Research article Special Issues

Maximum likelihood-based identification for FIR systems with binary observations and data tampering attacks

  • Received: 08 April 2024 Revised: 17 June 2024 Accepted: 24 June 2024 Published: 28 June 2024
  • The security issue of CPS (cyber-physical systems) is of great importance for their stable operation. Within the framework of system identification, this paper proposed a maximum likelihood estimation algorithm for FIR (finite impulse response) systems with binary observations and data tampering attacks. In the case of data transmission in the communication network being subjected to data tampering attacks after the FIR system sends out data, the objective of this study was to design an algorithm for estimating the system parameters and infer the attack strategies using the proposed algorithm. To begin, the maximum likelihood function of the available data was established. Then, parameter estimation algorithms were proposed for both known and unknown attack strategies. Meanwhile, the convergence condition and convergence proof of these algorithms were provided. Finally, the effectiveness of the designed algorithm was verified by numerical simulations.

    Citation: Xinchang Guo, Jiahao Fan, Yan Liu. Maximum likelihood-based identification for FIR systems with binary observations and data tampering attacks[J]. Electronic Research Archive, 2024, 32(6): 4181-4198. doi: 10.3934/era.2024188

    Related Papers:

  • The security issue of CPS (cyber-physical systems) is of great importance for their stable operation. Within the framework of system identification, this paper proposed a maximum likelihood estimation algorithm for FIR (finite impulse response) systems with binary observations and data tampering attacks. In the case of data transmission in the communication network being subjected to data tampering attacks after the FIR system sends out data, the objective of this study was to design an algorithm for estimating the system parameters and infer the attack strategies using the proposed algorithm. To begin, the maximum likelihood function of the available data was established. Then, parameter estimation algorithms were proposed for both known and unknown attack strategies. Meanwhile, the convergence condition and convergence proof of these algorithms were provided. Finally, the effectiveness of the designed algorithm was verified by numerical simulations.


    加载中


    [1] Y. Ju, M. Yang, C. Chakraborty, L. Liu, Q. Pei, M. Xiao, et al., Reliability–security tradeoff analysis in mmWave Ad Hoc–based CPS, ACM Trans. Sens. Netw., 20 (2024), 1–23. https://doi.org/10.1145/3582556 doi: 10.1145/3582556
    [2] S. K. Mazumder, A. Kulkarni, S. Sahoo, F. Blaabjerg, H. A. Mantooth, J. C. Balda, et al., A review of current research trends in power-electronic innovations in cyber–physical systems, IEEE J. Emerging Sel. Top. Power Electron., 9 (2021), 5146–5163. https://doi.org/10.1109/jestpe.2021.3051876 doi: 10.1109/jestpe.2021.3051876
    [3] J. Guo, J. D. Diao, Prediction-based event-triggered identification of quantized input FIR systems with quantized output observations, Sci. China Inf. Sci., 63 (2020), 112201. https://doi.org/10.1007/s11432-018-9845-6 doi: 10.1007/s11432-018-9845-6
    [4] S. M. Nagarajan, G. G. Deverajan, A. K. Bashir, R. P. Mahapatra, M. S. Al-Numay, IADF-CPS: Intelligent anomaly detection framework towards cyber physical systems, Comput. Commun., 188 (2022), 81–89. https://doi.org/10.1016/j.comcom.2022.02.022 doi: 10.1016/j.comcom.2022.02.022
    [5] R. V. Yohanandhan, R. M. Elavarasan, R. Pugazhendhi, M. Premkumar, L. Mihet-Popa, V. Terzija, A holistic review on cyber-physical power system (CPPS) testbeds for secure and sustainable electric power grid – Part – I: Background on CPPS and necessity of CPPS testbeds, Int. J. Electr. Power Energy Syst., 136 (2022), 107718. https://doi.org/10.1016/j.ijepes.2021.107718 doi: 10.1016/j.ijepes.2021.107718
    [6] S. Kim, K. J. Park, C. Lu, A survey on network security for cyber–physical systems: From threats to resilient design, IEEE Commun. Surv. Tutorials, 24 (2022), 1534–1573. https://doi.org/10.1109/COMST.2022.3187531 doi: 10.1109/COMST.2022.3187531
    [7] J. Ye, A. Giani, A. Elasser, S. K. Mazumder, C. Farnell, H. A. Mantooth, et al., A review of cyber–physical security for photovoltaic systems, IEEE J. Emerging Sel. Top. Power Electron., 10 (2022), 4879–4901. https://doi.org/10.1109/jestpe.2021.3111728 doi: 10.1109/jestpe.2021.3111728
    [8] R. Langner, Stuxnet: Dissecting a cyberwarfare weapon, IEEE Secur. Privacy, 9 (2011), 49–51. https://doi.org/10.1109/MSP.2011.67 doi: 10.1109/MSP.2011.67
    [9] Y. Cherdantseva, P. Burnap, A. Blyth, P. Eden, K. Jones, H. Soulsby, et al., A review of cyber security risk assessment methods for scada systems, Comput. Secur., 56 (2016), 1–27. https://doi.org/10.1016/j.cose.2015.09.009 doi: 10.1016/j.cose.2015.09.009
    [10] A. V. Jha, B. Appasani, A. N. Ghazali, P. Pattanayak, D. S. Gurjar, E. Kabalci, et al., Smart grid cyber-physical systems: Communication technologies, standards and challenges, Wireless Netw., 27 (2021), 2595–2613. https://doi.org/10.1007/s11276-021-02579-1 doi: 10.1007/s11276-021-02579-1
    [11] S. Tan, J. M. Guerrero, P. Xie, R. Han, J. C. Vasquez, Brief survey on attack detection methods for cyber-physical systems, IEEE Syst. J., 14 (2020), 5329–5339. https://doi.org/10.1109/jsyst.2020.2991258 doi: 10.1109/jsyst.2020.2991258
    [12] W. Duo, M. Zhou, A. Abusorrah, A survey of cyber attacks on cyber physical systems: Recent advances and challenges, IEEE/CAA J. Autom. Sin., 9 (2022), 784–800. https://doi.org/10.1109/jas.2022.105548 doi: 10.1109/jas.2022.105548
    [13] D. Ding, Q. L. Han, X. Ge, J. Wang, Secure state estimation and control of cyber-physical systems: A survey, IEEE Trans. Syst. Man Cybern.: Syst., 51 (2021), 176–190. https://doi.org/10.1109/tsmc.2020.3041121 doi: 10.1109/tsmc.2020.3041121
    [14] S. I. Popoola, R. Ande, B. Adebisi, G. Gui, M. Hammoudeh, O. Jogunola, Federated deep learning for zero-day botnet attack detection in IoT-edge devices, IEEE Internet Things J., 9 (2021), 3930–3944. https://doi.org/10.1109/JIOT.2021.3100755 doi: 10.1109/JIOT.2021.3100755
    [15] J. Liu, W. Zhang, T. Ma, Z. Tang, Y. Xie, W. Gui, et al., Toward security monitoring of industrial Cyber-Physical systems via hierarchically distributed intrusion detection, Expert Syst. Appl., 158 (2020), 113578. https://doi.org/10.1016/j.eswa.2020.113578 doi: 10.1016/j.eswa.2020.113578
    [16] B. Li, Y. Wu, J. Song, R. Lu, T. Li, L. Zhao, DeepFed: Federated deep learning for intrusion detection in industrial cyber–physical systems, IEEE Trans. Ind. Inf., 17 (2021), 5615–5624. https://doi.org/10.1109/tii.2020.3023430 doi: 10.1109/tii.2020.3023430
    [17] J. Guo, X. Wang, W. Xue, Y. Zhao, System identification with binary-valued observations under data tampering attacks, IEEE Trans. Autom. Control, 66 (2021), 3825–3832. https://doi.org/10.1109/tac.2020.3029325 doi: 10.1109/tac.2020.3029325
    [18] H. Liang, L. Zhu, F. R. Yu, X. Wang, A cross-layer defense method for blockchain empowered CBTC systems against data tampering attacks, IEEE Trans. Intell. Transp. Syst., 24 (2022), 501–515. https://doi.org/10.1109/tits.2022.3211020 doi: 10.1109/tits.2022.3211020
    [19] D. W. Huang, W. Liu, J. Bi, Data tampering attacks diagnosis in dynamic wireless sensor networks, Comput. Commun., 172 (2021), 84–92. https://doi.org/10.1016/j.comcom.2021.03.007 doi: 10.1016/j.comcom.2021.03.007
    [20] M. M. N. Aboelwafa, K. G. Seddik, M. H. Eldefrawy, Y. Gadallah, M. Gidlund, A machine-learning-based technique for false data injection attacks detection in industrial IoT, IEEE Internet Things J., 7 (2020), 8462–8471. https://doi.org/10.1109/jiot.2020.2991693 doi: 10.1109/jiot.2020.2991693
    [21] K. Yang, H. Wang, H. Wang, L. Sun, An effective intrusion-resilient mechanism for programmable logic controllers against data tampering attacks, Comput. Ind., 138 (2022), 103613. https://doi.org/10.1016/j.compind.2022.103613 doi: 10.1016/j.compind.2022.103613
    [22] M. Elsisi, M. Altius, S. F. Su, C. L. Su, Robust kalman filter for position estimation of automated guided vehicles under cyberattacks, IEEE Trans. Instrum. Meas., 72 (2023), 1–12. https://doi.org/10.1109/tim.2023.3250285 doi: 10.1109/tim.2023.3250285
    [23] X. Y. Kong, G. H. Yang, An intrusion detection method based on self-generated coding technology for stealthy false data injection attacks in train-ground communication systems, IEEE Trans. Ind. Electron., 70 (2023), 8468–8476. https://doi.org/10.1109/tie.2022.3213899 doi: 10.1109/tie.2022.3213899
    [24] J. Zhang, C. Dong, Privacy-preserving data aggregation scheme against deletion and tampering attacks from aggregators, J. King Saud Univ. Comput. Inf. Sci., 35 (2023), 100–111. https://doi.org/10.1016/j.jksuci.2023.03.002 doi: 10.1016/j.jksuci.2023.03.002
    [25] Y. Zhang, Y. Li, Z. Li, Aye: A trusted forensic method for firmware tampering attacks, Symmetry, 15 (2023), 145. https://doi.org/10.3390/sym15010145 doi: 10.3390/sym15010145
    [26] D. Ye, T. Y. Zhang, Summation detector for false data-injection attack in cyber-physical systems, IEEE Trans. Cybern., 50 (2019), 2338–2345. https://doi.org/10.1109/TCYB.2019.2915124 doi: 10.1109/TCYB.2019.2915124
    [27] J. Guo, R. Jia, R. Su, Y. Zhao. Identification of FIR systems with binary-valued observations against data tampering attacks, IEEE Trans. Syst. Man Cybern.: Syst., 53 (2023), 5861–5873. https://doi.org/10.1109/TSMC.2023.3276352 doi: 10.1109/TSMC.2023.3276352
    [28] J. Sun, H. Xiong, S. Zhang, X. Liu, J. Yuan, R. H. Deng, A secure flexible and tampering-resistant data sharing system for vehicular social networks, IEEE Trans. Veh. Technol., 69 (2020), 12938–12950. https://doi.org/10.1109/tvt.2020.3015916 doi: 10.1109/tvt.2020.3015916
    [29] J. Guo, L. Y. Wang, G. Yin, Y. Zhao, J. F. Zhang, Asymptotically efficient identification of FIR systems with quantized observations and general quantized inputs, Automatica, 57 (2015), 113–122. https://doi.org/10.1016/j.automatica.2015.04.009 doi: 10.1016/j.automatica.2015.04.009
    [30] H. T. Sun, C. Peng, T. C. Yang, H. Zhang, W. L. He, Resilient control of networked control systems with stochastic denial of service attacks, Neurocomputing, 270 (2017), 170–177. https://doi.org/10.1016/j.neucom.2017.02.093 doi: 10.1016/j.neucom.2017.02.093
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(473) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog