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1. Introduction and main results

The aims of this presentation are to investigate the existence of positive q-k-convex radial solutions
to the q-k-Hessian equation

S k(Di(|Dω|q−2D jω)) = H(|x|) f (ω), if x ∈ DR (1.1)

and systems S k(Di(|Dω|q−2D jω)) = H(|x|) f (υ), if x ∈ DR,

S k(Di(|Dυ|q−2D jυ)) = L(|x|)g(ω), if x ∈ DR
(1.2)

and S k(Di(|Dω|q−2D jω)) = H(|x|) f1(υ) f2(ω), if x ∈ DR,

S k(Di(|Dυ|q−2D jυ)) = L(|x|)g1(ω)g2(υ), if x ∈ DR,
(1.3)

where k ∈ {1, · · ·,N}, Di(|Dω|q−2D jω) denotes the element of row i and column j in the matrix
(Di(|Dω|q−2D jω))i j=1,··· ,N , q ≥ 2, R ≤ ∞ and

DR :=

RN , if R = ∞,
{x ∈ RN : |x| < R}, if R < ∞.

In this article, we assume that H, L, f , g, f1, f2, g1, g2 satisfy
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(H1) H, L ∈ C([0,∞), (0,∞));

(H2) f , g ∈ C([0,∞), [0,∞)) are increasing on [0,∞);

(H3) f1, f2, g1, g2 ∈ C([0,∞), [0,∞)) are increasing on [0,∞).

LetM be a N-order symmetric real matrix and

S k(M) := S k(λ(M)) =
∑

1≤i1<···<ik≤N

λi1 · · · λik ,

where λ = (λ1, · · · , λN) and λ1, · · · , λN are the eigenvalues of the matrix, M. Trudinger and Wang
in [1] first introduced the operator S k(Di(|Dω|q−2D jω)) to establish the local integral estimates for the
gradients of k-convex functions in the study of the weak continuity of the associated k-Hessian measure
with respect to convergence in measure. If k = 1, this operator becomes the well-known q-Laplacian
operator; if q = 2, it is the k-Hessian operator, and it is the Laplacian operator provided k = 1. In
particular, if k = N and q = 2, it is the famous Monge–Ampère operator.

We first review the following: Laplacian equation

∆u = f (u) in Ω. (1.4)

The study of the existence, uniqueness, and asymptotic behavior of (1.4) has a long story. IfΩ ⊆ R2

is a bounded domain with C2-boundary, Bieberbach [2] in 1916 first studied the existence, uniqueness,
and asymptotic behavior of classical boundary blow-up solutions to Eq (1.4) with f (u) = eu. In 1943,
Rademacher [3], using the ideas of Bieberbach, proved that the results still hold for N = 3. If Ω = RN ,
Wittich [4] in 1944 proved that if N = 2 and f (u) = eu, then (1.4) has no entire solution. In 1951,
Haviland [5] showed that Eq (1.4) with Ω = RN has no entire solution for N = 3 if and only if∫ ∞

1

( ∫ s

0
f (t)dt

)−1/2

ds < ∞. (1.5)

In 1955, under some additional conditions, Walter [6] generalized the above result to the N-
dimension case. In 1957, Keller [7] and Osserman [8] obtained two very famous theorems:
(i) If Ω is a bounded domain, then (1.4) has an entire subsolution if and only if f satisfies (1.5);
(ii) If Ω = RN , then (1.4) has an entire subsolution if and only if f satisfies∫ ∞

1

( ∫ s

0
f (t)dt

)−1/2

ds = ∞. (1.6)

After the works of Keller [7] and Osserman [8], the conditions (1.5) and (1.6) and their generaliza-
tions are all called Keller–Osserman conditions by many authors in the literature. When H satisfies
(H1), Lair [9] first using (1.6) studied existence of the radial solution to (1.1) with q = 2 and k = 1.
Then, Lair and Mohammed [10] proved the existence and nonexistence of nonnegative entire large so-
lutions to a class of semilinear elliptic equations of mixed type. When H and L satisfy (H1), Lair [11]
consider the following system: ∆u = H(|x|)vα, x ∈ RN ,

∆u = L(|x|)uβ, x ∈ RN ,
(1.7)
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where N ≥ 3 and α, β are positive constants. The author showed that if αβ < 1, then (1.7) has an entire
large solution if and only if∫ ∞

0
sH(s)

[
s2−N

∫ s

0
tN−3

( ∫ t

0
τL(τ)dτ

)
dt

]α
ds = ∞

and ∫ ∞

0
sL(s)

[
s2−N

∫ s

0
tN−3

( ∫ t

0
τH(τ)dτ

)
dt

]β
ds = ∞.

For some related insights on semilinear elliptic equations, we refer readers to [12–17].
In fact, the condition (1.6) and its generalization are usually used to study the existence of entire

solutions to some nonlinear elliptic equations. In 1997, Naito and Usami [18] showed that the q-
Laplacian equation

∇ ·
(
|∇u|q−2∇u

)
= f (u) in RN

has a positive entire subsolution u ∈ C1(RN) with |∇u|p−2∇u ∈ C1(RN) if and only if f satisfies the
Keller–Osserman condition ∫ ∞

1

( ∫ s

0
f (t)dt

)−1/q

ds = ∞.

