The aim of this paper is to investigate the optimality conditions for a class of nonsmooth multiobjective fractional optimization problems subject to vanishing constraints. In particular, necessary and sufficient conditions for (weak) Pareto solution are presented in terms of the Clark subdifferential. Furthermore, we construct Wolfe and Mond–Weir-type dual models and derive some duality theorems by using generalized quasiconvexity assumptions. Some examples to show the validity of our conclusions are provided.
Citation: Haijun Wang, Gege Kang, Ruifang Zhang. On optimality conditions and duality for multiobjective fractional optimization problem with vanishing constraints[J]. Electronic Research Archive, 2024, 32(8): 5109-5126. doi: 10.3934/era.2024235
The aim of this paper is to investigate the optimality conditions for a class of nonsmooth multiobjective fractional optimization problems subject to vanishing constraints. In particular, necessary and sufficient conditions for (weak) Pareto solution are presented in terms of the Clark subdifferential. Furthermore, we construct Wolfe and Mond–Weir-type dual models and derive some duality theorems by using generalized quasiconvexity assumptions. Some examples to show the validity of our conclusions are provided.
[1] | W. Achtziger, C. Kanzow, Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications, Math. Program., 114 (2008), 69–99. https://doi.org/10.1007/s10107-006-0083-3 doi: 10.1007/s10107-006-0083-3 |
[2] | S. K. Mishra, V. Singh, V. Laha, On duality for mathematical programs with vanishing constraints, Ann. Oper. Res., 243 (2016), 249–272. https://doi.org/10.1007/s10479-015-1814-8 doi: 10.1007/s10479-015-1814-8 |
[3] | Q. J. Hu, J. G. Wang, Y. Chen, New dualities for mathematical programs with vanishing constraints, Ann. Oper. Res., 287 (2020), 233–255. https://doi.org/10.1007/s10479-019-03409-6 doi: 10.1007/s10479-019-03409-6 |
[4] | L. T. Tung, Karush–Kuhn–Tucker optimality conditions and duality for multiobjective semi-infinite programming with vanishing constraints, Ann. Oper. Res., 311 (2022), 1307–1334. https://doi.org/10.1007/s10479-020-03742-1 doi: 10.1007/s10479-020-03742-1 |
[5] | L. T. Tung, Karush-Kuhn-Tucker optimality conditions and duality for nonsmooth multiobjective semi-infinite programming problems with vanishing constraints, Appl. Set-Valued Anal. Optim., 4 (2022). https://doi.org/10.23952/asvao.4.2022.1.01 doi: 10.23952/asvao.4.2022.1.01 |
[6] | T. Antczak, Optimality conditions and Mond–Weir duality for a class of differentiable semi-infinite multiobjective programming problems with vanishing constraints, 4OR-Q. J. Oper. Res., 20 (2022), 417–442. https://doi.org/10.1007/s10288-021-00482-1 doi: 10.1007/s10288-021-00482-1 |
[7] | T. Antczak, Optimality results for nondifferentiable vector optimization problems with vanishing constraints, J. Appl. Anal. Comput., 13 (2023), 2613–2629. https://doi.org/10.11948/20220465 doi: 10.11948/20220465 |
[8] | T. Antczak, On directionally differentiable multiobjective programming problems with vanishing constraints, Ann. Oper. Res., 328 (2023), 1181–1212. https://doi.org/10.1007/s10479-023-05368-5 doi: 10.1007/s10479-023-05368-5 |
[9] | H. Huang, H. Zhu, Stationary condition for Borwein proper efffcient solutions of nonsmooth multiobjective problems with vanishing constraints, Mathematics, 10 (2022), 4569. https://doi.org/10.3390/math10234569 doi: 10.3390/math10234569 |
[10] | S. M. Guu, Y. Singh, S. K. Mishra, On strong KKT type sufficient optimality conditions for multiobjective semi-infinite programming problems with vanishing constraints, J. Inequal. Appl., 2017 (2017), 282. https://doi.org/10.1186/s13660-017-1558-x doi: 10.1186/s13660-017-1558-x |
[11] | H. J. Wang, H. H. Wang, Optimality conditions and duality theorems for interval-valued optimization problems with vanishing constraints, Oper. Res. Trans., 27 (2023), 87–102. |
[12] | H. J. Wang, H. H. Wang, Duality theorems for nondifferentiable semi-infinite interval-valued optimization problems with vanishing constraints, J. Inequal. Appl., 182 (2021). https://doi.org/10.1186/s13660-021-02717-5 doi: 10.1186/s13660-021-02717-5 |
[13] | D. S. Kim, S. J. Kim, M. H. Kim, Optimality and duality for a class of nondifferentiable multiobjective fractional programming problems, J. Optim. Theory Appl., 129 (2006), 131–146. https://doi.org/10.1007/s10957-006-9048-1 doi: 10.1007/s10957-006-9048-1 |
[14] | X. J. Long, Optimality conditions and duality for nondifferentiable multiobjective fractional programming problems with $(C, \alpha, \rho, d)$-convexity, J. Optim. Theory Appl., 148 (2011), 197–208. https://doi.org/10.1007/s10957-010-9740-z doi: 10.1007/s10957-010-9740-z |
[15] | R. Dubey, S. K. Gupta, M. A. Khan, Optimality and duality results for a nondifferentiable multiobjective fractional programming problem, J. Inequal. Appl., 345 (2015). https://doi.org/10.1186/s13660-015-0876-0 doi: 10.1186/s13660-015-0876-0 |
[16] | T. D. Chuong, Nondifferentiable fractional semi-infinite multiobjective optimization problems, Oper. Res. Lett., 44 (2016), 260–266. https://doi.org/10.1016/j.orl.2016.02.003 doi: 10.1016/j.orl.2016.02.003 |
[17] | X. K. Sun, X. Feng, K. L. Teo, Robust optimality, duality and saddle points for multiobjective fractional semi-infinite optimization with uncertain data, Optim. Lett., 16 (2022), 1457–1476. https://doi.org/10.1007/s11590-021-01785-2 doi: 10.1007/s11590-021-01785-2 |
[18] | S. T. Van, D. D. Hang, Optimality and duality in nonsmooth multiobjective fractional programming problem with constraints, 4OR-Q. J. Oper. Res., 20 (2022), 105–137. https://doi.org/10.1007/s10288-020-00470-x doi: 10.1007/s10288-020-00470-x |
[19] | F. H. Clarke, Nonsmooth analysis and optimization, in Proceedings of the International Congress of Mathematicians, 5 (1983), 847–853. https://doi.org/10.1137/1.9781611971309 |