Research article Special Issues

An image filtering method for dataset production

  • Received: 14 March 2024 Revised: 17 June 2024 Accepted: 19 June 2024 Published: 27 June 2024
  • To address the issue of the lack of specialized data filtering algorithms for dataset production, we proposed an image filtering algorithm. Using feature fusion methods to improve discrete wavelet transform algorithm (DWT) and enhance the robustness of image feature extraction, a weighted hash algorithm was proposed to hash features to reduce the complexity and computational cost of feature comparison. To minimize the time cost of image filtering as much as possible, a fast distance calculation method was also proposed to calculate the similarity of images. The experimental results showed that compared with other advanced methods, the algorithm proposed in this paper had an average accuracy improvement of 3% and a speed improvement of at least 30%. Compared with traditional manual filtering methods, while ensuring accuracy, the filtering speed of a single image is increased from 9.9s to 0.01s, which has important application value for dataset production.

    Citation: Ling Li, Dan He, Cheng Zhang. An image filtering method for dataset production[J]. Electronic Research Archive, 2024, 32(6): 4164-4180. doi: 10.3934/era.2024187

    Related Papers:

  • To address the issue of the lack of specialized data filtering algorithms for dataset production, we proposed an image filtering algorithm. Using feature fusion methods to improve discrete wavelet transform algorithm (DWT) and enhance the robustness of image feature extraction, a weighted hash algorithm was proposed to hash features to reduce the complexity and computational cost of feature comparison. To minimize the time cost of image filtering as much as possible, a fast distance calculation method was also proposed to calculate the similarity of images. The experimental results showed that compared with other advanced methods, the algorithm proposed in this paper had an average accuracy improvement of 3% and a speed improvement of at least 30%. Compared with traditional manual filtering methods, while ensuring accuracy, the filtering speed of a single image is increased from 9.9s to 0.01s, which has important application value for dataset production.