In 2010, Filippucci et al. [19] proved the more general equation

∇ ·
(
|∇u|q−2∇u

)
= f (u)|∇u|θ in RN

has a nonnegative, entire, unbounded subsolution if and only if f satisfies the Keller–Osserman condi-
tion ∫ ∞

1

( ∫ s

0
f (t)dt

)−1/(q−θ)

ds = ∞,

where θ ∈ [0, q − 1).
Next, we review the k-Hessian equation

S k(D2u) = f (u) in RN . (1.8)

In 2005, Jin et al. [20] proved that if f (u) = uγ with γ > k, then (1.8) has no entire subsolution.
In 2010, Ji and Bao [21] made an important contribution to this problem, i.e., they showed that Eq (1.8)
has an entire k-convex positive subsolution if and only if f satisfies the Keller–Osserman condition∫ ∞

1

( ∫ s

0
f (t)dt

)−1/(k+1)

ds = ∞. (1.9)

If f is a continuous and nondecreasing function on R and has a positive lower bound, Dai [22]
in 2020 generalized the work of Ji and Bao [21] to a more general Hessian-type equation. When H, L,
f , g satisfy (H1)–(H2), q = 2, k ∈ {1, · · · ,N} and R = ∞, Zhang and Zhou [23] in 2015 studied the
existence of radial solutions to (1.1) and (1.2) by using the following integral conditions:∫ ∞

1
( f (τ))−1/kdτ = ∞ and

∫ ∞

1
( f (τ) + g(τ))−1/kdτ = ∞. (1.10)
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Moreover, under some additional conditions, they also considered the existence of entire positive
bounded radial solutions when (1.10) is false. In 2021, Bhattacharya and Mohammed [24] investigated
a class of k-Hessian equations with lower-order terms on unbounded domains. Especially, they ob-
tained the Phragmén–Lindelöf and Liouville type results. Let R = ∞ and q = 2, and H and f satisfy
(H1)–(H2). If H further satisfies

H (s) := sk−1H(s) − sk−1−N(N − k)2
∫ s

0
tN−1H(t)dt, s > 0 (1.11)

and there exists some positive constant s0 such that∫ ∞

s0

(
min

t∈[s0,s]
H (t)

)1/(k+1)ds = ∞,

Zhang and Xia [25] in 2023 showed that Eq (1.1) (with q = 2) has a large radial convex solution if and
only if (1.9) holds. A similar result of existence was also obtained in [26]. When f (u) is replaced by
b(x) f (u) in (1.8), where b ∈ C(RN) is positive in RN and f ∈ C1(0,∞) is a nonnegative, nondecreasing
function, f (0) = 0 and ∫ ∞

1
f 1/k(s)ds = ∞,

Li and Bao [27] in 2024 showed a necessary and sufficient condition for the existence of nonradial, en-
tire large solutions. Moreover, they also studied the asymptotic behavior of entire solutions at infinity.
With regard to the other works of Monge–Ampère type equation (system), we refer readers to [28–32].
For more general Hessian type equation (system), we refer readers to [33–39].

Now, let us return to (1.1)–(1.3). As far as we know, the q-k Hessian equation (system) has rarely
been investigated in previous literature. When H(| · |) ≡ 1 in DR with R = ∞, the sufficient and
necessary condition for the existence of the entire subsolution to Eq (1.1) was given via the Keller–
Osserman condition ∫ ∞

1

( ∫ t

0
f (τ)dτ

)−1/((q−1)k+1)

dt = ∞ (1.12)

by Bao and Feng [40] for q ≥ 2 and k ∈ {1, · · · ,N}. Recently, the results in [23] were generalized by
Fan et al. [41] and Kan and Zhang [42] to the cases of q-k Hessian equation and system. In particular,
Kan and Zhang [42] showed that if H, L, f , and g satisfy (H1)–(H2) and R = ∞, then (1.1) has an
entire positive q-k-convex radial solution provided f satisfies∫ ∞

1
( f (τ))−1/(q−1)kdτ = ∞; (1.13)

and (1.2) has an entire positive q-k-convex radial solution provided f and g satisfy∫ ∞

1
( f (τ) + g(τ))−1/(q−1)kdτ = ∞. (1.14)

Fan et al. [41] showed that if H, L satisfy (H1), f1, f2, g1, g2 satisfy (H3), and R = ∞, then (1.3) has
a radial solution provided f1, f2, g1, g2 satisfy∫ ∞

1
( f1(τ) f2(τ) + g1(τ)g2(τ))−1/(q−1)kdτ = ∞. (1.15)
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Especially under some additional conditions, they further investigated the result of the existence in
entire bounded solutions when (1.15) holds. Recently, by using (1.12), the result of existence to (1.1)
was investigated by Feng and Zhang in [43]. Specifically, they showed that if R = 1, H satisfies (H1)
and the following condition

(C1) there are two positive constants d1, d2 and some function L ∈ Λ such that

d1L(1 − s) ≤ H(s) ≤ d2L(1 − s), ∀ s < 1 near 1,

where Λ denotes the set of functions L that satisfy L ∈ C1(0,∞), L > 0, L′ < 0,

lim
s→0+

L(s) = ∞ and
∫ 1

0

( ∫ 1

t
L(τ)dτ

)1/(q−1)k

dt = ∞,

f satisfies the following conditions:

(C2) f ∈ C(0,∞) is positive and increasing and is local Lipschitz on (0,∞); moreover, f satisfies
(1.12);

(C3) let c0 be a positive constant,

Υ(t) :=
∫ t

c0

(
((q − 1)k + 1)

∫ τ

0
f (ς)dς

)−1/((q−1)k+1)

dτ

and

lim
t→∞
−
Υ′′(t)Υ(t)
(Υ′(t))2 exists,

then Eq (1.1) has innumerable radial q-k-convex boundary blow-up solutions that are positive in DR.
For further insights on q-Mange–Ampère equation and q-k Hessian type equation, we refer the readers
to [44, 45].

Inspired by the above works, in this paper, we prove the existence of innumerable positive q-k-
convex radial solutions (including boundary blow-up solutions) to Eq (1.1), the systems (1.2), and
(1.3) by using the Keller–Osserman conditions (1.12),∫ ∞

1

( ∫ t

0
f (τ) + g(τ)dτ

)−1/((q−1)k+1)

dt = ∞ (1.16)

and ∫ ∞

1

( ∫ t

0
f1(τ) f2(τ) + g1(τ)g2(τ)dτ

)−1/((q−1)k+1)

dt = ∞, (1.17)

respectively. We omit the hypothesis (C3) in [43] and our assumptions on f and H are weaker than the
ones in [43]. Moreover, we note the conditions (1.12), (1.16), and (1.17) are strictly weaker than the
conditions (1.13)–(1.15), respectively (the reasons are given by Remark 2.4 and Proposition 3.4).
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2. The main results

Theorem 2.1. Let H, f satisfy (H1)–(H2) and (1.12) hold, then for any a0 ∈ R
+, Eq (1.1) has a radial

q-k-convex positive solution ω satisfying

a0 + ( f (a0))1/(q−1)kH(s) ≤ ω(s) ≤ T −1
0 (sA(s)), s ∈ [0,R), (2.1)

where

H(s) :=
∫ s

0

[
tk−N

∫ t

0

(
N − 1
k − 1

)−1

kτN−1H(τ)dτ
]1/(q−1)k

dt, s ∈ [0,R), (2.2)

A(s) :=
( (p − 1)k + 1

(p − 1)k

(
N − 1
k − 1

)−1

k
)1/((q−1)k+1)

max
t∈[0,s]

(tk−1H(t))1/((q−1)k+1), (2.3)

T −1
0 is the inverse of T0 given by

T0(t) :=
∫ t

a0

( ∫ τ

0
f (ς)dς

)−1/((q−1)k+1)

dτ, t ≥ a0. (2.4)

In particular, ifH(R) = ∞, then ω(R) = ∞.

Remark 2.2. If R < ∞, thenH(R) = ∞ is equivalent to∫ R

0

( ∫ τ

0
H(ς)dς

)1/(q−1)k

dτ = ∞.

Theorem 2.3. Let R = ∞, H, f satisfy (H1)–(H2) and (1.12) be false. If H (s) > 0 for s ∈ (0,∞) and
there exists some positive constant s0 such that∫ ∞

s0

(
min

t∈[s0,s]
H (t)

)1/((q−1)k+1)ds = ∞,

where H is given by (1.11). Then (1.1) has no radial q-k-convex positive large solution.

Remark 2.4. From Proposition 3.4 (see page 8), we see that if (1.13) holds, then (1.12) holds. But,
the converse of the result is not true. A basic example is

f (s) = s(q−1)k(ln s)(q−1)k+1, s ≥ s0 for some large constant s0 > 1.

By a simple calculation, we see that∫ s

s0

f (τ)dτ ∼
s(q−1)k+1(ln s)(q−1)k+1

(q − 1)k + 1
, s→ ∞.

This implies that
∫ ∞

1
( f (τ))−1/(q−1)kdτ < ∞ and (1.12) holds. So, the condition (1.12) is strictly

weaker than (1.13).
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Theorem 2.5. Let H, L, f , and g satisfy (H1)–(H2) and (1.16) hold, then for any a0 ∈ R
+, (1.2) has a

radial q-k-convex positive solution (ω, υ) satisfying
a0

2
+

(
f
(a0

2
))1/(q−1)k

H(s) ≤ ω(s) ≤ T −1
1 (sB(s)), s ∈ [0,R),

a0

2
+

(
g
(a0

2
))1/(q−1)k

L(s) ≤ υ(s) ≤ T −1
1 (sB(s)), s ∈ [0,R),

whereH is given by (2.2) and

L(s) :=
∫ s

0

[
tk−N

∫ t

0

(
N − 1
k − 1

)−1

kτN−1L(τ)dτ
]1/(q−1)k

dt, s ∈ [0,R), (2.5)

B(s) :=
( (q − 1)k + 1

(q − 1)k

(
N − 1
k − 1

)−1

k
)1/((q−1)k+1)(

max
t∈[0,s]

(tk−1H(t))1/((q−1)k+1)

+ max
t∈[0,s]

(tk−1L(t))1/((q−1)k+1)
)
,

(2.6)

T −1
1 is the inverse of T1 given by

T1(t) :=
∫ t

a0

( ∫ τ

0
f (ς) + g(ς)dς

)−1/((q−1)k+1)

dτ. (2.7)

In particular, ifH(R) = ∞, then ω(R) = ∞; if L(R) = ∞, then υ(R) = ∞.

Theorem 2.6. Let H, L satisfy (H1), f1, f2, g1, and g2 satisfy (H3), then for any a0 ∈ R
+, (1.3) has a

radial q-k-convex positive solution (ω, υ) satisfying
a0

2
+

(
f1
(a0

2
)
f2
(a0

2
))1/(q−1)k

H(s) ≤ ω(s) ≤ T −1
2 (sB(s)), s ∈ [0,R),

a0

2
+

(
g1

(a0

2
)
g2

(a0

2
))1/(q−1)k

L(s) ≤ v(s) ≤ T −1
2 (sB(s)), s ∈ [0,R),

whereH , L, and B are given by (2.2), (2.5), and (2.6), and T −1
2 is the inverse of T2 given by

T2(t) :=
∫ t

a0

( ∫ τ

0
f1(ς) f2(ς) + g1(ς)g2(ς)dς

)−1/((q−1)k+1)

dτ. (2.8)

In particular, ifH(R) = ∞, then ω(R) = ∞; if L(R) = ∞, then υ(R) = ∞.

Remark 2.7. By the same argument as Remark 2.4, we see that (1.16) is strictly weaker than (1.14),
and (1.17) is strictly weaker than (1.15).

3. Preliminary results

Definition 3.1. The q-k-convex function in DR is defined as below: if

ω ∈ Φq,k(DR) :=
{
ω ∈ C2(DR \ {0}) ∩C1(DR) : |Dω|q−2Dω ∈ C1(DR),
the eigenvalue λ = (λ1, · · · , λN) of (Di(|Dω|q−2D jω))i, j=1,··· ,N

belongs to ∈ Γk
}
,

where Γk :=
{
λ ∈ RN : S i(λ) > 0, i = 1, · · · , k

}
. Especially, if ω ∈ Φ2,k(DR) ∩ C2(DR), then ω is the

k-convex function.
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By Lemmas 1 and 2 and Corollary 1 of Fan et al. in [41], we obtain the following lemma:

Lemma 3.2. Let H, L, f , and g satisfy (H1)–(H2), a0 be a positive constant, and ζ0, ζ, η ∈ C0[0,R) ∩
C1(0,R) satisfy the following equation and system:

ζ′0(s) =
(
sk−N

∫ s

0

(
N − 1
k − 1

)−1

ktN−1H(t) f (ζ0(t))dt
)1/(q−1)k

, s ∈ (0,R), ζ0(0) = a0

and 
ζ′(s) =

(
sk−N

∫ s

0

(
N−1
k−1

)−1
ktN−1H(t) f (η(t))dt

)1/(q−1)k
, s ∈ (0,R),

η′(s) =
(
sk−N

∫ s

0

(
N−1
k−1

)−1
ktN−1L(t)g(ζ(t))dt

)1/(q−1)k
, s ∈ (0,R),

ζ(0) = η(0) = a0
2 ,

(3.1)

then ζ0, ζ, η ∈ C2(0,R) ∩C1[0,R) satisfy ζ0(0) = a0, ζ
′
0(0) = 0,(

N − 1
k − 1

)( (ζ′0(s))q−1

s

)k−1

((ζ′0(s))q−1)′ +
(
N − 1

k

)( (ζ′0(s))q−1

s

)k

= H(s) f (ζ0(s)), s ∈ (0,R),
(3.2)


(

N−1
k−1

)( (ζ′(s))q−1

s

)k−1((ζ′(s))q−1)′ +
(

N−1
k

)( (ζ′(s))q−1

s

)k
= H(s) f (η(s)), s ∈ (0,R),(

N−1
k−1

)( (η′(s))q−1

s

)k−1((η′(s))q−1)′ +
(

N−1
k

)( (η′(s))q−1

s

)k
= L(s)g(ζ(s)), s ∈ (0,R),

ζ(0) = η(0) = a0
2 , ζ

′(0) = η′(0) = 0,

(3.3)

and ω0(x) = ζ0(s) and (ω(x), υ(x)) = (ζ(s), η(s)) are, respectively, the radial q-k-convex solutions to
the Eq (1.1) and system (1.2).

Remark 3.3. In Lemma 3.2, if f (η(s)) is replaced by f1(η(s)) f2(ζ(s)) and g(ζ(s)) is replaced by
g1(ζ(s))g2(η(s)) in (3.1) and (3.3), where f1, f2, g1, g2 are given by (H3), then by Lemmas 1 and 2
of Fan et al. [41] we see that this conclusion still holds.

Proposition 3.4. Let h ∈ C([0,∞), [0,∞)) be increasing on (0,∞). If∫ ∞

1

( ∫ t

0
h(τ)dτ

)−1/((q−1)k+1)

dt < ∞, then
∫ ∞

1

dt
(h(t))1/(q−1)k < ∞.

Proof. The proof is divided into two steps.
Step 1. We show that for any positive constant M > 0, there exists t∗ > 0 such that for any t ≥ t∗,

h(t)
t(q−1)k ≥ M. (3.4)

Otherwise, there exist a positive constant c0 > 0 and an increasing sequence {ti}
∞
i=0 of real numbers

satisfying limi→∞ ti = ∞ and 2ti−1 ≤ ti, i = 1, 2, · · ·, such that h(ti)
t(q−1)k
i
≤ c0. This, together with

∫ t

0
h(τ)dτ ≤ th(t) ≤ tih(ti), t ∈ [0, ti]
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shows that

∞ >

∫ ∞

t0

( ∫ t

0
h(τ)dτ

)−1/((q−1)k+1)

dt =
∞∑
i=i

∫ ti

ti−1

( ∫ t

0
h(τ)dτ

)−1/((q−1)k+1)

dt

≥

∞∑
i=i

∫ ti

ti−1

(th(t))−1/((q−1)k+1)dt

≥

∞∑
i=1

(tih(ti))−1/((q−1)k+1)(ti − ti−1)

≥

∞∑
i=1

c
− 1

(q−1)k+1

0 (1 − (ti−1/ti)) = ∞.

This is a contradiction. So, the first step is finished.
Step 2. By (3.4), we see that ∫ t

0
h(τ)dτ ≤ th(t) ≤

(h(t))
((q−1)k+1)

(q−1)k

M1/k , t ≥ t∗.

So, we obtain ∫ ∞

t∗

( ∫ t

0
h(τ)dτ

)−1/((q−1)k+1)

dt ≥ M−1/k
∫ ∞

t∗

dt
(h(t))1/(q−1)k .

The proof is finished.

4. Proof of Theorem 2.1

Proof. Let T0 be given by (2.4). Since

T ′0(t) =
( ∫ t

0
f (τ)dτ

)−1/((q−1)k+1)

> 0, t ≥ a0,

we can obtain that T0 has the inverse T −1
0 , which is increasing on [0,∞) with

T −1
0 (0) = a0 and T −1

0 (∞) := lim
t→∞
T −1

0 (t) = ∞. (4.1)

We consider the following initial value problem:
(

N−1
k−1

)( (ω′(s))q−1

s

)k−1((ω′(s))q−1)′ +
(

N−1
k

)( (ω′(s))q−1

s

)k

= k−1
(

N−1
k−1

)
s1−N(sN−k(ω′(s))(q−1)k)′ = H(s) f (ω(s)), s ∈ (0,R),

u(0) = a0, u′(0) = 0.

(4.2)

Problem (4.2) is equivalent to the integral equation

ω(s) = a0 +

∫ s

0

(
tk−N

∫ t

0

(
N − 1
k − 1

)−1

kτN−1H(τ) f (ω(τ))dτ
)1/(q−1)k

dt, s ∈ [0,R).
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Now, by constructing some iterative approximation sequence, we prove the existence of q-k-convex
solutions to problem (4.2). We assume that {ωm} is the sequence of positive continuous functions
defined by

ω1(s) = a0,

ω2(s) = a0 +

∫ s

0

(
tk−N

∫ t

0

(
N − 1
k − 1

)−1

kτN−1H(τ) f (ω1(τ))dτ
)1/(q−1)k

dt,

· · ·

ωm(s) = a0 +

∫ s

0

(
tk−N

∫ t

0

(
N − 1
k − 1

)−1

kτN−1H(τ) f (ωm−1(τ))dτ
)1/(q−1)k

dt,

· · ·

The conditions (H1)–(H2) imply that

ω′m(s) =
(
sk−N

∫ s

0

(
N − 1
k − 1

)−1

kτN−1H(τ) f (ωm−1(τ))dτ
)1/(q−1)k

> 0, s > 0

and
ωm(s) > a0 + ( f (a0))1/(q−1)kH(s). (4.3)

So, we see that ωm is a positive increasing function and {ωm} is an increasing sequence. These facts,
together with (4.2), imply that for any s ∈ (0,R), we have

(sN−k(ω′m(s))(q−1)k)′ =
(
N − 1
k − 1

)−1

ksN−1H(s) f (ωm−1(s))

≤

(
N − 1
k − 1

)−1

ksN−1H(s) f (ωm(s)), m ≥ 1

and

(sN−k(ω′m(s))(q−1)k)′ω′m(s) ≤
(
N − 1
k − 1

)−1

ksN−1H(s) f (ωm(s))ω′m(s), m ≥ 1. (4.4)

For any R ∈ (0,R), we set

HR := max
0≤s≤R

(
N − 1
k − 1

)−1

ksk−1H(s). (4.5)

This fact, combined with (4.4), shows that

((q − 1)k + 1)(ω′m)(q−1)kω′′m ≤
(q − 1)k + 1

(q − 1)k
HR f (ωm)ω′m on (0,R]. (4.6)

Moreover, by direct calculation, we see that

lim
s→0

(ω′m(s))(q−1)kω′′m(s) = 0.

Integrating (4.6) from τ (τ ∈ (0,R)) to s and letting τ→ 0, we obtain

(ω′m(s))(q−1)k+1 ≤
(q − 1)k + 1

(q − 1)k
HR

∫ ωm(s)

a0

f (t)dt, s ∈ [0,R]. (4.7)

Electronic Research Archive Volume 32, Issue 8, 5090–5108.



5100

Furthermore, we arrive at

T0(ωm(R)) ≤
∫ ωm(R)

a0

( ∫ t

a0

f (τ)dτ
)−1/((q−1)k+1)

dt

≤

( (q − 1)k + 1
(q − 1)k

HR

)1/((q−1)k+1)

R = A(R)R,

where A is given by (2.3). It is clear that T0(ωm) ≤ A(R)R on [0,R]. It follows from (4.1) that

ωm ≤ T
−1
0 (A(R)R) on [0,R]. (4.8)

This implies that {ωm} is a uniformly bounded sequence on [0,R] for any R ∈ [0,R). On the other
hand, it follows from (4.7) and (4.8) that {ω′m} is also uniformly bounded on [0,R]. We conclude by
Arzela–Ascoli’s theorem that there is a subsequence of {ωm}, denoted by itself, such that ωm → ω

on [0,R]. The arbitrariness of R and Lemma 3.2 imply that ω is a positive q-k-convex solution to
problem (4.2). It follows from (4.3) and (4.8) that (2.1) holds. The proof is finished.

5. Proof of Theorem 2.3

Proof. Suppose ω is a positive q-k-convex radial large solution. We will derive a contradiction. By
Lemma 3.2, we see that

ω′(s) =
(
sk−N

∫ s

0

(
N − 1
k − 1

)−1

ktN−1H(t) f (ω(t))dt
)1/(q−1)k

> 0, s ∈ (0,R),

i.e.,

(ω′(s))(q−1)k = sk−N
∫ s

0

(
N − 1
k − 1

)−1

ktN−1H(t) f (ω(t))dt.

Furthermore, we have(
N − 1

k

)( (ω′(s))q−1

s

)k

≤ s−N f (ω(s))

(
N−1

k

)(
N−1
k−1

)k
∫ s

0
tN−1H(t)dt

= (N − k)2s−N f (ω(s))
∫ s

0
tN−1H(t)dt.

(5.1)

Since ω satisfies Eq (3.2), we obtain by (5.1) that

(ω′(s))(q−1)(k−1)((ω′(s))q−1)′ ≥
f (ω(s))(

N−1
k−1

) H (s), s ∈ (0,R),

where H is given by (1.11). Multiplying both sides of the above inequality by ω′(s), we have

(q − 1)(ω′(s))(q−1)kω′′(s) ≥
f (ω(s))ω′(s)(

N−1
k−1

) H (s), s ∈ (0,R),
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i.e.,
q − 1

(q − 1)k + 1
((ω′(s))(q−1)k+1)′ ≥

f (ω(s))ω′(s)(
N−1
k−1

) H (s), s ∈ (0,R).

Integrating this inequality from s0 to s, we obtain

(ω′(s))(q−1)k+1 ≥
(q − 1)k + 1

(q − 1)
(

N−1
k−1

) ( min
t∈[s0,s]

H (t)
) ∫ ω(s)

ω(s0)
f (t)dt.

This implies that ∫ ∞

ω(s0)

( ∫ s

ω(s0)
f (t)dt

)−1/((q−1)k+1)

ds

≥

( (q − 1)k + 1

(q − 1)
(

N−1
k−1

) )1/((q−1)k+1) ∫ ∞

s0

(
min

t∈[s0,s]
H (t)

)1/((q−1)k+1)ds = ∞

which is a contradiction to (1.12).

6. Proof of Theorem 2.5

Proof. Let T1 be given by (2.7). It is clear that

T ′1(t) =
( ∫ t

0
f (τ) + g(τ)dτ

)−1/((q−1)k+1)

> 0, t ≥ a0.

It follows that T1 has the inverse T −1
1 , which is increasing on [0,∞) with

T −1
1 (0) = a0 and T −1

1 (∞) := lim
t→∞
T −1

1 (t) = ∞.

We consider the following system:
(

N−1
k−1

)( (ω′(s))q−1

s

)k−1(ω′(s))q−1 +
(

N−1
k

)( (ω′(s))q−1

s

)k
= H(s) f (υ), s ∈ (0,R),(

N−1
k−1

)( (υ′(s))q−1

s

)k−1(υ′(s))q−1 +
(

N−1
k

)( (υ′(s))q−1

s

)k
= L(s)g(ω), s ∈ (0,R),

ω(0) = a0
2 , υ(0) = a0

2 and ω′(0) = υ′(0) = 0.

(6.1)

System (6.1) is equivalent to the integral systemω(s) = a0
2 +

∫ s

0
[tk−N

∫ t

0

(
N−1
k−1

)−1
kτN−1H(τ) f (υ(τ))dτ]1/(q−1)kdt, s ∈ [0,R),

υ(s) = a0
2 +

∫ s

0
[tk−N

∫ t

0

(
N−1
k−1

)−1
kτN−1L(τ)g(ω(τ))dτ]1/(q−1)kdt, s ∈ [0,R).

By a similar argument as in the proof of Theorem 2.1, we construct the iterative approximation
sequence {(ωm, υm)} as below: ω0(s) = a0

2 ,

υ0(s) = a0
2
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and ωm(s) = a0
2 +

∫ s

0
[tk−N

∫ t

0

(
N−1
k−1

)−1
kτN−1H(τ) f (υm−1(τ))dτ]1/(q−1)kdt,

υm(s) = a0
2 +

∫ s

0
[tk−N

∫ t

0

(
N−1
k−1

)−1
kτN−1L(τ)g(ωm−1(τ))dτ]1/(q−1)kdt.

From (H1)–(H2), we obtainω
′
m(s) =

[
sk−N

∫ s

0

(
N−1
k−1

)−1
kτN−1H(τ) f (υm−1(τ))dτ

]1/(q−1)k
> 0, s > 0,

υ′m(s) =
[
sk−N

∫ s

0

(
N−1
k−1

)−1
kτN−1L(τ)g(ωm−1(τ))dτ

]1/(q−1)k
> 0, s > 0

and
ωm(s) > a0/2 + ( f (a0/2))1/(q−1)kH(s), υm(s) > a0/2 + (g(a0/2))1/(q−1)kL(s).

So, we see that ωm and υm are positive increasing functions, and {ωm} and {υm} are increasing
sequences. Furthermore, we have that for any s ∈ (0,R), there hold

(sN−k(ω′m)(q−1)k)′ =
(
N − 1
k − 1

)−1

ksN−1H(s) f (υm−1(s))

≤

(
N − 1
k − 1

)−1

ksN−1H(s) f (υm(s)), m ≥ 1

(6.2)

and

(sN−k(υ′m)(q−1)k)′ =
(
N − 1
k − 1

)−1

ksN−1L(s)g(ωm−1(s))

≤

(
N − 1
k − 1

)−1

ksN−1L(s)g(ωm(s)), m ≥ 1.

(6.3)

For an arbitrary R ∈ (0,R), we define

HR := max
0≤s≤R

(
N − 1
k − 1

)−1

ksk−1H(s) and LR := max
0≤s≤R

(
N − 1
k − 1

)−1

ksk−1L(s). (6.4)

These facts, combined with (6.2) and (6.3), show that

((q − 1)k + 1)(ω′m)(q−1)kω′′m

≤
((q − 1)k + 1)

(q − 1)k
HR f (υm)ω′m

≤
((q − 1)k + 1)

(q − 1)k
HR

(
f (ωm + υm) + g(ωm + υm)

)(
ω′m + υ

′
m
)

on (0,R]

(6.5)

and

((q − 1)k + 1)(υ′m)(q−1)kυ′′m

≤
((q − 1)k + 1)

(q − 1)k
LRg(ωm)υ′m

≤
((q − 1)k + 1)

(q − 1)k
LR

(
f (ωm + υm) + g(ωm + υm)

)(
ω′m + υ

′
m
)

on (0,R].

(6.6)
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Moreover, by direct calculation, we see that

lim
s→0

(ω′m(s))(q−1)kω′′m(s) = 0 and lim
s→0

(υ′m(s))(q−1)kυ′′m(s) = 0. (6.7)

Integrating (6.5) and (6.6) from τ (τ ∈ (0,R)) to s and letting τ→ 0, we obtain

(ω′m(s))(q−1)k+1 ≤
(q − 1)k + 1

(q − 1)k
HR

∫ ωm(s)+υm(s)

a0

f (t) + g(t)dt, s ∈ [0,R]

and

(υ′m(s))(q−1)k+1 ≤
(q − 1)k + 1

(q − 1)k
LR

∫ ωm(s)+υm(s)

a0

f (t) + g(t)dt, s ∈ [0,R].

Furthermore, we arrive at

T1(ωm(R) + υm(R)) ≤
∫ ωm(R)+υm(R)

a0

( ∫ t

a0

f (τ) + g(τ)dτ
)−1/((q−1)k+1)

dt

≤ B(R)R,

where B is given by (2.6). It is clear that

T1(ωm + υm) ≤ B(R)R on [0,R], i.e., ωm + υm ≤ T
−1
1 (B(R)R) on [0,R].

The rest of the proof is similar to the one in Theorem 2.1, so we omit it here. The proof is finished.

7. Proof of Theorem 2.6

Proof. Let T2 be given by (2.8). We have

T ′2(t) =
( ∫ t

0
f1(t) f2(t) + g1(t)g2(t)

)−1/((q−1)k+1)

> 0, t ≥ a0.

It is clear that T2 has the inverse T −1
2 , which is increasing on [0,∞) with

T −1
2 (0) = a0 and T −1

2 (∞) := lim
t→∞
T −1

2 (t) = ∞.

As the proof of Theorem 2.5, we consider the system:

(
N − 1
k − 1

)( (ω′(s))q−1

s
)k−1(ω′(s))q−1 +

(
N − 1

k

)( (ω′(s))q−1

s
)k

= H(s) f1(υ) f2(ω), s ∈ (0,R),(
N − 1
k − 1

)( (υ′(s))q−1

s
)k−1(υ′(s))q−1 +

(
N − 1

k

)( (υ′(s))q−1

s
)k

= L(s)g1(ω)g2(υ), s ∈ (0,R),

ω(0) =
a0

2
, υ(0) =

a0

2
and ω′(0) = υ′(0) = 0.

(7.1)
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System (7.1) is equivalent to the integral system:ω(s) = a0
2 +

∫ s

0
[tk−N

∫ t

0

(
N−1
k−1

)−1
kτN−1H(τ) f1(υ(τ)) f2(ω(τ))dτ]1/(q−1)kdt,

υ(s) = a0
2 +

∫ s

0
[tk−N

∫ t

0

(
N−1
k−1

)−1
kτN−1L(τ)g1(ω(τ))g2(υ(τ))dτ]1/(q−1)kdt,

where s ∈ [0,R). As the proof of Theorem 2.5, we construct the iterative approximation sequence
{(ωm, υm)} as below: ω0(s) = a0

2 ,

υ0(s) = a0
2

and 

ωm(s) =
a0

2
+

∫ s

0

[
tk−N

∫ t

0

(
N − 1
k − 1

)−1

kτN−1H(τ)

× f1(υm−1(τ)) f2(ωm−1(τ))dτ
]1/(q−1)k

dt,

υm(s) =
a0

2
+

∫ s

0

[
tk−N

∫ t

0

(
N − 1
k − 1

)−1

kτN−1L(τ)

× g1(ωm−1(τ))g2(υm−1(τ))dτ
]1/(q−1)k

dt.

From (H1) and (H3), we have

ω′m(s) =
[
sk−N

∫ s

0

(
N − 1
k − 1

)−1

kτN−1H(τ)

× f1(υm−1(τ)) f2(ωm−1(τ))dτ
]1/(q−1)k

> 0, s > 0,

υ′m(s) =
[
sk−N

∫ s

0

(
N − 1
k − 1

)−1

kτN−1L(τ)

× g1(ωm−1(τ))g2(υm−1(τ))dτ
]1/(q−1)k

> 0, s > 0

and ωm(s) > a0/2 +
(
f1(a0/2) f2(a0/2)

)1/(q−1)k
H(s),

υm(s) > a0/2 +
(
g1(a0/2)g2(a0/2)

)1/(q−1)k
L(s).

So, we have that ωm and υm are increasing functions, and {ωm} and {υm} are increasing sequences.
Furthermore, we obtain that for any s ∈ (0,R), there hold

(sN−k(ω′m)(q−1)k)′ =
(
N − 1
k − 1

)−1

ksN−1H(s) f1(υm−1(s)) f2(ωm−1(s))

≤

(
N − 1
k − 1

)−1

ksN−1H(s) f1(υm(s)) f2(ωm(s)), m ≥ 1

and

(sN−k(υ′m)(q−1)k)′ =
(
N − 1
k − 1

)−1

ksN−1L(s)g1(ωm−1(s))g1(υm−1(s))

≤

(
N − 1
k − 1

)−1

ksN−1L(s)g1(ωm(s))g2(υm(s)), m ≥ 1.

Electronic Research Archive Volume 32, Issue 8, 5090–5108.



5105

The above facts imply that for any R ∈ (0,R), we have

((q − 1)k + 1)(ω′m)(q−1)kω′′m

≤
((q − 1)k + 1)

(q − 1)k
HR f1(υm) f2(ωm)ω′m

≤
((q − 1)k + 1)

(q − 1)k
HR

(
f1(ωm + υm) f2(ωm + υm)

+ g1(ωm + υm)g2(ωm + υm)
)(
ω′m + υ

′
m
)

on (0,R]

(7.2)

and

((q − 1)k + 1)(υ′m)(q−1)kυ′′m

≤
((q − 1)k + 1)

(q − 1)k
LRg1(ωm)g2(υm)υ′m

≤
((q − 1)k + 1)

(q − 1)k
LR

(
f1(ωm + υm) f2(ωm + υm)

+ g1(ωm + υm)g2(ωm + υm)
)(
ω′m + υ

′
m
)

on (0,R],

(7.3)

where HR and LR are defined as shown in (6.4). Moreover, by a direct calculation, we see that (6.7)
holds here. Integrating (7.2) and (7.3) from τ (τ ∈ (0,R)) to s and letting τ→ 0, we obtain

(ω′m(s))(q−1)k+1 ≤
(q − 1)k + 1

(q − 1)k
HR

∫ ωm(s)+υm(s)

a0

f1(t) f2(t) + g1(t)g2(t)dt, s ∈ [0,R]

and

(υ′m(s))(q−1)k+1 ≤
(q − 1)k + 1

(q − 1)k
LR

∫ ωm(s)+υm(s)

a0

f1(t) f2(t) + g1(t)g2(t)dt, s ∈ [0,R].

Furthermore, we have

T2(ωm(R) + υm(R))

≤

∫ ωm(R)+υm(R)

a0

( ∫ t

a0

f1(τ) f2(τ) + g1(τ)g2(τ)dτ
)−1/((q−1)k+1)

dt

≤ B(R)R,

where B is given by (2.6). It is clear that

T2(ωm + υm) ≤ B(R)R on [0,R], i.e., ωm + υm ≤ T
−1
2 (B(R)R) on [0,R].

The rest of the proof is similar to the one in Theorem 2.1, so we omit it here. The proof is finished.
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