In this paper, only under the $ q $-$ k $-Keller–Osserman conditions, we consider the existence and global estimates of innumerable radial $ q $-$ k $-convex positive solutions to the $ q $-$ k $-Hessian equation and systems. Our conditions are strictly weaker than those in previous papers.
Citation: Haitao Wan, Yongxiu Shi. Sharp conditions for the existence of infinitely many positive solutions to $ q $-$ k $-Hessian equation and systems[J]. Electronic Research Archive, 2024, 32(8): 5090-5108. doi: 10.3934/era.2024234
In this paper, only under the $ q $-$ k $-Keller–Osserman conditions, we consider the existence and global estimates of innumerable radial $ q $-$ k $-convex positive solutions to the $ q $-$ k $-Hessian equation and systems. Our conditions are strictly weaker than those in previous papers.
[1] | N. S. Trudinger, X. J. Wang, Hessian measures Ⅱ, Ann. Math., 150 (1999), 579–604. https://doi.org/10.2307/121089 |
[2] | L. Bieberbach, $\Delta u = e^{u}$ und die automorphen Funktionen, Math. Ann., 77 (1916), 173–212. https://doi.org/10.1007/BF01456901 doi: 10.1007/BF01456901 |
[3] | H. Rademacher, Einige besondere probleme partieller Differentialgleichungen, Rosenberg, New York, 2 (1943), 838–845. |
[4] | H. Wittich, Ganze Lösungen der Differentialgleichung $\Delta u = e^{u}$ (German), Math. Z., 49 (1943), 579–582. https://doi.org/10.1007/BF01174219 doi: 10.1007/BF01174219 |
[5] | E. K. Haviland, A note on unrestricted solutions of the differential equation $\Delta u = f(u)$, J. London Math. Soc., s1-26 (1951), 210–214. https://doi.org/10.1112/jlms/s1-26.3.210 doi: 10.1112/jlms/s1-26.3.210 |
[6] | W. Walter, Über ganze Lösungen der Differentialgleichung $\Delta u = f(u)$, Jahresber. Dtsch. Math.-Ver., 57 (1955), 94–102. |
[7] | J. Keller, On solutions of $\Delta u = f(u)$, Commun. Pure Appl. Math., 10 (1957), 503–510. https://doi.org/10.1002/cpa.3160100402 doi: 10.1002/cpa.3160100402 |
[8] | R. Osserman, On the inequality $\Delta u\geq f(u)$, Pac. J. Math., 7 (1957), 1641–1647. https://doi.org/10.2140/pjm.1957.7.1641 doi: 10.2140/pjm.1957.7.1641 |
[9] | A. V. Lair, Large solutions of semilinear elliptic equations under the Keller-Osserman condition, J. Math. Anal. Appl., 328 (2007), 1247–1254. https://doi.org/10.1016/j.jmaa.2006.06.060 doi: 10.1016/j.jmaa.2006.06.060 |
[10] | A. V. Lair, A. Mohammed, Entire large solutions of semilinear elliptic equations of mixed type, Commun. Pure Appl. Anal., 8 (2009), 1607–1618. https://doi.org/10.3934/cpaa.2009.8.1607 doi: 10.3934/cpaa.2009.8.1607 |
[11] | A. V. Lair, Entire large solutions to semilinear elliptic systems, J. Math. Anal. Appl., 382 (2011), 324–333. https://doi.org/10.1016/j.jmaa.2011.04.051 doi: 10.1016/j.jmaa.2011.04.051 |
[12] | K. Cheng, W. M. Ni, On the structure of the conformal scalar curvature equation on $\mathbb{R}^{N}$, Indiana Univ. Math. J., 41 (1992), 261–278. https://doi.org/10.1512/iumj.1992.41.41015 doi: 10.1512/iumj.1992.41.41015 |
[13] | F. Cîrstea, V. Rădulescu, Blow-up boundary solutions of semilinear elliptic problems, Nonlinear Anal. Theory Methods Appl., 48 (2002), 521–534. https://doi.org/10.1016/S0362-546X(00)00202-9 doi: 10.1016/S0362-546X(00)00202-9 |
[14] | L. Dupaigne, M. Ghergu, O. Goubet, G. Warnault, Entire large solutions for semilinear elliptic equations, J. Differ. Equations, 253 (2012), 2224–2251. https://doi.org/10.1016/j.jde.2012.05.024 doi: 10.1016/j.jde.2012.05.024 |
[15] | A. V. Lair, A necessary and sufficient condition for existence of large solutions to semilinear elliptic equations, J. Math. Anal. Appl., 240 (1999), 205–218. https://doi.org/10.1006/jmaa.1999.6609 doi: 10.1006/jmaa.1999.6609 |
[16] | S. Tao, Z. Zhang, On the existence of explosive solutions for semilinear elliptic problems, Nonlinear Anal. Theory Methods Appl., 48 (2002), 1043–1050. https://doi.org/10.1016/S0362-546X(00)00233-9 doi: 10.1016/S0362-546X(00)00233-9 |
[17] | D. Ye, F. Zhou, Invariant criteria for existence of bounded positive solutions, Discrete Contin. Dyn. Syst., 12 (2005), 413–424. https://doi.org/10.3934/dcds.2005.12.413 doi: 10.3934/dcds.2005.12.413 |
[18] | Y. Naito, H. Usami, Entire solutions of the inequality div $ (A(|Du|)Du)\geq f(u)$, Math. Z., 225 (1997), 167–175. https://doi.org/10.1007/PL00004596 doi: 10.1007/PL00004596 |
[19] | R. Filippucci, P. Pucci, M. Rigoli, Nonlinear weighted $p$-Laplacian elliptic inequalities with gradient terms, Commun. Contemp. Math., 12 (2010), 501–535. https://doi.org/10.1142/S0219199710003841 doi: 10.1142/S0219199710003841 |
[20] | Q. Jin, Y. Li, H. Xu, Nonexistence of positive solutions for some fully nonlinear elliptic equations, Methods Appl. Anal., 12 (2005), 441–450. https://doi.org/10.4310/MAA.2005.v12.n4.a5 doi: 10.4310/MAA.2005.v12.n4.a5 |
[21] | X. Ji, J. Bao, Necessary and sufficient conditions on solvability for Hessian inequalities, Proc. Am. Math. Soc., 138 (2010), 175–188. https://doi.org/10.1090/S0002-9939-09-10032-1 doi: 10.1090/S0002-9939-09-10032-1 |
[22] | L. Dai, Existence and nonexistence of subsolutions for augmented Hessian equations, Discrete Contin. Dyn. Syst. - Ser. A, 40 (2020), 579–596. https://doi.org/10.3934/dcds.2020023 doi: 10.3934/dcds.2020023 |
[23] | Z. Zhang, S. Zhou, Existence of entire positive $k$-convex radial solutions to Hessian equations and systems with weights, Appl. Math. Lett., 50 (2015), 48–55. https://doi.org/10.1016/j.aml.2015.05.018 doi: 10.1016/j.aml.2015.05.018 |
[24] | T. Bhattacharya, A. Mohammed, Maximum principles for $k$-Hessian equations with lower order terms on unbounded domains, J. Geom. Anal., 31 (2021), 3820–3862. https://doi.org/10.1007/s12220-020-00415-0 doi: 10.1007/s12220-020-00415-0 |
[25] | Z. Zhang, S. Xia, Existence of entire large convex radially solutions to a class of Hessian type equations with weights, J. Elliptic Parabolic Equations, 9 (2023), 989–1002. https://doi.org/10.1007/s41808-023-00231-x doi: 10.1007/s41808-023-00231-x |
[26] | H. Wan, On the large solutions to a class of $k$-Hessian problems, Adv. Nonlinear Stud., 24 (2024), 657–695. https://doi.org/10.1515/ans-2023-0128 doi: 10.1515/ans-2023-0128 |
[27] | X. Li, J. Bao, Existence and asymptotic behavior of entire large solutions for Hessian equations, Commun. Pure Appl. Anal., 23 (2024), 253–268. https://doi.org/10.3934/cpaa.2024009 doi: 10.3934/cpaa.2024009 |
[28] | H. Jian, X. Wang, Existence of entire solutions to the Monge-Ampère equation, Am. J. Math., 136 (2014), 1093–1106. https://doi.org/10.1353/ajm.2014.0029 doi: 10.1353/ajm.2014.0029 |
[29] | H. Wang, Convex solutions of systems arising from Monge-Ampère equations, Electron. J. Qual. Theory Differ. Equations, (2009), 1–8. https://doi.org/10.14232/ejqtde.2009.4.26 |
[30] | F. Wang, Y. An, Triple nontrivial radial convex solutions of systems of Monge-Ampère equations, Appl. Math. Lett., 25 (2012), 88–92. https://doi.org/10.1016/j.aml.2011.07.016 doi: 10.1016/j.aml.2011.07.016 |
[31] | Y. Yang, X. Zhang, Necessary and sufficient conditions of entire subsolutions to Monge-Ampère type equations, Ann. Funct. Anal., 14 (2023), 4. https://doi.org/10.1007/s43034-022-00228-y doi: 10.1007/s43034-022-00228-y |
[32] | Z. Zhang, H. Liu, Existence of entire positive radial large solutions to the Monge-Ampère type equations and systems, Rocky Mt. J. Math., 50 (2020), 1883–1899. https://doi.org/10.1216/rmj.2020.50.1893 doi: 10.1216/rmj.2020.50.1893 |
[33] | S. Bai, X. Zhang, M. Feng, Entire positive $k$-convex solutions to $k$-Hessian type equations and systems, Electron. Res. Arch., 30 (2022), 481–491. https://doi.org/10.3934/era.2022025 doi: 10.3934/era.2022025 |
[34] | J. Bao, X. Ji, H. Li, Existence and nonexistence theorem for entire subsolutions of $k$-Yamabe type equations, J. Differ. Equations, 253 (2012), 2140–2160. https://doi.org/10.1016/j.jde.2012.06.018 doi: 10.1016/j.jde.2012.06.018 |
[35] | J. Bao, H. Li, Y. Li, On the exterior Dirichlet problem for Hessian equations, Trans. Am. Math. Soc., 366 (2014), 6183–6200. https://doi.org/10.1090/S0002-9947-2014-05867-4 doi: 10.1090/S0002-9947-2014-05867-4 |
[36] | M. B. Chrouda, K. Hassine, Existence and asymptotic behaviour of entire large solutions for $k$-Hessian equations, J. Elliptic Parabolic Equations, 8 (2022), 469–481. https://doi.org/10.1007/s41808-022-00157-w doi: 10.1007/s41808-022-00157-w |
[37] | J. Cui, Existence and nonexistence of entire $k$-convex radial solutions to Hessian type system, Adv. Differ. Equations, 2021 (2021), 462. https://doi.org/10.1186/s13662-021-03601-8 doi: 10.1186/s13662-021-03601-8 |
[38] | H. Jian, Hessian equations with infinite Dirichlet boundary, Indiana Univ. Math. J., 55 (2006), 1045–1062. https://doi.org/10.1512/iumj.2006.55.2728 doi: 10.1512/iumj.2006.55.2728 |
[39] | H. Wan, Y. Shi, X. Qiao, Entire large solutions to the $k$-Hessian equations with weights: existence, uniqueness and asymptotic behavior, J. Math. Anal. Appl., 503 (2021), 125301. https://doi.org/10.1016/j.jmaa.2021.125301 doi: 10.1016/j.jmaa.2021.125301 |
[40] | J. Bao, Q. Feng, Necessary and sufficient conditions on global solvability for the $p$-$k$-Hessian inequalities, Can. Math. Bull., 65 (2022), 1004–1019. https://doi.org/10.4153/S0008439522000066 doi: 10.4153/S0008439522000066 |
[41] | W. Fan, L. Dai, B. Wang, Positive radially symmetric entire solutions of $p$-$k$-Hessian equations and systems, Mathematics, 10 (2022), 3258. https://doi.org/10.3390/math10183258 doi: 10.3390/math10183258 |
[42] | S. Kan, X. Zhang, Entire positive $p$-$k$-convex radial solutions to $p$-$k$-Hessian equations and systems, Lett. Math. Phys., 113 (2023), 16. https://doi.org/10.1007/s11005-023-01642-6 doi: 10.1007/s11005-023-01642-6 |
[43] | M. Feng, X. Zhang, The existence of infinitely many boundary blow-up solutions to the $p$-$k$-Hessian equation, Adv. Nonlinear Stud., 23 (2023), 20220074. https://doi.org/10.1515/ans-2022-0074 doi: 10.1515/ans-2022-0074 |
[44] | M. Feng, Eigenvalue problems for singular $p$-Monge-Ampère equations, J. Math. Anal. Appl., 528 (2023), 127538. https://doi.org/10.1016/j.jmaa.2023.127538 doi: 10.1016/j.jmaa.2023.127538 |
[45] | X. Zhang, Y. Yang, Necessary and sufficient conditions for the existence of entire subsolutions to $p$-$k$-Hessian equations, Nonlinear Anal., 233 (2023), 113299. https://doi.org/10.1016/j.na.2023.113299 doi: 10.1016/j.na.2023.113299 |