Citation: Xinchang Guo, Jiahao Fan, Yan Liu. Maximum likelihood-based identification for FIR systems with binary observations and data tampering attacks[J]. Electronic Research Archive, 2024, 32(6): 4181-4198. doi: 10.3934/era.2024188
[1] | Y. Ju, M. Yang, C. Chakraborty, L. Liu, Q. Pei, M. Xiao, et al., Reliability–security tradeoff analysis in mmWave Ad Hoc–based CPS, ACM Trans. Sens. Netw., 20 (2024), 1–23. https://doi.org/10.1145/3582556 doi: 10.1145/3582556 |
[2] | S. K. Mazumder, A. Kulkarni, S. Sahoo, F. Blaabjerg, H. A. Mantooth, J. C. Balda, et al., A review of current research trends in power-electronic innovations in cyber–physical systems, IEEE J. Emerging Sel. Top. Power Electron., 9 (2021), 5146–5163. https://doi.org/10.1109/jestpe.2021.3051876 doi: 10.1109/jestpe.2021.3051876 |
[3] | J. Guo, J. D. Diao, Prediction-based event-triggered identification of quantized input FIR systems with quantized output observations, Sci. China Inf. Sci., 63 (2020), 112201. https://doi.org/10.1007/s11432-018-9845-6 doi: 10.1007/s11432-018-9845-6 |
[4] | S. M. Nagarajan, G. G. Deverajan, A. K. Bashir, R. P. Mahapatra, M. S. Al-Numay, IADF-CPS: Intelligent anomaly detection framework towards cyber physical systems, Comput. Commun., 188 (2022), 81–89. https://doi.org/10.1016/j.comcom.2022.02.022 doi: 10.1016/j.comcom.2022.02.022 |
[5] | R. V. Yohanandhan, R. M. Elavarasan, R. Pugazhendhi, M. Premkumar, L. Mihet-Popa, V. Terzija, A holistic review on cyber-physical power system (CPPS) testbeds for secure and sustainable electric power grid – Part – I: Background on CPPS and necessity of CPPS testbeds, Int. J. Electr. Power Energy Syst., 136 (2022), 107718. https://doi.org/10.1016/j.ijepes.2021.107718 doi: 10.1016/j.ijepes.2021.107718 |
[6] | S. Kim, K. J. Park, C. Lu, A survey on network security for cyber–physical systems: From threats to resilient design, IEEE Commun. Surv. Tutorials, 24 (2022), 1534–1573. https://doi.org/10.1109/COMST.2022.3187531 doi: 10.1109/COMST.2022.3187531 |
[7] | J. Ye, A. Giani, A. Elasser, S. K. Mazumder, C. Farnell, H. A. Mantooth, et al., A review of cyber–physical security for photovoltaic systems, IEEE J. Emerging Sel. Top. Power Electron., 10 (2022), 4879–4901. https://doi.org/10.1109/jestpe.2021.3111728 doi: 10.1109/jestpe.2021.3111728 |
[8] | R. Langner, Stuxnet: Dissecting a cyberwarfare weapon, IEEE Secur. Privacy, 9 (2011), 49–51. https://doi.org/10.1109/MSP.2011.67 doi: 10.1109/MSP.2011.67 |
[9] | Y. Cherdantseva, P. Burnap, A. Blyth, P. Eden, K. Jones, H. Soulsby, et al., A review of cyber security risk assessment methods for scada systems, Comput. Secur., 56 (2016), 1–27. https://doi.org/10.1016/j.cose.2015.09.009 doi: 10.1016/j.cose.2015.09.009 |
[10] | A. V. Jha, B. Appasani, A. N. Ghazali, P. Pattanayak, D. S. Gurjar, E. Kabalci, et al., Smart grid cyber-physical systems: Communication technologies, standards and challenges, Wireless Netw., 27 (2021), 2595–2613. https://doi.org/10.1007/s11276-021-02579-1 doi: 10.1007/s11276-021-02579-1 |
[11] | S. Tan, J. M. Guerrero, P. Xie, R. Han, J. C. Vasquez, Brief survey on attack detection methods for cyber-physical systems, IEEE Syst. J., 14 (2020), 5329–5339. https://doi.org/10.1109/jsyst.2020.2991258 doi: 10.1109/jsyst.2020.2991258 |
[12] | W. Duo, M. Zhou, A. Abusorrah, A survey of cyber attacks on cyber physical systems: Recent advances and challenges, IEEE/CAA J. Autom. Sin., 9 (2022), 784–800. https://doi.org/10.1109/jas.2022.105548 doi: 10.1109/jas.2022.105548 |
[13] | D. Ding, Q. L. Han, X. Ge, J. Wang, Secure state estimation and control of cyber-physical systems: A survey, IEEE Trans. Syst. Man Cybern.: Syst., 51 (2021), 176–190. https://doi.org/10.1109/tsmc.2020.3041121 doi: 10.1109/tsmc.2020.3041121 |
[14] | S. I. Popoola, R. Ande, B. Adebisi, G. Gui, M. Hammoudeh, O. Jogunola, Federated deep learning for zero-day botnet attack detection in IoT-edge devices, IEEE Internet Things J., 9 (2021), 3930–3944. https://doi.org/10.1109/JIOT.2021.3100755 doi: 10.1109/JIOT.2021.3100755 |
[15] | J. Liu, W. Zhang, T. Ma, Z. Tang, Y. Xie, W. Gui, et al., Toward security monitoring of industrial Cyber-Physical systems via hierarchically distributed intrusion detection, Expert Syst. Appl., 158 (2020), 113578. https://doi.org/10.1016/j.eswa.2020.113578 doi: 10.1016/j.eswa.2020.113578 |
[16] | B. Li, Y. Wu, J. Song, R. Lu, T. Li, L. Zhao, DeepFed: Federated deep learning for intrusion detection in industrial cyber–physical systems, IEEE Trans. Ind. Inf., 17 (2021), 5615–5624. https://doi.org/10.1109/tii.2020.3023430 doi: 10.1109/tii.2020.3023430 |
[17] | J. Guo, X. Wang, W. Xue, Y. Zhao, System identification with binary-valued observations under data tampering attacks, IEEE Trans. Autom. Control, 66 (2021), 3825–3832. https://doi.org/10.1109/tac.2020.3029325 doi: 10.1109/tac.2020.3029325 |
[18] | H. Liang, L. Zhu, F. R. Yu, X. Wang, A cross-layer defense method for blockchain empowered CBTC systems against data tampering attacks, IEEE Trans. Intell. Transp. Syst., 24 (2022), 501–515. https://doi.org/10.1109/tits.2022.3211020 doi: 10.1109/tits.2022.3211020 |
[19] | D. W. Huang, W. Liu, J. Bi, Data tampering attacks diagnosis in dynamic wireless sensor networks, Comput. Commun., 172 (2021), 84–92. https://doi.org/10.1016/j.comcom.2021.03.007 doi: 10.1016/j.comcom.2021.03.007 |
[20] | M. M. N. Aboelwafa, K. G. Seddik, M. H. Eldefrawy, Y. Gadallah, M. Gidlund, A machine-learning-based technique for false data injection attacks detection in industrial IoT, IEEE Internet Things J., 7 (2020), 8462–8471. https://doi.org/10.1109/jiot.2020.2991693 doi: 10.1109/jiot.2020.2991693 |
[21] | K. Yang, H. Wang, H. Wang, L. Sun, An effective intrusion-resilient mechanism for programmable logic controllers against data tampering attacks, Comput. Ind., 138 (2022), 103613. https://doi.org/10.1016/j.compind.2022.103613 doi: 10.1016/j.compind.2022.103613 |
[22] | M. Elsisi, M. Altius, S. F. Su, C. L. Su, Robust kalman filter for position estimation of automated guided vehicles under cyberattacks, IEEE Trans. Instrum. Meas., 72 (2023), 1–12. https://doi.org/10.1109/tim.2023.3250285 doi: 10.1109/tim.2023.3250285 |
[23] | X. Y. Kong, G. H. Yang, An intrusion detection method based on self-generated coding technology for stealthy false data injection attacks in train-ground communication systems, IEEE Trans. Ind. Electron., 70 (2023), 8468–8476. https://doi.org/10.1109/tie.2022.3213899 doi: 10.1109/tie.2022.3213899 |
[24] | J. Zhang, C. Dong, Privacy-preserving data aggregation scheme against deletion and tampering attacks from aggregators, J. King Saud Univ. Comput. Inf. Sci., 35 (2023), 100–111. https://doi.org/10.1016/j.jksuci.2023.03.002 doi: 10.1016/j.jksuci.2023.03.002 |
[25] | Y. Zhang, Y. Li, Z. Li, Aye: A trusted forensic method for firmware tampering attacks, Symmetry, 15 (2023), 145. https://doi.org/10.3390/sym15010145 doi: 10.3390/sym15010145 |
[26] | D. Ye, T. Y. Zhang, Summation detector for false data-injection attack in cyber-physical systems, IEEE Trans. Cybern., 50 (2019), 2338–2345. https://doi.org/10.1109/TCYB.2019.2915124 doi: 10.1109/TCYB.2019.2915124 |
[27] | J. Guo, R. Jia, R. Su, Y. Zhao. Identification of FIR systems with binary-valued observations against data tampering attacks, IEEE Trans. Syst. Man Cybern.: Syst., 53 (2023), 5861–5873. https://doi.org/10.1109/TSMC.2023.3276352 doi: 10.1109/TSMC.2023.3276352 |
[28] | J. Sun, H. Xiong, S. Zhang, X. Liu, J. Yuan, R. H. Deng, A secure flexible and tampering-resistant data sharing system for vehicular social networks, IEEE Trans. Veh. Technol., 69 (2020), 12938–12950. https://doi.org/10.1109/tvt.2020.3015916 doi: 10.1109/tvt.2020.3015916 |
[29] | J. Guo, L. Y. Wang, G. Yin, Y. Zhao, J. F. Zhang, Asymptotically efficient identification of FIR systems with quantized observations and general quantized inputs, Automatica, 57 (2015), 113–122. https://doi.org/10.1016/j.automatica.2015.04.009 doi: 10.1016/j.automatica.2015.04.009 |
[30] | H. T. Sun, C. Peng, T. C. Yang, H. Zhang, W. L. He, Resilient control of networked control systems with stochastic denial of service attacks, Neurocomputing, 270 (2017), 170–177. https://doi.org/10.1016/j.neucom.2017.02.093 doi: 10.1016/j.neucom.2017.02.093 |