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Abstract: The aim of this paper is to investigate the optimality conditions for a class of nonsmooth
multiobjective fractional optimization problems subject to vanishing constraints. In particular, neces-
sary and sufficient conditions for (weak) Pareto solution are presented in terms of the Clark subdiffer-
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1. Introduction

Recently, there has been a lot of attention on mathematical programming problems with vanishing
constraints, which serve as a unified framework for several applications in topological optimization
and optimal contral. The optimality conditions and duality theorems of these problems have been
extensively researched since their introduction by Achtziger and Kanzow [1]. Mishra et al. [2] devel-
oped and analyzed dual models and obtained some duality results under differentiable assumptions.
Hu and his co-authors in [3] provided some new dual models based on the dual models proposed
by [2], which do not require computing the index sets. Tung [4] extended the single objective pro-
gramming to multiobjective semi-infinite cases with vanishing constraints and investigated the KKT
optimality conditions and duality results of the Wolfe and Mond–Weir-type dual models for this prob-
lem. Furthermore, Tung [5] established the KKT optimality conditions and the duality theorems for
nonsmooth multiobjective semi-infinite optimization problems with vanishing constraints in terms of
Clarke subdifferentials. By proposing new constraints for ACQ and VC-ACQ, Antczak [6] derived
optimality conditions and duality results for differentiable semi-infinite multiobjective optimization
problems with vanishing constraints. Additionally, Antczak [7] addressed the KKT optimality condi-
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tions for a class of nondifferentiable multiobjective programming problems with vanishing constraints
under the VC-Cottle constraint qualification. However, duality results are not taken into account in [7].
Meanwhile, for directionally differentiable vector optimization problems, Antczak [8] also discussed
the KKT necessary optimality conditions under both ACQ and m-ACQ; the sufficient optimality condi-
tions and Wolfe-type duality theorems were also established under appropriate convexity hypotheses.
Huang and Zhu [9] studied optimality conditions for Borwein proper efficient solutions of nonsmooth
multiobjective optimization problems with vanishing constraints in terms of Clark subdifferential. Guu
et al. [10] provided strong KKT sufficient optimality conditions for multiobjective semi-infinite pro-
gramming problems with vanishing constraints under generalized convexity assumptions. Wang and
Wang [11, 12] established optimality conditions for a class of nonsmooth interval-valued optimization
problems with vanishing constraints, along with duality theorems for the corresponding dual models.
The principal challenge inherent in optimization problems with vanishing constraints stems from the
inclusion of a product of two functions within the constraint conditions. This situation gives rise to two
notable issues: firstly, the feasible set is generally non-convex; secondly, when one of the functions in
the product equals zero, the constraint properties of the other function become ineffective.

A fundamental question here is why we should study optimality conditions and duality in the frame-
work of multiobjective fractional programming problems with vanishing constraints, as well as their
corresponding Mond–Weir and Wolfe-type dual problems. We try to address this question succinctly.
While many studies have been published over the past decade concerning optimization problems with
vanishing constraints, there remains a scarcity of research specifically focused on multiobjective frac-
tional programming problems with vanishing constraints (see [1–12]). Notably, the Mond–Weir and
Wolfe types of dual problems have garnered significant attention in this field due to their practical
applicability.

Due to the fact that in numerous optimization problems, the objective functions are expressed as
quotients of two functions. There are many authors who established optimality conditions and em-
ployed the conditions to search for optimal solutions as well as duality theorems for such vector op-
timization problems (see [13–18]). Kim et al. [13] derived optimality conditions and duality results
for nondifferentiable multiobjective fractional programming. Long [14] discussed similar results for
this type of problem using (C, α, ρ, d)-convexity. Later, under higher-order (C, α, γ, ρ, d)-assumptions,
Dubey et al. [15] established higher-order optimality conditions and duality results for such a problem.
In addition, for nonsmooth fractional multiobjective optimization problems with equality or inequal-
ity constraints, several optimality conditions and duality theorems are studied in [16–18]. We note
that there is relatively little literature on optimality conditions and duality theorems for nonsmooth
multiobjective fractional programming problems with vanishing constraints.

Motivated by the above works, this paper aims to investigate nonsmooth multiobjective fractional
optimization problems with vanishing constraints ( abbreviated as, (FPVC)), and establish necessary
and sufficient optimality conditions for (FPVC). Subsequently, duality theorems of Wolfe type and
Mond–Weir-type for (FPVC) will be formulated. The organization of this paper is outlined as fol-
lows: In Section 2, essential notions and definitions are reviewed for subsequent discussion. Section 3
focuses on the optimality conditions for the (weak) Pareto minimum of (FPVC) subject to VC-Cottle
constraints. Section 4 establishes Wolfe-type and Mond–Weir type dual models for (FPVC) and studies
the weak, strong and converse duality theorems between (FPVC) and its dual problems.
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2. Preliminaries

Let Rn be the n-dimensional Euclidean space. For any a, b ∈ Rn, we define:
(i) a < b⇔ ai < bi for all i = 1, 2, . . . , n;
(ii) a ≦ b⇔ ai ≦ bi for all i = 1, 2, . . . , n;
(iii) a ≤ b⇔ ai ≦ bi for all i = 1, 2, . . . , n and a , b;
(iv) a ≰ b is the negation of a ≤ b .
Row and column vectors will be treated with the same notation in this paper when the interpretation

is obvious.
Let f : Rn → R be a locally Lipschitz function. The Clarke subdifferential of f at x̄ is defined as

follows:
∂c f (x̄) := {ξ ∈ Rn : f ◦(x̄; v) ≥ ⟨ξ, v⟩, ∀v ∈ Rn},

where
f ◦(x̄; v) := lim sup

(x,t)→(x̄,0+)

f (x + tv) − f (x)
t

.

Lemma 2.1. [19] Let f : Rn → R be locally Lipschitz at x̄ ∈ Rn and attain its minimum at x̄. Then
0 ∈ ∂c f (x̄).

Lemma 2.2. [19] Let fk : Rn → R, k ∈ K := {1, . . . , l} be a locally Lipschitz function at a point
x̄ ∈ Rn. Then

∂c(
∑
k∈K

λk fk)(x̄) ⊆
∑
k∈K

λk∂c fk(x̄),

where λk ∈ R. If f (x) := max
k∈K

fk(x), then the function f (x) is also locally Lipschitz at x̄. In addition,

∂c f (x̄) ⊂ conv{∂c fk(x̄) : k ∈ K(x̄)},

where K(x̄) := {k ∈ K : f (x̄) = fk(x̄)}, and conv is an abbreviation for convex hull.

Lemma 2.3. [19] Let f , g : Rn → R be locally Lipschitz functions at x̄ ∈ Rn. Then f g is a locally
Lipschitz function at x̄, and

∂c( f g)(x̄) ⊂ g(x̄)∂c f (x̄) + f (x̄)∂cg(x̄).

If g(x̄) , 0, f
g is also a locally Lipschitz function at x̄, and

∂c

(
f
g

)
(x̄) ⊂

g(x̄)∂c f (x̄) − f (x̄)∂cg(x̄)
g2(x̄)

.

Accordingly, we consider multiobjective fractional optimization with vanishing constraints (FPVC)
as follows:

min F(x) =
(

f1(x)
g1(x)

, . . . ,
fp(x)
gp(x)

)
s.t. h j(x) ≦ 0, j ∈ J = {1, . . . ,m}

Us(x) ≧ 0, s ∈ S = {1, . . . , q}
Us(x)Vs(x) ≦ 0, s ∈ S

where fi, gi, h j,Us,Vs : Rn → R, i ∈ I := {1, . . . , p}, j ∈ J, s ∈ S , are locally Lipschitz functions. For
all i ∈ I, we set fi(x) ≧ 0, gi(x) > 0. The set D stands for the feasible set of problems (FPVC).
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Definition 2.1. Let x̄ ∈ D,
(i) x̄ is said to be a weak Pareto solution for (FPVC) if there is no other x ∈ D such that F(x) < F(x̄).
(ii) x̄ is said to be a Pareto solution for (FPVC) if there is no other x ∈ D such that F(x) ≤ F(x̄).
Now, for any feasible point x̄ ∈ D, we denote the following index sets:

J(x̄) := { j ∈ J | h j(x̄) = 0},

S +(x̄) := {s ∈ S | Us(x̄) > 0},

S 0(x̄) := {s ∈ S | Us(x̄) = 0},

S +0(x̄) := {s ∈ S | Us(x̄) > 0,Vs(x̄) = 0},

S +−(x̄) := {s ∈ S | Us(x̄) > 0,Vs(x̄) < 0},

S 0+(x̄) := {s ∈ S | Us(x̄) = 0,Vs(x̄) > 0},

S 00(x̄) := {s ∈ S | Us(x̄) = 0,Vs(x̄) = 0},

S 0−(x̄) := {s ∈ S | Us(x̄) = 0,Vs(x̄) < 0},

S UV(x̄) := {s ∈ S | Us(x̄)Vs(x̄) = 0}.

Obviously, S 0(x̄) = S 0+(x̄) ∪ S 00(x̄) ∪ S 0−(x̄), S +(x̄) = S +0(x̄) ∪ S +−(x̄), S UV(x̄) = S 0(x̄) ∪ S +0(x̄).

3. Optimality conditions

In the sequel, the KKT-necessary optimality conditions of the (weak) Pareto solution for (FPVC) are
presented. Firstly, we introduce the following VC-Cottle constraint qualification given by Antczak [7].

Definition 3.1. [7] The VC-Cottle constraint qualification is fulfilled at x̄ ∈ D for (FPVC) if either
h j(x̄) < 0, ∀ j ∈ J, Us(x̄) > 0 and Vs(x̄) < 0, ∀s ∈ S or

0 < conv{∂ch j(x̄), j ∈ J(x̄), −∂cUs(x̄), s ∈ S , ∂c(VsUs)(x̄), s ∈ S } i f S 00(x̄) = ∅,
0 < conv{∂ch j(x̄), j ∈ J(x̄), −∂cUs(x̄), s ∈ S , ∂cVs(x̄), s ∈ S } i f S 00(x̄) , ∅.

Theorem 3.1. Suppose that x̄ ∈ D is a weak Pareto solution in (FPVC) and that the VC-Cottle con-
straint qualification is satisfied at x̄. Then there exist α ∈ Rp, β ∈ Rm, γU ∈ Rq and γV ∈ Rq such that
certain conditions hold:

0 ∈
p∑

i=1

αi(∂c fi(x̄) − ri∂cgi(x̄)) +
m∑

j=1

β j∂ch j(x̄) −
q∑

s=1

γU
s ∂cUs(x̄) +

q∑
s=1

γV
s ∂cVs(x̄), (3.1)

β jh j(x̄) = 0, j ∈ J, (3.2)

α ≥ 0, β ≧ 0, (3.3)

γU
s Us(x̄) = 0, s ∈ S , (3.4)

γV
s Vs(x̄) = 0, s ∈ S , (3.5)

γU
s = 0, s ∈ S +(x̄), γU

s ≧ 0, s ∈ S 00(x̄) ∪ S 0−(x̄), γU
s ∈ R, s ∈ S 0+(x̄), (3.6)

γV
s = 0, s ∈ S 0+(x̄) ∪ S 00(x̄) ∪ S 0−(x̄) ∪ S +−(x̄), γV

s ≧ 0, s ∈ S +0(x̄). (3.7)

where ri =
fi(x̄)
gi(x̄) (∀i ∈ I).
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Proof. We define an auxiliary function Ψ(x) : Rn → R, where

Ψ(x) := max
{

fi(x)
gi(x)

−
fi(x̄)
gi(x̄)
, h j(x), −Us(x), Us(x)Vs(x), i ∈ I, j ∈ J, s ∈ S

}
. (3.8)

Since x̄ is a weak Pareto solution of (FPVC), it can be deduced that Ψ(x) ≧ 0 for all x ∈ Rn, and that
Ψ(x̄) = 0. Which implies that Ψ attains its global minimum at x̄. It follows from Lemma 2.1 one has

0 ∈ ∂cΨ(x̄). (3.9)

Furthermore, since

∂c

(
fi(x)
gi(x)

−
fi(x̄)
gi(x̄)

)
= ∂c

(
fi(x)
gi(x)

)
, (3.10)

From Lemma 2.2, one has

∂cΨ(x̄) ⊂ conv
{
∂c

(
fi(x̄)
gi(x̄)

)
, ∂ch j(x̄), −∂cUs(x̄), ∂c(UsVs)(x̄) :

i ∈ I, j ∈ J(x̄), s ∈ S 0(x̄), s ∈ S UV(x̄)} .
(3.11)

Case 1. We suppose that h j(x̄) < 0, ∀ j ∈ J, Us(x̄) > 0 and Vs(x̄) < 0, ∀s ∈ S . Then, by (3.9)

and (3.11), one has 0 ∈ conv
{
∂c

(
fi(x̄)
gi(x̄)

)
: i ∈ I

}
. Then there exist µ ∈ Rp, µ ≥ 0,

p∑
i=1
µi = 1 such that

0 ∈
p∑

i=1
µi∂c

(
fi(x̄)
gi(x̄)

)
.

From Lemma 2.3, one has

∂c

(
fi(x̄)
gi(x̄)

)
⊂

gi(x̄)∂c fi(x̄) − fi(x̄)∂cgi(x̄)
g2

i (x̄)
. (3.12)

Thus,

0 ∈
p∑

i=1

µi
1

gi(x̄)

(
∂c fi(x̄) −

fi(x̄)
gi(x̄)
∂cgi(x̄)

)
.

Setting ri =
fi(x̄)
gi(x̄) and αi = µi

1
gi(x̄) , ∀i ∈ I, we obtain α ≥ 0 and

0 ∈
p∑

i=1

αi (∂c fi(x̄) − ri∂cgi(x̄)) .

Therefore, we have (3.1)–(3.7) by setting β j = 0, j ∈ J, γU
S = 0, s ∈ S +(x̄), γV

S = 0, s ∈ S +−(x̄).
Case 2. If there exists j ∈ J such that h j(x̄) = 0 or s ∈ S such that Us(x̄) = 0 or Vs(x̄) = 0,

then there exist µ ∈ Rp, µ ≧ 0, β ∈ Rm, β ≧ 0, ω ∈ RS 0(x̄), ω ≧ 0 and υ ∈ RS UV (x̄), υ ≧ 0 with∑p
i=1 ui +

∑
j∈J(x̄) β j +

∑
s∈S UV (x̄) vs = 1 such that

0 ∈
p∑

i=1

µi∂c

(
fi(x̄)
gi(x̄)

)
+

∑
j∈J(x̄)

β j∂ch j(x̄) −
∑

s∈S 0(x̄)

ωs∂cUs(x̄) +
∑

s∈S UV (x̄)

υs∂c(UsVs)(x̄). (3.13)
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Therefore, we obtain

0 ∈
p∑

i=1

µi∂c

(
fi(x̄)
gi(x̄)

)
+

m∑
j=1

β j∂ch j(x̄) −
q∑

s=1

ωs∂cUs(x̄) +
q∑

s=1

υs∂c(UsVs)(x̄), (3.14)

where β j = 0, j < J(x̄), ωs = 0, s < S 0(x̄) and υs = 0, s < S UV(x̄). From 2.3.13 in [18], one has

∂c(UsVs)(x̄) ⊂ Vs(x̄)∂cUs(x̄) + Us(x̄)∂cVs(x̄). (3.15)

Let ri =
fi(x̄)
gi(x̄) and αi = µi

1
gi(x̄) for all i ∈ I. Combining (3.12), (3.14), and (3.15), we have

0 ∈
p∑

i=1

αi (∂c fi(x̄) − ri∂cgi(x̄))+
m∑

j=1

β j∂ch j(x̄)−
q∑

s=1

(ωs − υsVs(x̄)) ∂cUs(x̄)+
q∑

s=1

υsUs(x̄)∂cVs(x̄). (3.16)

Now, setting γU
s = ωs − υsVs(x̄) and γV

s = υsUs(x̄) for all s ∈ S , we have

0 ∈
p∑

i=1

αi (∂c fi(x̄) − ri∂cgi(x̄)) +
m∑

j=1

β j∂ch j(x̄) −
q∑

s=1

γU
s ∂cUs(x̄) +

q∑
s=1

γV
s ∂cVs(x̄). (3.17)

The proofs of (3.6) and (3.7) are coupled with Theorem 3.1 in [7]. Then, (3.4) and (3.5) hold. By the
VC-Cottle constraint qualification, we have Lagrange multiplier α is not equal to 0 (i.e., α ≥ 0). In this
case, the conditions (3.1)–(3.7) hold. □

Remark 1. When x̄ is a Pareto solution of (FPVC), the conditions (3.1)–(3.7) hold as well. The proof
of this statement is similar to that of Theorem 1 and is thus omitted in this paper. Further, note that the
conditions (3.1)–(3.7) are KKT necessary optimality conditions due to the fact that α , 0.

Remark 2. It is noted that when gi(x) ≡ 1 (∀i ∈ I), the nonsmooth multiobjective fractional opti-
mization problems with vanishing constraints (FPVC) transforms into the nonsmooth multiobjective
optimization problems with vanishing constraints (MPVC) in [7]. Consequently, Theorem 1 in our
study enhances the corresponding conclusions in [7].

Definition 3.2. The point x̄ ∈ D is called an S-stationary point for (FPVC) if there exist α ∈ Rp,
β ∈ Rm, γU ∈ Rq and γV ∈ Rq not equal to 0, such that the conditions

0 ∈
p∑

i=1

αi(∂c fi(x̄) − ri∂cgi(x̄)) +
m∑

j=1

β j∂ch j(x̄) −
q∑

s=1

γU
s ∂cUs(x̄) +

q∑
s=1

γV
s ∂cVs(x̄), (3.18)

α ≥ 0, β j ≧ 0, j ∈ J(x̄), β j = 0, j < J(x̄), (3.19)

γU
s = 0, s ∈ S +(x̄), γU

s ≧ 0, s ∈ S 00(x̄) ∪ S 0−(x̄), γU
s ∈ R, s ∈ S 0+(x̄), (3.20)

γV
s = 0, s ∈ S 0+(x̄) ∪ S 00(x̄) ∪ S 0−(x̄) ∪ S +−(x̄), γV

s ≧ 0, s ∈ S +0(x̄), (3.21)

hold, where ri =
fi(x̄)
gi(x̄) (∀i ∈ I).

An example is provided to demonstrate the application of Theorem 3.1.
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Example 3.1. Consider the problem (FPVC) with the following parameters: I = {1, 2}, J = {1}. For
all x = (x1, x2) ∈ R2,

min F(x) =
(

f1(x)
g1(x)

,
f2(x)
g2(x)

)
s.t. h1(x) = −x1 − x2 ≦ 0

U1(x) = x2 ≧ 0
U1(x)V1(x) = x2(x1 + |x2| − 1) ≦ 0

where f1(x) = x1 + x2
2, f2(x) = |x1|+ |x2|, g1(x) = 1− x2

1, g2(x) = −3x2
1 + x2 + 2, V1(x) = x1 + |x2| − 1. We

have that D = {(x1, x2) ∈ R2 : −x1 − x2 ≦ 0, x2 ≧ 0, x2(x1 + |x2| − 1) ≦ 0} and x̄ = (0, 0) ∈ D. The sets
J(x̄) = {1}, S 0−(x̄) = {1}, S +0(x̄) = S +−(x̄) = S 0+(x̄) = S 00(x̄) = ∅, and the parameter (r1, r2) = (0, 0).
Thus, we have

∂c( f1 − r1g1)(x̄) = {(1, 0)},

∂c( f2 − r2g2)(x̄) = [−1, 1] × [−1, 1],

∂ch1(x̄) = {(−1,−1)},

∂cU1(x̄) = {(0, 1)},

∂cV1(x̄) = {1} × [−1, 1],

∂c(U1V1)(x̄) = {(0,−1)}.

Since 0 < conv{∂ch1(x̄), −∂cU1(x̄), ∂c(U1V1)(x̄)} when S 00(x̄) = ∅, the VC-Cottle constraint qual-
ification is fulfilled at x̄. Further, there exist α1 =

1
2 , α2 =

1
2 , β1 =

1
2 , γU

1 = 0, γV
1 = 0,

and ξ1 = (1, 0) ∈ ∂c( f1 − r1g1)(x̄), ξ2 = (0, 1) ∈ ∂c( f2 − r2g2)(x̄), ρ1 = (−1,−1) ∈ ∂ch1(x̄),
δ1 = (0, 1) ∈ ∂cU1(x̄), ν1 = (1,−1) ∈ ∂cV1(x̄) satisfying α1ξ1 + α2ξ2 + β1ρ1 − γ

U
1 v1 + γ

V
1 v2 = 0,

that is

0 ∈
2∑

i=1

αi(∂c fi(x̄) − ri∂cgi(x̄)) + β1∂ch1(x̄) − γU
1 ∂cU1(x̄) + γV

1 ∂cV1(x̄).

Hence, the conditions of Theorem 1 are met.

Definition 3.3. Let f : Rn → R be a locally Lipschitz function.
(i) f is said to be generalized quasiconvex at x̄ if, for each x ∈ Rn,

f (x) ≦ f (x̄) =⇒ ⟨η, x − x̄⟩ ≦ 0,∀η ∈ ∂c f (x̄).

(ii) f is said to be strictly generalized quasiconvex at x̄ if, for each x ∈ Rn with x , x̄ ,

f (x) ≦ f (x̄) =⇒ ⟨η, x − x̄⟩ < 0,∀η ∈ ∂c f (x̄).

Lemma 3.1. [8] Let f0 be strictly generalized quasiconvex and f1, f2, . . . , fs be generalized quasi-
convex at x̄. If λ0 > 0 and λl ≧ 0, l = 1, . . . , s, then

∑s
l=0 λl fl is strictly generalized quasiconvex at

x̄.
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Let x̄ ∈ D be an S-stationary point for (FPVC). According to Definition 3.2, if there exist α ∈ Rp,
β ∈ Rm, γU ∈ Rq and γV ∈ Rq not equal to 0, such that (3.18)–(3.21) are fulfilled at x̄, then we introduce
the following denotations:

S U+
0+ (x̄) := {s ∈ S 0+(x̄) | γU

s > 0},

S U−
0+ (x̄) := {s ∈ S 0+(x̄) | γU

s < 0},

S V+
+0 (x̄) := {s ∈ S +0(x̄) | γV

s > 0}.

Theorem 3.2. Let x̄ ∈ D be an S-stationary point for (FPVC). Suppose that the conditions (3.18)–
(3.21) are fulfilled at x̄ and the following assumptions are satisfied:

(a) DV+ :=
⋃

t∈S +0(x̄){x ∈ D\{x̄} | Vs > 0} = ∅ or S V+
+0 (x̄) = ∅,

(b) S U−
0+ (x̄) = ∅.

Additionally, it is assumed that the functions fi, i ∈ I, h j, j ∈ J(x̄), −gi, i ∈ I, −Us, s ∈ S 00(x̄)∪S 0−(x̄)∪
S U+

0+ (x̄) and Vs, s ∈ S +0(x̄) are generalized quasiconvex at x̄. Among the functions fi − rigi, i ∈ I,
h j, j ∈ J(x̄), −Us and Vs, s ∈ S , at least one is strictly generalized quasiconvex at x̄. Then, x̄ is a weak
Pareto solution of (FPVC).

Proof. Given that x̄ ∈ S is an S-stationary point for (FPVC), it follows from Definition 3.2 that there
exist α ∈ Rp, β ∈ Rm, γU ∈ Rq and γV ∈ Rq such that

0 ∈
p∑

i=1

αi(∂c fi(x̄) − ri∂cgi(x̄)) +
m∑

j=1

β j∂ch j(x̄) −
q∑

s=1

γU
s ∂cUs(x̄) +

q∑
s=1

γV
s ∂cVs(x̄),

and (3.19)–(3.21) hold. Then, there are ξi ∈ ∂c fi(x̄) − ri∂cgi(x̄), i ∈ I, ρ j ∈ ∂ch j(x̄), j ∈ J, δs ∈ ∂cUs(x̄)
and νs ∈ ∂cVs(x̄), s ∈ S , such that

0 =
p∑

i=1

αiξi +

m∑
j=1

β jρ j −

q∑
s=1

γU
s δs +

q∑
s=1

γV
s νs. (3.22)

Assuming the contrary, if x̄ is not a weak Pareto solution of (FPVC), then there exists x̃ ∈ S that
satisfies

fi(x̃)
gi(x̃)

−
fi(x̄)
gi(x̄)

< 0.

Therefore, one has
fi(x̃)
gi(x̃)

−
fi(x̄)
gi(x̄)

< 0⇐⇒ fi(x̃) − rigi(x̃) < 0,

where ri =
fi(x̄)
gi(x̄) (∀i ∈ I). Thus, there exists α ∈ Rp, α ≥ 0, such that

p∑
i=1

αi( fi(x̃) − rigi(x̃)) < 0 =
p∑

i=1

αi ( fi(x̄) − rigi(x̄)) . (3.23)

By x̃ ∈ S and Definition 3.2, we have

m∑
j=1

βih j(x̃) ≦
m∑

j=1

βih j(x̄). (3.24)
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According to the conditions (a) and (b), one has

−

q∑
s=1

γU
s Us(x̃) ≦ −

q∑
s=1

γU
s Us(x̄), (3.25)

q∑
s=1

γV
s Vs(x̃) ≦

q∑
s=1

γV
s Vs(x̄). (3.26)

Thus, combining (3.23)–(3.26), we have

p∑
i=1

αi( fi(x̃) − rigi(x̃)) +
m∑

j=1

βih j(x̃) −
q∑

s=1

γU
s Us(x̃) +

q∑
s=1

γV
s Vs(x̃)

<

p∑
i=1

αi( fi(x̄) − rigi(x̄)) +
m∑

j=1

βih j(x̄) −
q∑

s=1

γU
s Us(x̄) +

q∑
s=1

γV
s Vs(x̄).

(3.27)

By the generalized quasiconvex hypotheses of the functions fi and −gi, ∀i ∈ I, it can be deduced
that the function fi − rigi(∀i ∈ I) is generalized quasiconvex at x̄, where ri =

fi(x̄)
gi(x̄) ≧ 0 for all i ∈ I. By

applying Lemma 2.2 , it follows that

p∑
i=1

αi( fi(x) − rigi(x)) +
m∑

j=1

βih j(x) −
q∑

s=1

γU
s Us(x) +

q∑
s=1

γV
s Vs(x)

is strictly generalized quasiconvex at x̄, and

p∑
i=1

αiξi +

m∑
j=1

β jρ j −

q∑
s=1

γU
s δs +

q∑
s=1

γV
s νs

∈∂c

 p∑
i=1

αi( fi(x̄) − rigi(x̄)) +
m∑

j=1

βih j(x̃) −
q∑

s=1

γU
s Us(x̄) +

q∑
s=1

γV
s Vs(x̄)

 .
Therefore, 〈 p∑

i=1

αiξi +

m∑
j=1

β jρ j −

q∑
s=1

γU
s δs +

q∑
s=1

γV
s νs, x̃ − x̄

〉
< 0,

which contradicts (3.22). □

Example 3.2. In Example 3.1, the functions f1, f2, h1, −g1, −g2, −U1 and V1 are generalized quasi-
convex at x̄ on D, gi(x) > 0 and ri =

fi(x̄)
gi(x̄) ≧ 0, ∀i ∈ I. One can see that x̄ = (0, 0) is an S-stationary

point of the problem in Example 3.1. Since S +0(x̄) = S 0+(x̄) = ∅, the conditions (a) and (b) are sat-
isfied. Furthermore, we can verify that h1 is strictly generalized quasiconvex at x̄. In fact, for any
x = (x1, x2) , x̄ satisfying h1(x) ≦ h1(x̄) = 0, then x1 + x2 > 0, and so ⟨η, x− x̄⟩ = −x1 − x2 < 0, where
η ∈ ∂ch1(x̄) = {(−1,−1)}}. Therefore, x̄ = (0, 0) is a weak Pareto solution.
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4. Duality theorems

The aim of this section is to consider the Wolfe and Mond–Weir-type dual problems for (FPVC). We
prove the duality results between (FPVC) and its dual problems under the generalized quasiconvexity
and strictly generalized quasiconvexity assumptions imposed on the functions involved.

Let y ∈ Rn, α ∈ Rp
+\{0}, β ∈ Rm, γU ∈ Rq and γV ∈ Rq. The vector Lagrange function Φ is defined

as follows:

Φ(y, α, β, γU , γV) =
(

f1(y)
g1(y)

, . . . ,
fp(y)
gp(y)

)
+

 m∑
j=1

β jh j(y) −
q∑

s=1

γU
s Us(y) +

q∑
s=1

γV
s Vs(y)

 e,

where e = (1, · · · , 1) ∈ Rp.
For any x̄ ∈ D, the Wolfe-type dual model (DW(x̄)) associated with the problem (FPVC) is defined

as:

(DW(x̄)) Rp
+ −max Φ(y, α, β, γU , γV)

s.t. 0 ∈
p∑

i=1

αi(∂c fi(y) − ri∂cgi(y)) +
m∑

j=1

β j∂ch j(y)

−

q∑
s=1

γU
s ∂cUs(y) +

q∑
s=1

γV
s ∂cVs(y),

α ≥ 0,
p∑

i=1

αi = 1, β j ≧ 0, j ∈ J,

γU
s = υsUs(x̄), υs ≧ 0, s ∈ S ,

γV
s = ωs − υsVs(x̄), ωs ≧ 0, s ∈ S .

Let

ΩW(x̄) = {(y, α, β, γU , γV , υ, ω) : veri f ying the constraints o f (DW(x̄))},

denote the feasible set of (DW(x̄)).
The other Wolfe-type dual model, which does not rely on x̄, is

(DW) Rp
+ −max Φ(y, α, β, γU , γV)

s.t. (y, α, β, γU , γV , υ, ω) ∈ ΩW

where the sets ΩW =
⋂

x̄∈S ΩW(x̄).

Definition 4.1. The point (ỹ, α̃, β̃, γ̃U , γ̃V , υ̃, ω̃) ∈ ΩW is said to be a Pareto solution of (DW), if there is
no (y, α, β, γU , γV , υ, ω) ∈ ΩW satisfying

Φ(ỹ, α̃, β̃, γ̃U , γ̃V) ≤ Φ(y, α, β, γU , γV).

In what follows, weak, strong, and converse duality theorems between (FPVC) and the Wolfe type
duality problem (DW) are given.
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Theorem 4.1. (Weak duality) Let x̄ ∈ D and (y, α, β, γU , γV , υ, ω) ∈ ΩW be any feasible solutions for
(FPVC) and (DW), respectively. If Φ(·, α, β, γU , γV) is strictly generalized quasiconvex at y ∈ Rn, then

F(x̄) ≰ Φ(y, α, β, γU , γV).

Proof. Suppose, contrary to the result, that

F(x̄) ≤ Φ(y, α, β, γU , γV).

That is

F(x̄) ≤ F(y) +
m∑

j=1

β jh j(y) −
q∑

s=1

γU
s Us(y) +

q∑
s=1

γV
s Vs(y), (4.1)

By x̄ ∈ D, it holds that
h j(x̄) = 0, β j ≧ 0, j ∈ J(x̄),

h j(x̄) < 0, β j = 0, j < J(x̄),

−Us(x̄) < 0, γU
s = 0, s ∈ S +(x̄),

Us(x̄) = 0, γU
s ≧ 0, s ∈ S 00(x̄) ∪ S 0−(x̄),

Us(x̄) = 0, γU
s ∈ R, s ∈ S 0+(x̄),

Vs(x̄) > 0, γV
s = 0, s ∈ S 0+(x̄),

Vs(x̄) = 0, γV
s ≧ 0, s ∈ S 00(x̄) ∪ S +0(x̄),

Vs(x̄) < 0, γV
s = 0, s ∈ S 0−(x̄) ∪ S +−(x̄).

Thus,
m∑

j=1

β jh j(x̄) −
q∑

s=1

γU
s Us(x̄) +

q∑
s=1

γV
s Vs(x̄) ≦ 0. (4.2)

In (4.1) and (4.2), we have
Φ(x̄, α, β, γU , γV) ≤ Φ(y, α, β, γU , γV).

By utilizing the strictly generalized quasiconvex at y ∈ Rn of Φ(·, α, β, γU , γV), it can be deduced that
there exist ξ̄i ∈ ∂c fi(y) − ri∂cgi(y), i ∈ I, ρ̄ j ∈ ∂ch j(y), j ∈ J, δ̄s ∈ ∂cUs(y), ν̄s ∈ ∂cVs(y), s ∈ S , such
that 〈 p∑

i=1

αiξ̄i +

m∑
j=1

β jρ̄ j −

q∑
s=1

γU
s δ̄s +

q∑
s=1

γV
s ν̄s, x̄ − y

〉
< 0.

This contradicts the constraint of (DW). □

Theorem 4.2. (Strong duality) Let x̄ ∈ D be a weak Pareto solution of problem (FPVC), and suppose
the VC-Cottle constraint qualification is fulfilled at x̄., then there exist Lagrange multipliers α ∈ Rp,
β ∈ Rm, γU ∈ Rq, γV ∈ Rq, υ ∈ Rq and ω ∈ Rq such that (x̄, α, β, γU , γV , υ, ω) is feasible in (DW)
and F(x̄) = Φ(x̄, α, β, γU , γV). If Φ(·, α, β, γU , γV) is strictly generalized quasiconvex at y ∈ Rn, then
(x̄, α, β, γU , γV , υ, ω) is a Pareto solution of (DW).
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Proof. From the assumptions that x̄ ∈ D and the VC-Cottle constraint qualification holds, there exist
α ∈ Rp, β ∈ Rm, γU ∈ Rq and γV ∈ Rq such that the necessary optimality conditions (Theorem 3.1)
are fulfilled. Then, by the definition of ΩW and (3.1)–(3.7), we conclude that (x̄, α, β, γU , γV , υ, ω) is
feasible in (DW) and

m∑
j=1

β jh j(x̄) −
q∑

s=1

γU
s Us(x̄) +

q∑
s=1

γV
s Vs(x̄) = 0.

Thus, F(x̄) = Φ(x̄, α, β, γU , γV).
Suppose, on the contrary, that (x̄, α, β, γU , γV , υ, ω) is not a Pareto solution of (DW), then we have

(ỹ, α̃, β̃, γ̃U , γ̃V , υ̃, ω̃) such that

Φ(x̄, α, β, γU , γV) ≤ Φ(ỹ, α̃, β̃, γ̃U , γ̃V).

Then, F(x̄) ≤ Φ(ỹ, α̃, β̃, γ̃U , γ̃V), which contradicts Theorem 4.1. □

Theorem 4.3. (Converse duality) Suppose that x̄ ∈ D is a feasible solution of (FPVC),
(y, α, β, γU , γV , υ, ω) is a weak Pareto solution of (DW), and the inequalities

β jh j(y) ≧ 0, ∀ j ∈ J
−γU

s Us(y) ≧ 0, ∀ s ∈ S
γV

s Vs(y) ≧ 0, ∀ s ∈ S
(4.3)

hold, such that y ∈ D. If one of the following assumptions is fulfilled:
(i) Φ(·, α, β, γU , γV) is strictly generalized quasiconvex at y;
(ii) fi ≧ 0, −gi < 0(i ∈ I) are strictly generalized quasiconvex at y, h j, j ∈ J(x̄), −Us, s ∈

S 00(x̄) ∪ S 0−(x̄) ∪ S U+
0+ (x̄) and Vs, s ∈ S +0(x̄) are generalized quasiconvex at x̄,

then y is a Pareto solution in (FPVC).

Proof. Suppose, on the contrary, that y ∈ D is not a Pareto solution in (FPVC). Then, there exists
ỹ ∈ D such that

F(ỹ) ≤ F(y). (4.4)

For the assumption (i), since ỹ and (y, α, β, γU , γV , υ, ω) are feasible points for (FPVC) and (DW),
respectively, combined with (4.2) and (4.3), one gets

m∑
j=1

β jh j(ỹ) −
q∑

s=1

γU
s Us(ỹ) +

q∑
s=1

γV
s Vs(ỹ) ≦

m∑
j=1

β jh j(y) −
q∑

s=1

γU
s Us(y) +

q∑
s=1

γV
s Vs(y),

Hence,
Φ(ỹ, α, β, γU , γV) ≦ Φ(y, α, β, γU , γV).

Due to the fact that Φ(·, α, β, γU , γV) is strictly generalized quasiconvex at y, there exist ξ̄i ∈ ∂c fi(y) −
ri∂cgi(y), i ∈ I, ρ̄ j ∈ ∂ch j(y), j ∈ J, δ̄s ∈ ∂cUs(y) and ν̄s ∈ ∂cVs(y), s ∈ S , such that〈 p∑

i=1

αiξ̄i +

m∑
j=1

β jρ̄ j −

q∑
s=1

γU
s δ̄s +

q∑
s=1

γV
s ν̄s, ỹ − y

〉
< 0.

This contradicts the constraint of (DW).
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For the assumption (ii), since ỹ and (y, α, β, γU , γV , υ, ω) are feasible points for (FPVC) and (DW)
respectively, by (4.3), we have

β jh j(ỹ) ≦ β jh j(y), ∀ j ∈ J
−γU

s Us(ỹ) ≦ −γU
s Us(y), ∀ s ∈ S

γV
s Vs(ỹ) ≦ γV

s Gi(y). ∀ s ∈ S

Thus 
h j(ỹ) ≦ h j(y), ∀ j ∈ J(ỹ)
−Us(ỹ) ≦ −Us(y), ∀ s ∈ S 00(ỹ) ∪ S 0−(ỹ) ∪ S U+

0+ (ỹ)
−Us(ỹ) ≧ −Us(y), ∀ s ∈ S U−

0+ (ỹ)
Vs(ỹ) ≦ Vs(y). ∀ s ∈ S +0(ỹ)

(4.5)

Using the generalized quasiconvex of the functions in assumption (ii) and (4.5), the inequalities〈
ρ̄ j, ỹ − y

〉
≦ 0, β j ≧ 0, ∀ρ̄ j ∈ ∂ch j(y), j ∈ J(ỹ),〈

−δ̄s, ỹ − y
〉
≦ 0, γU

s ≧ 0, ∀δ̄s ∈ ∂cUs(y), s ∈ S 00(ỹ) ∪ S 0−(ỹ) ∪ S U+
0+ (ỹ),〈

−δ̄s, ỹ − y
〉
≧ 0, γU

s < 0, ∀δ̄s ∈ ∂cUs(y), s ∈ S U−
0+ (ỹ),

⟨ν̄s, ỹ − y⟩ ≦ 0, γV
s ≧ 0, ∀ν̄s ∈ ∂cVs(y), s ∈ S +0(ỹ),

hold, that is 〈 m∑
j=1

β jρ̄ j −

q∑
s=1

γU
s δ̄s +

q∑
s=1

γV
s ν̄s, ỹ − y

〉
≦ 0.

Since 0 ∈
p∑

i=1
αi(∂c fi(y) − ri∂cgi(y)) +

m∑
j=1
β j∂ch j(y) −

q∑
s=1
γU

s ∂cUs(y) +
q∑

s=1
γV

s ∂cVs(y), there exists ξ̄i ∈

∂c fi(y) − ri∂cgi(y), i ∈ I, such that 〈 p∑
i=1

αiξ̄i, ỹ − y
〉
≧ 0. (4.6)

By F(ỹ)−F(y) ≤ 0⇐⇒ fi(ỹ)− r̂igi(ỹ) ≤ 0, where r̂i =
fi(y)
gi(y) , ∀i ∈ I. Hence, there exists α ∈ Rp, (α ≥

0), such that
p∑

i=1

αi( fi(ỹ) − r̂igi(ỹ)) ≤ 0 =
p∑

i=1

αi ( fi(y) − r̂igi(y)) . (4.7)

For all i ∈ I, the functions fi ≧ 0 and −gi < 0 are strictly generalized quasiconvex at y and r̂i =
fi(y)
gi(y) ≧ 0, it follows that fi − r̂i ∗ gi (∀i ∈ I) is strictly generalized quasiconvex at y. Then, there exists
ξ̄i ∈ ∂c fi(y) − ri∂cgi(y) (∀i ∈ I) such that 〈 p∑

i=1

αiξ̄i, ỹ − y
〉
< 0.

This contradicts (4.6). □

Electronic Research Archive Volume 32, Issue 8, 5109–5126.



5122

For x̄ ∈ D, the Mond–Weir type dual model (DMW(x̄)) is follows:

(DMW(x̄)) Rp
+ −max F(y)

s.t. 0 ∈
p∑

i=1

αi(∂c fi(y) − ri∂cgi(y)) +
m∑

j=1

β j∂ch j(y)

−

q∑
s=1

γU
s ∂cUs(y) +

q∑
s=1

γV
s ∂cVs(y),

α ≥ 0,
p∑

i=1

αi = 1,

β jh j(y) = 0, β j ≧ 0, j ∈ J,

− γU
s Us(y) ≧ 0, γV

s Vs(y) ≧ 0, s ∈ S ,

γU
s = υsUs(x̄), υs ≧ 0, s ∈ S ,

γV
s = ωs − υsVs(x̄), ωs ≧ 0, s ∈ S .

Let

ΩMW(x̄) = {(y, α, β, γU , γV , υ, ω) : veri f ying the constraints o f (DMW(x̄))},

denote the feasible set of (DMW(x̄)).
The other Mond–Weir type dual model, which does not rely on x̄, is

(DMW) Rp
+ −max F(y)

s.t. (y, α, β, γU , γV , υ, ω) ∈ ΩMW

where ΩMW =
⋂

x̄∈S ΩMW(x̄).

Definition 4.2. The point (ỹ, α̃, β̃, γ̃U , γ̃V , υ̃, ω̃) ∈ ΩMW is said to be a Pareto solution of (DMW), if there
is no (y, α, β, γU , γV , υ, ω) ∈ ΩMW satisfying

F(ỹ) ≤ F(y).

Next, we present the duality theorems between (FPVC) and the Mond–Weir type dual problem
(DMW).

Theorem 4.4. (Weak duality) Let x̄ ∈ D and (y, α, β, γU , γV , υ, ω) ∈ ΩMW be any feasible solutions for
(FPVC) and (DMW), respectively. If one of the following assumptions is fulfilled:

(i) fi ≧ 0, −gi < 0(i ∈ I) are strictly generalized quasiconvex at y,
m∑

j=1
β jh j(·)−

q∑
s=1
γU

s Us(·)+
q∑

s=1
γV

s Vs(·)

is generalized quasiconvex at y;
(ii) fi ≧ 0, −gi < 0(i ∈ I) are strictly generalized quasiconvex at y, h j, j ∈ J(x̄), −Us, s ∈

S 00(x̄) ∪ S 0−(x̄) ∪ S U+
0+ (x̄) and Vs, s ∈ S +0(x̄) are generalized quasiconvex at x̄,

then
F(x̄) ≰ F(y).
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Proof. Suppose, contrary to the result, that

F(x̄) ≤ F(y).

By the strictly generalized quasiconvex at y of fi and −gi (∀i ∈ I), we have that fi − r̂igi(∀i ∈ I) is
strictly generalized quasiconvex at y, where r̂i =

fi(y)
gi(y) ≧ 0. Then, there exists ξ̄i ∈ ∂c fi(y) − ri∂cgi(y) for

all i ∈ I such that 〈 p∑
i=1

αiξ̄i, ỹ − y
〉
< 0. (4.8)

For the assumption (i), since x̄ ∈ D and (y, α, β, γU , γV , υ, ω) ∈ ΩMW , it follows that

m∑
j=1

β jh j(x̄) −
q∑

s=1

γU
s Us(x̄) +

q∑
s=1

γV
s Vs(x̄) ≦

m∑
j=1

β jh j(y) −
q∑

s=1

γU
s Us(y) +

q∑
s=1

γV
s Vs(y).

Since
m∑

j=1
β jh j(·)−

q∑
s=1
γU

s Us(·)+
q∑

s=1
γV

s Vs(·) is generalized quasiconvex at y, there are ρ̄ j ∈ ∂ch j(y), j ∈ J,

δ̄s ∈ ∂cUs(y), ν̄s ∈ ∂cVs(y), s ∈ S , such that〈 m∑
j=1

β jρ̄ j −

q∑
s=1

γU
s δ̄s +

q∑
s=1

γV
s ν̄s, x̄ − y

〉
≦ 0.

According to the condition

0 ∈
p∑

i=1

αi(∂c fi(y) − ri∂cgi(y)) +
m∑

j=1

β j∂ch j(y) −
q∑

s=1

γU
s ∂cUs(y) +

q∑
s=1

γV
s ∂cVs(y),

there exists ξ̄i ∈ ∂c fi(y) − ri∂cgi(y), i ∈ I satisfying〈 p∑
i=1

αiξ̄i, x̄ − y
〉
≧ 0,

which contradicts (4.8).
For the assumption (ii), since x̄ ∈ D and (y, α, β, γU , γV , υ, ω) ∈ ΩMW , it holds that

h j(x̄) ≦ h j(y), ∀ j ∈ J(x̄)
−Us(x̄) ≦ −Us(y), ∀ s ∈ S 00(x̄) ∪ S 0−(x̄) ∪ S U+

0+ (x̄)
−Us(x̄) ≧ −Us(y), ∀ s ∈ S U−

0+ (x̄)
Vs(x̄) ≦ Vs(y). ∀ s ∈ S +0(x̄)

(4.9)

By the generalized quasiconvex of the functions in conditions (ii) and (4.9), the inequalities〈
ρ̄ j, x̄ − y

〉
≦ 0, β j ≧ 0, ∀ρ̄ j ∈ ∂ch j(y), j ∈ J(x̄)〈

−δ̄s, x̄ − y
〉
≦ 0, γU

s ≧ 0, ∀δ̄s ∈ ∂cUs(y), s ∈ S 00(x̄) ∪ S 0−(x̄) ∪ S U+
0+ (x̄)〈

−δ̄s, x̄ − y
〉
≧ 0, γU

s < 0, ∀δ̄s ∈ ∂cUs(y), s ∈ S U−
0+ (x̄)
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⟨ν̄s, x̄ − y⟩ ≦ 0, γU
s ≧ 0, ∀δ̄s ∈ ∂cUs(y), s ∈ S +0(x̄)

hold, that is 〈 m∑
j=1

β jρ̄ j −

q∑
s=1

γU
s δ̄s +

q∑
s=1

γV
s ν̄s, x̄ − y

〉
≦ 0.

The rest of the proof is omitted because it is consistent with assumption (i). □

Theorem 4.5. Let x̄ ∈ D be a weak Pareto solution of the problem (FPVC). The VC-Cottle constraint
qualification holds at x̄. Then, there exist α ∈ Rp, β ∈ Rm, γU ∈ Rq, γV ∈ Rq, ῡ ∈ Rq and β̄ ∈ Rq such
that (x̄, α, β, γU , γV , υ, ω) is feasible in (DMW). If the assumptions of Theorem 4.4 are satisfied, then
(x̄, α, β, γU , γV , υ, ω) is a Pareto solution of (DMW).

Proof. From the assumption that x̄ ∈ D and the VC-Cottle constraint qualification holds at x̄, there
exist α ∈ Rp, β ∈ Rm, γU ∈ Rq, and γV ∈ Rq, such that necessary optimality conditions (Theorem 3.1)
are fulfilled. Then, by the definitions of ΩMW and (3.1)–(3.7), we conclude that (x̄, α, β, γU , γV , υ, ω) is
feasible in (DMW).

Suppose, on the contrary, that (x̄, α, β, γU , γV , υ, ω) is not a Pareto solution of (DW), then we get
(ỹ, α̃, β̃, γ̃U , γ̃V , υ̃, ω̃) ∈ ΩMW such that

F(x̄) ≤ F(ỹ),

which contradicts Theorem 4.4. □

Theorem 4.6. (Converse duality) Let x̄ ∈ D be feasible in (FPVC) and (y, α, β, γU , γV , υ, ω) be a weak
Pareto solution in (DMW) such that y ∈ D. If the hypotheses of Theorem 4.4 hold, then y is a Pareto
solution in (FPVC).

Proof. Suppose on the contrary that y is not a Pareto solution in (FPVC). Then there exists ỹ ∈ D such
that

F(ỹ) ≤ F(y). (4.10)

Since ỹ ∈ D and (y, α, β, γU , γV , υ, ω) are feasible points for (FPVC) and (DMW), respectively, it holds
that F(ỹ) ≰ F(y) by Theorem 4.4, which contradicts to (4.10). □

5. Concluding remarks

The optimality conditions and duality results for the problem (FPVC) with both inequality and
vanishing constraints are presented. Utilizing the Clarke subdifferential, the necessary KKT optimal-
ity conditions are derived under the VC-Cottle constraint. By assuming generalized quasiconvexity
and strictly generalized quasiconvexity, sufficient optimality conditions and duality theorems are es-
tablished. The results in this paper improve the existing ones in [7]. In further research, it will be
interesting to consider the second-order optimality conditions for (FPVC).
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