    加载中


    [1] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, F. F. Li, Imagenet: A large-scale hierarchical image database, in IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, (2009), 248–255. https://doi.org/10.1109/CVPR.2009.5206848
    [2] A. Krizhevsky, I. Sutskever, G. Hinton, ImageNet classification with deep convolutional neural networks, Commun. ACM, 60 (2017), 84–90. https://doi.org/10.1145/3065386 doi: 10.1145/3065386
    [3] A. V. Emchinov, V. V. Ryazanov, Research and development of deep learning algorithms for the classification of pneumonia type and detection of ground-glass loci on radiological images, Pattern Recognit. Image Anal., 32 (2022), 707–716. https://doi.org/10.1134/S1054661822030105 doi: 10.1134/S1054661822030105
    [4] H. Tang, Research progress and development of deep learning based on convolutional neural network, in 2021 2nd International Conference on Computing and Data Science (CDS), Stanford, CA, USA, (2021), 259–264. https://doi.org/10.1109/CDS52072.2021.00052
    [5] H. Luo, J. Luo, R. Li, M. Yu, Optimization algorithm design of laser marking contour extraction and graphics hatching based on image processing technology, J. Phys. Conf. Ser., 2173 (2022), 012078. https://doi.org/10.1088/1742-6596/2173/1/012078 doi: 10.1088/1742-6596/2173/1/012078
    [6] L. Zhang, Y. P. Sui, H. S. Wang, S. K. Hao, N. B. Zhang, Image feature extraction and recognition model construction of coal and gangue based on image processing technology, Sci. Rep., 12 (2022), 20983. https://doi.org/10.1038/s41598-022-25496-5 doi: 10.1038/s41598-022-25496-5
    [7] X. L. Chen, H. Fang, T. Y. Lin, R. Vedantam, S. Gupta, P. Dollar, et al., Microsoft COCO captions: Data collection and evaluation server, preprint, arXiv: 1504.00325. https://doi.org/10.48550/arXiv.1504.00325
    [8] O. M. Parkhi, A. Vedaldi, A. Zisserman, Deep face recognition, in BMVC 2015 - Proceedings of the British Machine Vision Conference 2015, Swansea, UK, (2015), 1–12.
    [9] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, T, Antonio, Places: A 10 million image database for scene recognition, IEEE Trans. Pattern Anal. Mach. Intell., 40 (2018), 1452–1464. https://doi.org/10.1109/TPAMI.2017.2723009 doi: 10.1109/TPAMI.2017.2723009
    [10] M. Kumar, A. Bindal, R. Gautam, R. Bhatia, Keyword query based focused Web crawler, Procedia Comput. Sci., 125 (2018), 584–590. https://doi.org/10.1016/j.procs.2017.12.075 doi: 10.1016/j.procs.2017.12.075
    [11] G. Lin, Y. Liang, A. Tavares, Design of an energy supply and demand forecasting system based on web crawler and a grey dynamic model, Energies, 16 (2023), 1431. https://doi.org/10.3390/en16031431 doi: 10.3390/en16031431
    [12] Q. C. Deng, K. Cheng, Collection and semi-automatic labeling of custom target detection dataset (in Chinese), Soft. Guide, 21 (2022), 116–122.
    [13] M. Z. Hua, L. M. Wang, J. W. Jiang, Construction of large-scale coral dataset based on web resources (in Chinese), J. North. Nor. Univer., 55 (2023), 72–79. https://doi.org/10.16163/j.cnki.dslkxb202209230003 doi: 10.16163/j.cnki.dslkxb202209230003
    [14] M. J. Shenza, The discrete wavelet transform: wedding the a trous and mallat algorithms, IEEE Trans. Signal Process., 40 (1992), 2464–2482. https://doi.org/10.1109/78.157290 doi: 10.1109/78.157290
    [15] H. Y. Chen, H. Y. Long, Y. J. Song, H. L. Chen, X. B. Zhou, W. Deng, M3FuNet: An unsupervised multivariate feature fusion network for hyperspectral image classification, IEEE Trans. Geosci. Remote. Sens., 62 (2024), 1–15. https://doi.org/10.1109/TGRS.2024.3380087 doi: 10.1109/TGRS.2024.3380087
    [16] L. Pinjarkar, M. Sharma, S. Selot, Deep CNN combined with relevance feedback for trademark image retrieval, J. Intell. Syst., 29 (2020), 894–909. https://doi.org/10.1515/jisys-2018-0083 doi: 10.1515/jisys-2018-0083
    [17] Z. Zeng, S. Sun, J. Sun, J. Yin, Y. Shen, Constructing a mobile visual search framework for Dunhuang murals based on fine-tuned CNN and ontology semantic distance, Electron. Lib., 40 (2022), 121–139. https://doi.org/10.1108/EL-09-2021-0173 doi: 10.1108/EL-09-2021-0173
    [18] T. Rajasenbagam, S. Jeyanthi, Semantic content-based image retrieval system using deep learning model for lung cancer CT images, J. Med. Imaging Health Inf., 11 (2021), 2675–2682. https://doi.org/10.1166/jmihi.2021.3859 doi: 10.1166/jmihi.2021.3859
    [19] M. A. Aljanabi, Z. M. Hussain, S. F. Lu, An entropy-histogram approach for image similarity and face recognition, Math. Probl. Eng., 2018 (2018), 1–18. https://doi.org/10.1155/2018/9801308 doi: 10.1155/2018/9801308
    [20] Y. Zhang, Y. Yao, Y. Wan, W. Liu, W. Yang, Z. Zheng, et al., Histogram of the orientation of the weighted phase descriptor for multi-modal remote sensing image matching, J. Photogramm. Remote Sens., 196 (2023), 1–15. https://doi.org/10.1016/j.isprsjprs.2022.12.018 doi: 10.1016/j.isprsjprs.2022.12.018
    [21] A. Drmic, M. Silic, G. Delac, K. Vladimir, A. S. Kurdija, Evaluating robustness of perceptual image hashing algorithms, in 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics, Opatija, Croatia, (2017), 995–1000. https://doi.org/10.23919/MIPRO.2017.7973569
    [22] D. G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vision, 60 (2004), 91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94 doi: 10.1023/B:VISI.0000029664.99615.94
    [23] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), San Diego, CA, USA, (2005), 886–893. https://doi.org/10.1109/CVPR.2005.177
    [24] K. H. Sri, G. T. Manasa, G. G. Reddy, S. Bano, V. B. Trinadh, Detecting image similarity using SIFT, in Expert Clouds and Applications: Proceedings of ICOECA 2021, Singapore, 209 (2022), 561–575. https://doi.org/10.1007/978-981-16-2126-0_45
    [25] F. Naiemi, V. Ghods, H. Khalesi, An efficient character recognition method using enhanced HOG for spam image detection, Soft Comput., 23 (2019), 11759–11774. https://doi.org/10.1007/s00500-018-03728-z doi: 10.1007/s00500-018-03728-z
    [26] Y. L. Liu, G. J. Xin Y. Xiao, Robust image hashing using Radon transform and invariant features, Radioengineering, 25 (2016), 556–564. https://doi.org/10.13164/re.2016.0556 doi: 10.13164/re.2016.0556
    [27] N. Hussein, M. Ali, M. E. Mahdi, Detecting similarity in color images based on perceptual image hash algorithm, in IOP Conference Series: Materials Science and Engineering, Istanbul, Turkey, 737 (2020), 012244. https://doi.org/10.1088/1757-899X/737/1/012244
    [28] M. Hori, T. Hori, Y. Ohno, S. Tsuruta, H. Iwase, T. Kawai, A novel identification method using perceptual degree of concordance of occlusal surfaces calculated by a Python program, Forensic Sci. Int., 313 (2020), 110358. https://doi.org/10.1016/j.forsciint.2020.110358 doi: 10.1016/j.forsciint.2020.110358
    [29] M. Fei, J. Li, H. Liu, Visual tracking based on improved foreground detection and perceptual hashing, Neucomputing, 152 (2015), 413–428. https://doi.org/10.1016/j.neucom.2014.09.060 doi: 10.1016/j.neucom.2014.09.060
    [30] D. M. Mo, W. K. Wong, X. J. Liu, Y. Ge, Concentrated hashing with neighborhood embedding for image retrieval and classification, Int. J. Mach. Learn. Cybern., 13 (2022), 1571–1587. https://doi.org/10.1007/s13042-021-01466-7 doi: 10.1007/s13042-021-01466-7
    [31] A. Jose, D. Filbert, C. Rohlfing, J. R. Ohm, Deep hashing with hash center update for efficient image retrieval, in ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, (2022), 4773–4777. https://doi.org/10.1109/ICASSP43922.2022.9746805
    [32] W. J. Yang, L. J. Wang, S. L. Cheng, Y. M. Li, A. Y. Du, Deep hash with improved dual attention for image retrieval, Information, 12 (2021), 285. https://doi.org/10.3390/info12070285 doi: 10.3390/info12070285
    [33] C. Tian, M. Zheng, W. Zuo, B. Zhang, Y. Zhang, D. Zhang, Multi-stage image denoising with the wavelet transform, Pattern Recognit., 134 (2023), 109050. https://doi.org/10.1016/j.patcog.2022.109050 doi: 10.1016/j.patcog.2022.109050
    [34] J. Bhardwaj, A. Nayak, Haar wavelet transform-based optimal bayesian method for medical image fusion, Med. Biol. Eng. Comput., 58 (2020), 2397–2411. https://link.springer.com/article/10.1007/s11517-020-02209-6
    [35] R. Ranjan, P. Kumar, An improved image compression algorithm using 2D dwt and pca with canonical huffman encoding, Entropy, 25 (2023), 1382. https://doi.org/10.3390/e25101382 doi: 10.3390/e25101382
    [36] G. Strang, The discrete cosine transform, SIAM Rev., 41 (1998), 135–147. https://doi.org/10.1137/S0036144598336745 doi: 10.1137/S0036144598336745
    [37] M. Norouzi, A. Punjani, D. J. Fleet, Fast exact search in hamming space with multi-index hashing, IEEE Trans. Pattern Anal. Mach. Intell., 6 (2014), 1107–1119. https://doi.org/10.1109/TPAMI.2013.231 doi: 10.1109/TPAMI.2013.231
    [38] H. W. Zhang, Y. B. Dong, J. Li, D. Q. Xu, An efficient method for time series similarity search using binary code representation and hamming distance, Intell. Data Anal., 25 (2021), 439–461. https://doi.org/10.3233/IDA-194876 doi: 10.3233/IDA-194876
    [39] F. Rashid, A. Miri, I. Woungang, Secure image deduplication through image compression, J. Inf. Secur. Appl., 27 (2016), 54–64. https://doi.org/10.1016/j.jisa.2015.11.003 doi: 10.1016/j.jisa.2015.11.003
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(557) PDF downloads(33) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog