Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Maximum likelihood-based identification for FIR systems with binary observations and data tampering attacks

  • Received: 08 April 2024 Revised: 17 June 2024 Accepted: 24 June 2024 Published: 28 June 2024
  • The security issue of CPS (cyber-physical systems) is of great importance for their stable operation. Within the framework of system identification, this paper proposed a maximum likelihood estimation algorithm for FIR (finite impulse response) systems with binary observations and data tampering attacks. In the case of data transmission in the communication network being subjected to data tampering attacks after the FIR system sends out data, the objective of this study was to design an algorithm for estimating the system parameters and infer the attack strategies using the proposed algorithm. To begin, the maximum likelihood function of the available data was established. Then, parameter estimation algorithms were proposed for both known and unknown attack strategies. Meanwhile, the convergence condition and convergence proof of these algorithms were provided. Finally, the effectiveness of the designed algorithm was verified by numerical simulations.

    Citation: Xinchang Guo, Jiahao Fan, Yan Liu. Maximum likelihood-based identification for FIR systems with binary observations and data tampering attacks[J]. Electronic Research Archive, 2024, 32(6): 4181-4198. doi: 10.3934/era.2024188

    Related Papers:

    [1] Hassan Okasha, Mazen Nassar, Saeed A. Dobbah . E-Bayesian estimation of Burr Type XII model based on adaptive Type-Ⅱ progressive hybrid censored data. AIMS Mathematics, 2021, 6(4): 4173-4196. doi: 10.3934/math.2021247
    [2] Yahia Abdel-Aty, Mohamed Kayid, Ghadah Alomani . Generalized Bayesian inference study based on type-Ⅱ censored data from the class of exponential models. AIMS Mathematics, 2024, 9(11): 31868-31881. doi: 10.3934/math.20241531
    [3] Amal Hassan, Sudhansu Maiti, Rana Mousa, Najwan Alsadat, Mahmoued Abu-Moussa . Analysis of competing risks model using the generalized progressive hybrid censored data from the generalized Lomax distribution. AIMS Mathematics, 2024, 9(12): 33756-33799. doi: 10.3934/math.20241611
    [4] Abdullah Ali H. Ahmadini, Amal S. Hassan, Ahmed N. Zaky, Shokrya S. Alshqaq . Bayesian inference of dynamic cumulative residual entropy from Pareto Ⅱ distribution with application to COVID-19. AIMS Mathematics, 2021, 6(3): 2196-2216. doi: 10.3934/math.2021133
    [5] Ahmed Elshahhat, Refah Alotaibi, Mazen Nassar . Statistical inference of the Birnbaum-Saunders model using adaptive progressively hybrid censored data and its applications. AIMS Mathematics, 2024, 9(5): 11092-11121. doi: 10.3934/math.2024544
    [6] Refah Alotaibi, Mazen Nassar, Zareen A. Khan, Ahmed Elshahhat . Analysis of Weibull progressively first-failure censored data with beta-binomial removals. AIMS Mathematics, 2024, 9(9): 24109-24142. doi: 10.3934/math.20241172
    [7] Abbarapu Ashok, Nadiminti Nagamani . Adaptive estimation: Fuzzy data-driven gamma distribution via Bayesian and maximum likelihood approaches. AIMS Mathematics, 2025, 10(1): 438-459. doi: 10.3934/math.2025021
    [8] Rashad M. EL-Sagheer, Mohamed S. Eliwa, Khaled M. Alqahtani, Mahmoud El-Morshedy . Bayesian and non-Bayesian inferential approaches under lower-recorded data with application to model COVID-19 data. AIMS Mathematics, 2022, 7(9): 15965-15981. doi: 10.3934/math.2022873
    [9] Abdulhakim A. Al-Babtain, Amal S. Hassan, Ahmed N. Zaky, Ibrahim Elbatal, Mohammed Elgarhy . Dynamic cumulative residual Rényi entropy for Lomax distribution: Bayesian and non-Bayesian methods. AIMS Mathematics, 2021, 6(4): 3889-3914. doi: 10.3934/math.2021231
    [10] Samah M. Ahmed, Abdelfattah Mustafa . Estimation of the coefficients of variation for inverse power Lomax distribution. AIMS Mathematics, 2024, 9(12): 33423-33441. doi: 10.3934/math.20241595
  • The security issue of CPS (cyber-physical systems) is of great importance for their stable operation. Within the framework of system identification, this paper proposed a maximum likelihood estimation algorithm for FIR (finite impulse response) systems with binary observations and data tampering attacks. In the case of data transmission in the communication network being subjected to data tampering attacks after the FIR system sends out data, the objective of this study was to design an algorithm for estimating the system parameters and infer the attack strategies using the proposed algorithm. To begin, the maximum likelihood function of the available data was established. Then, parameter estimation algorithms were proposed for both known and unknown attack strategies. Meanwhile, the convergence condition and convergence proof of these algorithms were provided. Finally, the effectiveness of the designed algorithm was verified by numerical simulations.


    The Poisson distribution is so important among the discrete distributions. Poisson distribution represents the probability of prescribed number of events arising at a fixed time or space interval as these events happen at a predicted constant mean rate and regardless of time after the last one. It's an occurrence. Also the Poisson distribution in other indicated intervals like time, area or volume can be applicable for series of events. Probability mass function (PMF) of Poisson distribution is given by

    P(T=t)=μteμt!,t=0,1,2,...,μ>0. (1.1)

    Sadooghi-Alvandi [1] considered estimation of the parameter of a Poisson distribution using a linex loss function. Zhang et al. [2] computed empirical Bayes estimators of the parameter of the Poisson distribution under Stein's loss function. Li and Hao [3] computed E-Bayesian and hierarchical Bayesian estimators of Poisson distribution parameter under the entropy loss function.

    E-Bayesian estimation was introduced by Han [4] as a simpler method of estimation. Jaheen and Okasha [5] studied E-Bayesian estimate for Burr Type XII model that focuses on type-2 censorship. Karimnezhad et al. [6] considered Bayes, E-Bayes and robust Bayes predicts a potential discovery as a precautionary step Prediction error functions for applications. Gonzalez-Lopez et al. [7] gave the E-Bayesian approximations for device performance and feasible option centered on exponential distribution. The apparatus stability to find parameter dependent on the function with asymmetric loss was proposed by Yousefzadeh [8] for the estimations of E-Bayesian and hierarchical Bayesian. Estimators of E-Bayesian for structural approach based statistical information are obtained by Okasha and Wang [9]. Han [10,12], computed the E-Bayesian estimates for different distributions. Kiapour [13] considered premium estimate and forecast of Bayes, E-Bayes and robust Bayes through square log error loss function. With the help of E-Bayesian method, Okasha [14,15] concerned for calculating estimates for parameters of different distributions for different types of data. Okasha et al. [16] computed E-Bayesian estimators of Burr Type XII distribution based on adaptive Type-II progressive hybrid censored data. Basheer et al. [17] considered E-Bayesian and Hierarchical Bayesian Estimations for the parameter and reliability of the inverse Weibull distribution. E-Bayesian estimates of a simple step stress model for exponential distribution are obtained by Nassar et al. [18]. Athirakrishnan and Abdul-Sathar [19] computed E-Bayesian and hierarchical Bayesian estimates for the scale parameter and reversed hazard rate of inverse Rayleigh distribution. Okasha and Mustafa [20] studied E-Bayesian estimation for Weibull distribution in the case of adaptive Type-I progressive hybrid censored competing risks data.

    The empirical Bayesian analysis considers the case when the parameters of the prior distribution are unknown. This implies that the sampling distribution is identified, however the earlier distribution isn't. The marginal distribution in order to retrieve the prior distribution from representative sample is then used. In this case, hyperparameters are estimated from the random sample, then we used to compute the Bayesian estimators. The empirical Bayes method is introduced in Robbins [21,22,23]. Zhang et al. [24] computed the empirical Bayes estimators of the parameters of the normal distribution with a conjugate normal-inverse-gamma prior. Mikulich-Gilbertson et al. [25] used empirical Bayes predictors from generalized linear mixed models to test and visualize associations among longitudinal outcomes. Martin et al. [26] proposed empirical Bayes posterior concentration in sparse high dimensional linear models. Empirical Bayes estimates in exponential reliability model was computed by Sarhan [27]. Chang and Li [28] proposed empirical Bayes decision rule for classification on defective items in Weibull distribution. The role of empirical Bayes methodology in medical statistics is discussed by van Houwelingen [29]. Jaheen [30] derived empirical Bayes estimators for the parameter of the generalized exponential distribution based on record values. In this paper, we extend the idea of empirical estimation to E-Bayesian estimation. We consider the hyperparameters of the prior parameters are unknown. We use the moment method to estimate this parameters using the random sample. In the case of the classical E-Bayesian estimation we treat the hyperparameters as being known, but in practice the hyperparameters are unknown and therefore it is more critical to use empirical E-Bayesian estimation.

    Based on a complete sample T1,T2,...,Tn of size n, from Poisson distribution, the likelihood function can be written as

    L(t_;μ)=μni=1tienμni=1ti!,t=0,1,2,...,μ>0. (2.1)

    The prior distribution with gamma conjugate for μ, as

    π(μ)=λθΓ(θ)μθ1eλμ;μ>0,θ>0,λ>0. (2.2)

    From (2.1) and (2.2), the posterior distribution function can be obtained as following

    π(μt_)=(λ)θΓ(θ)μθ1eλμ;μ>0,θ>0,λ>0, (2.3)

    where

    λ=n+λ,θ=θ+ni=1ti. (2.4)

    In view of squared error loss function, the Bayes estimator of the parameter μ is suggested as

    ˆμB=θλ. (2.5)

    According to E-Bayesian method, prior parameters θ and λ ought to be chosen to ensure that π(μ) is a lower bound of μ. The differential of π(μ) is given as

    dπ(μ)dμ=λθΓ(θ)μθ2eλμ[(θ1)λμ]. (3.1)

    Then the prior distribution π(μ) is decreasing function for λ>0,0<θ<1, for more details see Han [4].

    By considering θ and λ are independent parameters with bivariate density function

    g(θ,λ)=g1(θ)g2(λ). (3.2)

    Therefore, the E-Bayesian estimator of the parameter μ is given by

    ˆμEB=E(μt_)=DˆμBg(θ,λ)dθdλ. (3.3)

    In this section, E-Bayesian approximation of μ parameter is based on different distributions of θ and λ. The effect of numerous previous distributions on E-Bayesian estimates of μ is explored by these distributions. The distributions of the parameters θ and λ are considered below:

    g1(θ,λ)=1cB(a,b)θa1(1θ)b1,0<θ<1,0<λ<c,g2(θ,λ)=2c2B(a,b)(cλ)θa1(1θ)b1,0<θ<1,0<λ<c,g3(θ,λ)=2λc2B(a,b)θa1(1θ)b1,0<θ<1,0<λ<c.} (3.4)

    For g1(θ,λ), g2(θ,λ) and g3(θ,λ), the E-Bayesian estimators of the parameter μ are given from (2.5), (3.3) and (3.4), respectively, by

    ˆμEB1=1cln(n+cn)(ni=1ti+aa+b), (3.5)
    ˆμEB2=2c(n+ccln(n+cn)1)(ni=1ti+aa+b), (3.6)

    and

    ˆμEB3=2c(1ncln(n+cn))(ni=1ti+aa+b). (3.7)

    Posterior risk for E-Bayesian approximation was introduced first by Han [31], as follows

    ER(ˆμEB)=DR(ˆμB)g(θ,λ)dθdλ=E[R(ˆμB)], (3.8)

    where posterior risk R[ˆμB] of Bayesian estimation is given by

    R(ˆμB)=Var(μ|t_)=E(μ2|t_)[E(μ|t_)]2. (3.9)

    From (2.3) and (3.9) we have

    R(ˆμB)=θ(λ)2, (3.10)

    where θ and λ as in (2.4).

    The E-posterior risk for ˆμEBi(i=1,2,3) from (3.4), (3.8) and (3.10), respectively, are shown by

    ER(ˆμEB1)=1n(n+c)(ni=1ti+aa+b),ER(ˆμEB2)=2c2(cnln(n+cn))(ni=1ti+aa+b),ER(ˆμEB3)=2c2(ln(n+cn)cn+c)(ni=1ti+aa+b).} (3.11)

    This section explores relationship among ˆμEBi and ER(ˆμEBi), i=1,2,3.

    (A) Relations between ˆμEBi, i=1,2,3

    Lemma 1. It leads from (3.5)–(3.7)

    (i) ˆμEB3<ˆμEB1<ˆμEB2.

    (ii) limnˆμEB1=limnˆμEB2=limnˆμEB3.

    Proof. (ⅰ) Eqs (3.5)–(3.7) provide

    ˆμEB1ˆμEB3=ˆμEB2ˆμEB1=1c(ni=1ti+aa+b)[c+2ncln(n+cn)2]. (4.1)

    For 1<y<1, we have ln(1+y)=yy22+y33y44+...=k=1(1)k1ykk. Let y=cn, when 0<c<n, 0<cn<1, we have

    [c+2ncln(n+cn)2]=c+2nc[cn12(cn)2+13(cn)314(cn)4+15(cn)5+...]2=[cn12(cn)2+13(cn)314(cn)4+15(cn)5+...]+[2cn+23(cn)224(cn)3+25(cn)4...]2=(16(cn)216(cn)3)+(36(cn)4215(cn)5)+...=16(cn)2(1cn)+160(cn)4(98cn)+...>0. (4.2)

    From (4.1) and (4.2), we have

    ˆμEB1ˆμEB3=ˆμEB2ˆμEB1>0,

    that is

    ˆμEB3<ˆμEB1<ˆμEB2.

    (ⅱ) From (4.1) and (4.2), we have

    limn(ˆμEB1ˆμEB3)=limn(ˆμEB2ˆμEB1)=1c(ni=1ti+aa+b)limn{16(cn)2(1cn)+160(cn)4(98cn)+...}=0.

    That is, limnˆμEB1=limnˆμEB2=limnˆμEB3.

    (B) Connections between ER(ˆμEBi), i=1,2,3

    Lemma 2. It follows from (3.11) that

    (i) ER(ˆμEB3)<ER(ˆμEB1)<ER(ˆμEB2).

    (ii) limnER(ˆμEB1)=limnER(ˆμEB2)=limnER(ˆμEB3).

    Proof. (ⅰ) From (3.11), we achieve

    [ER(ˆμEB1)][ER(ˆμEB3)]=[ER(ˆμEB2)][ER(ˆμEB1)]=(ni=1ti+aa+b)[2n+cnc(n+c)nc2ln(n+cn)]. (4.3)

    For 1<y<1, we have ln(1+y)=yy22+y33y44+...=k=1(1)k1ykk. Let y=cn, when 0<c<n, 0<cn<1, we have

    2n+cnc(n+c)nc2ln(n+cn)=2n+cnc(n+c)nc2[cn12(cn)2+13(cn)314(cn)4+15(cn)5]=1n(n+c)+1n2[123(cn)]+c2n3[1225(cn2)]+...>0. (4.4)

    Eqs (4.3) and (4.4) imply that

    ER(ˆμEB3)<ER(ˆμEB1)<ER(ˆμEB2).

    (ⅱ) From (4.3) and (4.4), we have

    limn([ER(ˆμEB1)][ER(ˆμEB3]))=limn([ER(ˆμEB2)][ER(ˆμEB1)])=limn[1n(n+c)+1n2[123(cn)]+c2n3[1225(cn2)]+...]=0.

    That is, limnER(ˆμEB1)=limnER(ˆμEB2)=limnER(ˆμEB3). Thus, the proof is complete.

    In this section, we introduce empirical E-Bayesian method (EE-Bayesian). In this method, we consider the case when the parameters a, b and c in (3.4) which are used in E-Bayesian estimation are unknown parameters, we use empirical Bayes approach to get their estimates. The marginal PMF of the random variable T is obtained from (1.1) and (2.2) as

    f(t)=0f(tμ)π(μ)dμ=Γ(t+θ)Γ(t+1)Γ(λ)λθ(λ+1)t+θ;t=0,1,2,.... (5.1)

    Specifically, since θ is a positive integer, marginal distribution of random variable T is a negative binomial distribution, NB(r,p), with parameters

    r=θ,p=λ1+λ. (5.2)

    The estimators of the parameters θ and λ are obtained by using the moment method. To obtain the moment estimators of θ and λ, we need to calculate the first two moments of T, E(T) and E(T2). It is easy to show that

    E(T)=θλ,E(T2)=θ(θ+λ+1)λ2. (5.3)

    Furthermore, the moment estimators can be obtained by equal the population moments with the sample moments as

    E(Tr)=1nni=1Tri. (5.4)

    From (5.3) and (5.4), we obtain the moment estimators of θ and λ, respectively, by

    ˆθm=S21S2S1S21, (5.5)

    and

    ˆλm=S1S2S1S21, (5.6)

    where

    Sl=1nni=1Tli,l=1,2. (5.7)

    Also, to obtain moment estimators of parameters a and b in (3.4), we need to calculate E(θ) and E(θ2), which is easy to show that

    E(θ)=aa+b,E(θ2)=a(a+1)(a+b)(a+b+1). (5.8)

    Then, from (5.8) and applying moment method, we attain moment estimators of parameters a and b, respectively,

    ˆam=A21A1A2A2A21, (5.9)

    and

    ˆbm=(1A1)(A1A2)A2A21, (5.10)

    where

    Ah=1kki=1θhi1kki=1(ˆθmi)h,h=1,2, (5.11)

    where ˆθm is given by (5.5).

    The moment estimators of c for g1(θ,λ), g2(θ,λ) and g3(θ,λ) is given, respectively, by

    ˆcm12kki=1ˆλmi, (5.12)
    ˆcm23kki=1ˆλmi, (5.13)

    and

    ˆcm332kki=1ˆλmi, (5.14)

    where ˆλm, is given by (5.6).

    Then, the EE-Bayesian estimates of the parameter μ for g1(θ,λ), g2(θ,λ) and g3(θ,λ) are given, respectively, by

    ˆμEEB1=1ˆcm1ln(n+ˆcm1n)(ni=1ti+ˆamˆam+ˆbm), (5.15)
    ˆμEEB2=2ˆcm2(n+ˆcm2ˆcm2ln(n+ˆcm2n)1)(ni=1ti+ˆamˆam+ˆbm), (5.16)

    and

    ˆμEEB3=2ˆcm3(1nˆcm3ln(n+ˆcm3n))(ni=1ti+ˆamˆam+ˆbm). (5.17)

    Empirical E-posterior risk related to estimates of EE-Bayesian ˆμEEBi(i=1,2,3) are given from (3.11), by replacing the parameters a, b and c with their corresponding moment estimators

    EER(ˆμEEB1)=1n(n+ˆcm1)(ni=1ti+ˆamˆam+ˆbm),EER(ˆμEEB2)=2ˆc2m2(ˆcm2nln(n+ˆcm2n))(ni=1ti+ˆamˆam+ˆbm),EER(ˆμEEB3)=2ˆc2m3(ln(n+ˆcm3n)ˆcm3n+ˆcm3)(ni=1ti+ˆamˆam+ˆbm).} (5.18)

    In this part, a Monte Carlo modeling is applied for an examination of E-Bayes and EE-Bayesian assessment with the respective projections estimating maximum likelihood.

    Here, Monte Carlo simulation is being established to equate the maximum likelihood and E-Bayesian model specification. It calls the following steps:

    (ⅰ) We generate θ and λ for specified values of previous parameters (a,b) and (0,c) via beta and uniform priors (3.4), individually.

    (ⅱ) Generate μ from gamma density (2.2) for predicted values of θ and λ.

    (ⅲ) For known values of μ in step (2), we generate complete sample of Poisson distribution with PMF (1.1).

    (ⅳ) Maximum likelihood estimate ˆμML and ˆμEBi, i=1,2,3 are computed based on squared loss function.

    (ⅴ) Also we compute ER(ˆμEBi) from (3.11) where i=1,2,3.

    (ⅵ) The output of all results has been analyzed mathematically in three terms with i=1,2,3. First is taken as the average of the estimates ˆμML and ˆμEBi, the second is the estimated risks (ERs) of ˆμML and ˆμEBi, and the third is E-posterior risks ER(ˆμEBi), i=1,2,3. Repetition 10000 times of above steps, then simulation tests are appeared in Tables 13.

    Table 1.  The estimates of ˆμML and ˆμEBi, (i=1,2,3).
    n c (a,b) ˆμML ˆμEB1 ˆμEB2 ˆμEB3
    10 3 (2, 1) 0.6708 0.6449 0.6731 0.6168
    (3, 4) 0.5366 0.5067 0.5289 0.4846
    4 (2, 1) 0.4999 0.4766 0.5033 0.4499
    (3, 4) 0.4032 0.3752 0.3962 0.3542
    30 3 (2, 1) 0.6673 0.6572 0.6676 0.6467
    (3, 4) 0.5368 0.5252 0.5336 0.5169
    4 (2, 1) 0.5002 0.4904 0.5006 0.4802
    (3, 4) 0.4018 0.3906 0.3987 0.3824
    50 3 (2, 1) 0.6689 0.6626 0.6690 0.6562
    (3, 4) 0.5374 0.5302 0.5353 0.5250
    4 (2, 1) 0.5012 0.4950 0.5013 0.4886
    (3, 4) 0.4027 0.3957 0.4007 0.3906
    100 3 (2, 1) 0.6694 0.6661 0.6694 0.6629
    (3, 4) 0.5380 0.5343 0.5370 0.5317
    4 (2, 1) 0.5017 0.4985 0.5017 0.4952
    (3, 4) 0.40330 0.39965 0.40226 0.39704

     | Show Table
    DownLoad: CSV
    Table 2.  Estimated risks (ERs) of ˆμML and ˆμEBi, (i=1,2,3).
    n c (a,b) ˆμML ˆμEB1 ˆμEB2 ˆμEB3
    10 3 (2, 1) 0.0666 0.0515 0.0555 0.0493
    (3, 4) 0.0529 0.0414 0.0441 0.0398
    4 (2, 1) 0.0503 0.0362 0.0397 0.0343
    (3, 4) 0.0400 0.0291 0.0316 0.0276
    30 3 (2, 1) 0.0214 0.0196 0.0201 0.0193
    (3, 4) 0.0178 0.0164 0.0167 0.0161
    4 (2, 1) 0.0167 0.0148 0.0153 0.0145
    (3, 4) 0.0132 0.0118 0.0122 0.0116
    50 3 (2, 1) 0.0134 0.0127 0.0129 0.0125
    (3, 4) 0.0109 0.0103 0.0105 0.0102
    4 (2, 1) 0.0101 0.0094 0.0096 0.0092
    (3, 4) 0.0080 0.0075 0.0076 0.0074
    100 3 (2, 1) 0.0066 0.00639 0.00645 0.00635
    (3, 4) 0.00521 0.00507 0.00511 0.00504
    4 (2, 1) 0.00492 0.00474 0.00479 0.00471
    (3, 4) 0.00399 0.00385 0.00389 0.00382

     | Show Table
    DownLoad: CSV
    Table 3.  The values of ER(ˆμEBi), (i=1,2,3).
    n c (a,b) ER(ˆμEB1) E-R(ˆμEB2) E-R(ˆμEB3)
    10 3 (2, 1) 0.0567 0.0617 0.0518
    (3, 4) 0.0446 0.0485 0.0407
    4 (2, 1) 0.0405 0.0450 0.0359
    (3, 4) 0.0319 0.0354 0.0283
    30 3 (2, 1) 0.0209 0.0216 0.0202
    (3, 4) 0.0167 0.0172 0.0162
    4 (2, 1) 0.0154 0.0160 0.0147
    (3, 4) 0.0122 0.0127 0.0117
    50 3 (2, 1) 0.0129 0.0131 0.0126
    (3, 4) 0.0103 0.0105 0.0101
    4 (2, 1) 0.0095 0.0098 0.0093
    (3, 4) 0.0076 0.0078 0.0074
    100 3 (2, 1) 0.00656 0.00663 0.00649
    (3, 4) 0.00527 0.00532 0.00521
    4 (2, 1) 0.00489 0.00495 0.00482
    (3, 4) 0.00392 0.00397 0.00387

     | Show Table
    DownLoad: CSV

    In order to compare maximum likelihood and approximation of EE-Bayesian design, a Monto Carlo technique is enforced. The subsequent measures are noticed.

    (ⅰ) We construct θ and λ for the desired value of obtained parameters (a,b) and (0,c) by beta and (3.4), independently.

    (ⅱ) Develop μ from gamma calculated density (2.2) for expected values of θ and λ.

    (ⅲ) For recognized values of μ in step (2), we generate complete sample of Poisson distribution with PMF (1.1).

    (ⅳ) Estimations ˆμML and ˆμEEBi, i=1,2,3 are computed by orienting squared loss function.

    (ⅴ) Also we compute EER(ˆμEEBi), i=1,2,3 from (5.18).

    (ⅵ) The efficiency of all findings was examined statistically in three terms. The first is the average of the estimates ˆμML and ˆμEEBi, the second is the estimated risks (ERs) of ˆμML, ˆμEEBi, and the third is empirical E-posterior risks EER(ˆμEEBi), for all i=1,2,3. Simulation runs by repeating 10000 times of above steps are seen in Tables 46.

    Table 4.  The estimates of ˆμML and ˆμEEBi, (i=1,2,3).
    n c (a,b) ˆμML ˆμEEB1 ˆμEEB2 ˆμEEB3
    10 3 (3, 2) 0.6281 0.6285 0.6301 0.6262
    (4, 3) 0.6078 0.6094 0.6109 0.6072
    4 (3, 2) 0.4693 0.4755 0.4766 0.4741
    (4, 3) 0.4547 0.4608 0.4617 0.4594
    30 3 (3, 2) 0.62631 0.62563 0.62587 0.62532
    (4, 3) 0.60590 0.60573 0.605947 0.60544
    4 (3, 2) 0.46938 0.47108 0.47123 0.47089
    (4, 3) 0.45552 0.45716 0.45730 0.45698
    50 3 (3, 2) 0.62671 0.62616 0.62625 0.62604
    (4, 3) 0.60739 0.60714 0.60722 0.60703
    4 (3, 2) 0.46936 0.47032 0.47038 0.47025
    (4, 3) 0.45586 0.45678 0.45684 0.45672
    100 3 (3, 2) 0.62715 0.62682 0.62684 0.62679
    (4, 3) 0.60866 0.60847 0.60849 0.60844
    4 (3, 2) 0.47019 0.47064 0.47065 0.47062
    (4, 3) 0.45601 0.45645 0.45646 0.45643

     | Show Table
    DownLoad: CSV
    Table 5.  Estimated risks (ERs) of ˆμML and ˆμEEBi, (i=1,2,3).
    n c (a,b) ˆμML ˆμEEB1 ˆμEEB2 ˆμEEB3
    10 3 (3, 2) 0.0616 0.0470 0.0472 0.0466
    (4, 3) 0.0596 0.0457 0.0459 0.0454
    4 (3, 2) 0.0463 0.0362 0.0363 0.0359
    (4, 3) 0.0451 0.0353 0.0355 0.0351
    30 3 (3, 2) 0.02063 0.018716 0.018729 0.018700
    (4, 3) 0.01987 0.01807 0.01808 0.01805
    4 (3, 2) 0.01569 0.01438 0.01438 0.01437
    (4, 3) 0.01507 0.01381 0.01382 0.01380
    50 3 (3, 2) 0.01241 0.01170 0.01171 0.01169
    (4, 3) 0.01211 0.01142 0.01143 0.01142
    4 (3, 2) 0.00934 0.008854 0.008855 0.008852
    (4, 3) 0.00911 0.008635 0.008637 0.008633
    100 3 (3, 2) 0.00611 0.005933 0.005934 0.005933
    (4, 3) 0.00597 0.005793 0.005793 0.005792
    4 (3, 2) 0.00457 0.0044478 0.00444779 0.0044480
    (4, 3) 0.00455 0.0044253 0.0044255 0.0044249

     | Show Table
    DownLoad: CSV
    Table 6.  Values of EER(ˆμEEBi), (i=1,2,3).
    n c (a,b) EER(ˆμEEB1) EER(ˆμEEB2) EER(ˆμEEB3)
    10 3 (3, 2) 0.0552 0.0556 0.0546
    (4, 3) 0.0536 0.0540 0.0531
    4 (3, 2) 0.0422 0.0425 0.0418
    (4, 3) 0.0409 0.0412 0.0406
    30 3 (3, 2) 0.019875 0.019897 0.019846
    (4, 3) 0.019260 0.019280 0.019233
    4 (3, 2) 0.015032 0.015045 0.015014
    (4, 3) 0.0145952 0.0146081 0.0145780
    50 3 (3, 2) 0.012159 0.012164 0.012152
    (4, 3) 0.0117963 0.011801 0.011790
    4 (3, 2) 0.009158 0.009161 0.009154
    (4, 3) 0.008898 0.008901 0.008894
    100 3 (3, 2) 0.0061747 0.0061754 0.0061738
    (4, 3) 0.0059957 0.0059963 0.0059949
    4 (3, 2) 0.0046429 0.0046433 0.0046423
    (4, 3) 0.0045037 0.0045040 0.0045031

     | Show Table
    DownLoad: CSV

    Information on the quantity of deaths caused by horse kicks in light of the perception of 10 Prussian cavalry corps for a very long time (proportionally, 200 corps-years) in Figure 1 are issued. Prussian authorities gathered this data during the last year of the nineteenth century to consider the perils that horses presented to fighters, (see Bortkiewicz [32]). Padilla [33] discussed the validity of the model for the given real data set and showed that Poisson distribution fits quite well to it.

    Figure 1.  Bortkiwewicz data on deaths in Prussian cavalry.

    In the present circumstance, possibilities of death because of a kick from a horse are little while. Although the number of troops exposed to this danger is very high. Hence, a Poisson distribution can well match the results. Then, it is possible to approximate the mean amount of deaths per period as

    ˆμ=0×109+1×65+2×22+3×3+4×1200=0.61. (7.1)

    In this section we consider E-Bayesian and EE-Bayesian estimation for parameter μ.

    For the real data that is considered in Figure 1, we obtain E-Bayesian estimates and E-posterior risk for μ. The computational results are recorded in Table 7.

    Table 7.  Estimates ˆμEBi and corresponding values ER(ˆμEBi), (i=1,2,3).
    ˆμEB1 ˆμEB2 ˆμEB3 ER(ˆμEB1) E-R(ˆμEB2) E-R(ˆμEB3)
    0.6110 0.6115 0.6105 0.003047 0.003052 0.003042

     | Show Table
    DownLoad: CSV

    For the real data that is considered in Figure 1, we obtain EE-Bayesian estimates and EE-posterior risk for the parameter μ. The numerical results are listed in Table 8.

    Table 8.  The estimates ˆμEEBi and corresponding values EER(ˆμEBi), (i=1,2,3).
    ˆμEEB1 ˆμEEB2 ˆμEEB3 EER(ˆμEEB1) EER(ˆμEEB2) EER(ˆμEEB3)
    0.60026 0.60031 0.60021 0.0029407 0.002941 0.002900

     | Show Table
    DownLoad: CSV

    This paper describes E-Bayesian and EE-Bayesian methodology which are considered as to find approximation of unknown parameter of Poisson distribution with complete sample. E-Bayesian and EE-Bayesian estimators are implemented under the function of squared error loss and three hyper-parameter distributions. Also, E-posterior and EE-posterior risks are computed. Some statistical properties of E-Bayesian and E-posterior risk estimates relative to squared error loss function are extracted. Via a simulation analysis, a survey of different estimated parameters is carried out. The simulation results indicate that E-Bayesian and EE-Bayesian methods do very well in the estimation of model parameters under minimal mean square defects. Finally, to follow the E-Bayes and EE-Bayes estimator, one individual data set is scrutinized. It is inferred from the mathematical examination that E-Bayesian and EE-Bayesian estimators operate effectively than classical estimators.

    This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program. My sincere gratitude to my professor Zeinhum F. Jaheen for his support and encouragement during the research.

    The author declares there are no conflicts of interest in this paper.



    [1] Y. Ju, M. Yang, C. Chakraborty, L. Liu, Q. Pei, M. Xiao, et al., Reliability–security tradeoff analysis in mmWave Ad Hoc–based CPS, ACM Trans. Sens. Netw., 20 (2024), 1–23. https://doi.org/10.1145/3582556 doi: 10.1145/3582556
    [2] S. K. Mazumder, A. Kulkarni, S. Sahoo, F. Blaabjerg, H. A. Mantooth, J. C. Balda, et al., A review of current research trends in power-electronic innovations in cyber–physical systems, IEEE J. Emerging Sel. Top. Power Electron., 9 (2021), 5146–5163. https://doi.org/10.1109/jestpe.2021.3051876 doi: 10.1109/jestpe.2021.3051876
    [3] J. Guo, J. D. Diao, Prediction-based event-triggered identification of quantized input FIR systems with quantized output observations, Sci. China Inf. Sci., 63 (2020), 112201. https://doi.org/10.1007/s11432-018-9845-6 doi: 10.1007/s11432-018-9845-6
    [4] S. M. Nagarajan, G. G. Deverajan, A. K. Bashir, R. P. Mahapatra, M. S. Al-Numay, IADF-CPS: Intelligent anomaly detection framework towards cyber physical systems, Comput. Commun., 188 (2022), 81–89. https://doi.org/10.1016/j.comcom.2022.02.022 doi: 10.1016/j.comcom.2022.02.022
    [5] R. V. Yohanandhan, R. M. Elavarasan, R. Pugazhendhi, M. Premkumar, L. Mihet-Popa, V. Terzija, A holistic review on cyber-physical power system (CPPS) testbeds for secure and sustainable electric power grid – Part – I: Background on CPPS and necessity of CPPS testbeds, Int. J. Electr. Power Energy Syst., 136 (2022), 107718. https://doi.org/10.1016/j.ijepes.2021.107718 doi: 10.1016/j.ijepes.2021.107718
    [6] S. Kim, K. J. Park, C. Lu, A survey on network security for cyber–physical systems: From threats to resilient design, IEEE Commun. Surv. Tutorials, 24 (2022), 1534–1573. https://doi.org/10.1109/COMST.2022.3187531 doi: 10.1109/COMST.2022.3187531
    [7] J. Ye, A. Giani, A. Elasser, S. K. Mazumder, C. Farnell, H. A. Mantooth, et al., A review of cyber–physical security for photovoltaic systems, IEEE J. Emerging Sel. Top. Power Electron., 10 (2022), 4879–4901. https://doi.org/10.1109/jestpe.2021.3111728 doi: 10.1109/jestpe.2021.3111728
    [8] R. Langner, Stuxnet: Dissecting a cyberwarfare weapon, IEEE Secur. Privacy, 9 (2011), 49–51. https://doi.org/10.1109/MSP.2011.67 doi: 10.1109/MSP.2011.67
    [9] Y. Cherdantseva, P. Burnap, A. Blyth, P. Eden, K. Jones, H. Soulsby, et al., A review of cyber security risk assessment methods for scada systems, Comput. Secur., 56 (2016), 1–27. https://doi.org/10.1016/j.cose.2015.09.009 doi: 10.1016/j.cose.2015.09.009
    [10] A. V. Jha, B. Appasani, A. N. Ghazali, P. Pattanayak, D. S. Gurjar, E. Kabalci, et al., Smart grid cyber-physical systems: Communication technologies, standards and challenges, Wireless Netw., 27 (2021), 2595–2613. https://doi.org/10.1007/s11276-021-02579-1 doi: 10.1007/s11276-021-02579-1
    [11] S. Tan, J. M. Guerrero, P. Xie, R. Han, J. C. Vasquez, Brief survey on attack detection methods for cyber-physical systems, IEEE Syst. J., 14 (2020), 5329–5339. https://doi.org/10.1109/jsyst.2020.2991258 doi: 10.1109/jsyst.2020.2991258
    [12] W. Duo, M. Zhou, A. Abusorrah, A survey of cyber attacks on cyber physical systems: Recent advances and challenges, IEEE/CAA J. Autom. Sin., 9 (2022), 784–800. https://doi.org/10.1109/jas.2022.105548 doi: 10.1109/jas.2022.105548
    [13] D. Ding, Q. L. Han, X. Ge, J. Wang, Secure state estimation and control of cyber-physical systems: A survey, IEEE Trans. Syst. Man Cybern.: Syst., 51 (2021), 176–190. https://doi.org/10.1109/tsmc.2020.3041121 doi: 10.1109/tsmc.2020.3041121
    [14] S. I. Popoola, R. Ande, B. Adebisi, G. Gui, M. Hammoudeh, O. Jogunola, Federated deep learning for zero-day botnet attack detection in IoT-edge devices, IEEE Internet Things J., 9 (2021), 3930–3944. https://doi.org/10.1109/JIOT.2021.3100755 doi: 10.1109/JIOT.2021.3100755
    [15] J. Liu, W. Zhang, T. Ma, Z. Tang, Y. Xie, W. Gui, et al., Toward security monitoring of industrial Cyber-Physical systems via hierarchically distributed intrusion detection, Expert Syst. Appl., 158 (2020), 113578. https://doi.org/10.1016/j.eswa.2020.113578 doi: 10.1016/j.eswa.2020.113578
    [16] B. Li, Y. Wu, J. Song, R. Lu, T. Li, L. Zhao, DeepFed: Federated deep learning for intrusion detection in industrial cyber–physical systems, IEEE Trans. Ind. Inf., 17 (2021), 5615–5624. https://doi.org/10.1109/tii.2020.3023430 doi: 10.1109/tii.2020.3023430
    [17] J. Guo, X. Wang, W. Xue, Y. Zhao, System identification with binary-valued observations under data tampering attacks, IEEE Trans. Autom. Control, 66 (2021), 3825–3832. https://doi.org/10.1109/tac.2020.3029325 doi: 10.1109/tac.2020.3029325
    [18] H. Liang, L. Zhu, F. R. Yu, X. Wang, A cross-layer defense method for blockchain empowered CBTC systems against data tampering attacks, IEEE Trans. Intell. Transp. Syst., 24 (2022), 501–515. https://doi.org/10.1109/tits.2022.3211020 doi: 10.1109/tits.2022.3211020
    [19] D. W. Huang, W. Liu, J. Bi, Data tampering attacks diagnosis in dynamic wireless sensor networks, Comput. Commun., 172 (2021), 84–92. https://doi.org/10.1016/j.comcom.2021.03.007 doi: 10.1016/j.comcom.2021.03.007
    [20] M. M. N. Aboelwafa, K. G. Seddik, M. H. Eldefrawy, Y. Gadallah, M. Gidlund, A machine-learning-based technique for false data injection attacks detection in industrial IoT, IEEE Internet Things J., 7 (2020), 8462–8471. https://doi.org/10.1109/jiot.2020.2991693 doi: 10.1109/jiot.2020.2991693
    [21] K. Yang, H. Wang, H. Wang, L. Sun, An effective intrusion-resilient mechanism for programmable logic controllers against data tampering attacks, Comput. Ind., 138 (2022), 103613. https://doi.org/10.1016/j.compind.2022.103613 doi: 10.1016/j.compind.2022.103613
    [22] M. Elsisi, M. Altius, S. F. Su, C. L. Su, Robust kalman filter for position estimation of automated guided vehicles under cyberattacks, IEEE Trans. Instrum. Meas., 72 (2023), 1–12. https://doi.org/10.1109/tim.2023.3250285 doi: 10.1109/tim.2023.3250285
    [23] X. Y. Kong, G. H. Yang, An intrusion detection method based on self-generated coding technology for stealthy false data injection attacks in train-ground communication systems, IEEE Trans. Ind. Electron., 70 (2023), 8468–8476. https://doi.org/10.1109/tie.2022.3213899 doi: 10.1109/tie.2022.3213899
    [24] J. Zhang, C. Dong, Privacy-preserving data aggregation scheme against deletion and tampering attacks from aggregators, J. King Saud Univ. Comput. Inf. Sci., 35 (2023), 100–111. https://doi.org/10.1016/j.jksuci.2023.03.002 doi: 10.1016/j.jksuci.2023.03.002
    [25] Y. Zhang, Y. Li, Z. Li, Aye: A trusted forensic method for firmware tampering attacks, Symmetry, 15 (2023), 145. https://doi.org/10.3390/sym15010145 doi: 10.3390/sym15010145
    [26] D. Ye, T. Y. Zhang, Summation detector for false data-injection attack in cyber-physical systems, IEEE Trans. Cybern., 50 (2019), 2338–2345. https://doi.org/10.1109/TCYB.2019.2915124 doi: 10.1109/TCYB.2019.2915124
    [27] J. Guo, R. Jia, R. Su, Y. Zhao. Identification of FIR systems with binary-valued observations against data tampering attacks, IEEE Trans. Syst. Man Cybern.: Syst., 53 (2023), 5861–5873. https://doi.org/10.1109/TSMC.2023.3276352 doi: 10.1109/TSMC.2023.3276352
    [28] J. Sun, H. Xiong, S. Zhang, X. Liu, J. Yuan, R. H. Deng, A secure flexible and tampering-resistant data sharing system for vehicular social networks, IEEE Trans. Veh. Technol., 69 (2020), 12938–12950. https://doi.org/10.1109/tvt.2020.3015916 doi: 10.1109/tvt.2020.3015916
    [29] J. Guo, L. Y. Wang, G. Yin, Y. Zhao, J. F. Zhang, Asymptotically efficient identification of FIR systems with quantized observations and general quantized inputs, Automatica, 57 (2015), 113–122. https://doi.org/10.1016/j.automatica.2015.04.009 doi: 10.1016/j.automatica.2015.04.009
    [30] H. T. Sun, C. Peng, T. C. Yang, H. Zhang, W. L. He, Resilient control of networked control systems with stochastic denial of service attacks, Neurocomputing, 270 (2017), 170–177. https://doi.org/10.1016/j.neucom.2017.02.093 doi: 10.1016/j.neucom.2017.02.093
  • This article has been cited by:

    1. Hassan Okasha, Yuhlong Lio, Mohammed Albassam, On Reliability Estimation of Lomax Distribution under Adaptive Type-I Progressive Hybrid Censoring Scheme, 2021, 9, 2227-7390, 2903, 10.3390/math9222903
    2. Shu-Fei Wu, Interval Estimation for the Two-Parameter Exponential Distribution under Progressive Type II Censoring on the Bayesian Approach, 2022, 14, 2073-8994, 808, 10.3390/sym14040808
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(908) PDF downloads(51) Cited by(0)

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog