology of the Dashuigou tellurium deposit in Sichuan Province, China. J Nanjing Univ (Natural Sciences) 31: 617–624. (in Chinese) |
[44] | Mao JW, Chen YC, Zhou JX (1995) Geology, mineralogy, petrology, and geochemistry of the Dashuigou tellurium deposit in Shimian County, Sichuan Province, China. Acta Geosci 2: 276–290. (in Chinese) |
[45] | Yin JZ (1996) The paragenetic model and mineralizing mechanism of the Dashuigou independent tellurium deposit in Shimian County, Sichuan—the first and only independent tellurium deposit in the world. Acta Geoscientia Sinica, 93–97. |
[46] | Yin JZ, Chen YC, Zhou JX (1996) Geology and geochemistry of host rocks of the Dashuigou independent tellurium deposit in Sichuan Province, China. J Changchun Univ Earth Sci 26: 322–326. (in Chinese) |
[47] | Yin JZ, Chen YC, Zhou JX (1996) Geology and geochemistry of altered rocks of the Dashuigou independent tellurium deposit in Sichuan Province, China. J Xi'an Coll Geol 18: 19–25. (in Chinese) |
[48] | Luo YN, Cao ZM, Wen CQ (1996) Geology of the Dashuigou independent tellurium deposit, Chengdu: Southwest Communication University Publishing House, 30–45. (in Chinese) |
[49] | Chen YC, Mao JW, Luo YN, et al. (1996) Geology and Geochemistry of the Dashuigou tellurium (gold) deposit in Western Sichuan, China, Beijing: Atomic Energy Press, 146. (in Chinese) |
[50] | Wang RC, Chen XM, Xu SJ (1996) Complex exsolution of tellurium minerals in the Dashuigou tellurium deposit. Sci Bull 41: 920–922. |
[51] | Liu AP, Zhong ZC, Tang JW (1996) Geochemical characteristics of the Dashuigou tellurium deposit in Sichuan Province of China. Geochemistry 25: 365–371. (in Chinese) |
[52] | Chen PR, Lu JJ, Wang RC, et al. (1998) Study on the fluid inclusions of the Dashuigou independent tellurium deposit in Shimian County, Sichuan Province, China. Miner Deposit 17: 1011–1014. (in Chinese) |
[53] |
Yin JZ, Shi HY (2019) Nano effect mineralization of rare elements--taking the Dashuigou tellurium deposit, Tibet Plateau, Southwest China as the example. Acad J Sci Res 7: 635–642. https://doi.org/10.15413/ajsr.2019.0902 doi: 10.15413/ajsr.2019.0902
![]() |
[54] | Wang RC, Lu JJ, Chen XM (2000) Genesis of the Dashuigou tellurium deposit in Sichuan Province, China. Bull Mineral Petrol Geochem 4: 348–349. (in Chinese) |
[55] | Xu ZQ, Hou LW, Wang ZX, et al. (1992) The orogenic process of the Songpan-Ganzi orogenic belt in China, Beijing: Geological Publishing House, 190. (in Chinese) |
1. | Bang-Yen Chen, Majid Ali Choudhary, Afshan Perween, A Comprehensive Review of Golden Riemannian Manifolds, 2024, 13, 2075-1680, 724, 10.3390/axioms13100724 |