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Abstract: The security issue of CPS (cyber-physical systems) is of great importance for their stable
operation. Within the framework of system identification, this paper proposed a maximum likelihood
estimation algorithm for FIR (finite impulse response) systems with binary observations and data tam-
pering attacks. In the case of data transmission in the communication network being subjected to
data tampering attacks after the FIR system sends out data, the objective of this study was to design
an algorithm for estimating the system parameters and infer the attack strategies using the proposed
algorithm. To begin, the maximum likelihood function of the available data was established. Then,
parameter estimation algorithms were proposed for both known and unknown attack strategies. Mean-
while, the convergence condition and convergence proof of these algorithms were provided. Finally,
the effectiveness of the designed algorithm was verified by numerical simulations.

Keywords: finite impulse response system; data tampering attack; maximum likelihood method;
system parameter identification

1. Introduction

Cyber-physical system (CPS) is an emerging technology that integrates computation, communica-
tion, and physical devices. Introduction of network technology in CPS offers significant advantages
in system efficiency, scalability, and maintainability. CPS is widely applied in various fields due to
its robustness, high reliability, and fast operation speed [1–3]. Due to the close interaction among
computation, sensing, communication, and actuation in CPS, it is highly susceptible to network secu-
rity threats.Additionally, intelligent CPS presents new challenges and threats different from existing
issues [4, 5]. Notably, CPS closely integrated with national infrastructure can lead to immeasurable
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severe consequences if subjected to malicious attacks. Therefore, ensuring the secure operation of
CPS-related devices is an urgent problem that needs to be addressed [6, 7].

There have been many security incidents of CPS in the world, which have brought huge losses [8,9].
In June 2010, Iran’s nuclear facilities were attacked by the Stuxnet virus, which seriously damaged
nuclear power plants and other facilities, seriously jeopardizing Iran’s nuclear security. In 2014, the
Havex Trojan attacked numerous European industrial manufacturing systems. In addition to attacks
on industrial systems, attacks on the power grid also occur frequently. In 2015, the Ukrainian power
grid suffered a Black-Energy attack. In 2016, the Israeli power grid suffered a serious cyber attack, and
in 2019, several South American countries suffered a cyber attack on the power system. An attack on
the power grid would lead to widespread power outages, which would render factories inoperable and
infrastructure paralyzed, causing serious inconvenience and impact to society.

In recent years, scholars have conducted extensive research on the security of CPSs. Attack detec-
tion is one of the important strategies to ensure the safe operation of CPS, aiming to identify malicious
behaviors such as network attacks and take appropriate countermeasures as early as possible to mini-
mize or prevent significant losses [10, 11]. As the complexity of attacks in CPS increases, traditional
anomaly detection methods have limitations and require the design of detection algorithms with spe-
cific characteristics for a particular domain [12,13]. Reference [14] tackles the design problem of intru-
sion detection systems by creatively combining feature-based intrusion detection system (SIDS) and
anomaly-based intrusion detection system (AIDS) to form an improved stacked ensemble algorithm
(ISEA). This algorithm significantly reduces the false positive rate (FPR) through a false positive elim-
ination strategy (FPES). Reference [15] argues that in the era of Industry 4.0, a layered and distributed
approach is required for intrusion detection. This approach includes perception-execution layer mon-
itoring based on Kalman filters, network transmission layer monitoring based on recursive Gaussian
mixture models, and application control layer monitoring based on sparse deep belief network models.
It enables comprehensive and efficient identification of covert attacks and ensures security protection.
Reference [16] proposes a federated deep learning scheme to address the attack problem in large-
scale and complex industrial networked physical systems. This scheme utilizes a deep learning-based
intrusion detection model combined with federated learning framework and secure communication
protocols to enhance the privacy of industrial CPS while ensuring resilience against network threats.

Data tampering attacks are a prevalent and typical type of network attack targeting CPSs. They
have also gained widespread attention in recent years [13,17,18]. The main method of data tampering
attacks is to manipulate the data transmitted in the network, affecting the estimation and control center
of CPS, leading to incorrect judgments or decisions, and issuing erroneous instructions, which may
result in abnormal or even damaged physical devices [19–21]. Such attacks are often difficult to be
detected by existing intrusion detection systems, thus they can quietly penetrate CPS systems and
affect their stable operation [22, 23].

In recent years, the detection algorithms for data tampering attacks have received attention, and
some scholars have conducted in-depth analysis and research on these attacks. Reference [24] proposes
a solution to mitigate the computational cost and enhance privacy for smart grid aggregation faced
with deletion and tampering attacks, targeted specifically at data tampering attacks. Reference [25]
addresses firmware tampering attack defense and forensics issues by designing a detection method
based on joint testing action groups and memory comparison to detect firmware tampering attacks.
Reference [26] addresses the problem of the χ2 detector being difficult to detect false data injection
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attacks with white noise. It proposes a novel summation (SUM) detector that not only utilizes current
compromise information but also collects all historical information to reveal the threat. It also has
good identification for improved false data injection. Reference [27] studies the identification problem
of finite impulse response (FIR) systems with binary measurements under data tampering, and the
optimal attack strategy and defense method are given. Reference [28] introduces a novel secure key
aggregation searchable encryption scheme and anti-tampering blockchain technology to propose a data
sharing system that selectively shares and retrieves vehicle sensor data, detecting unauthorized data
tampering attacks.

This paper focuses on the data tampering attack problem in binary quantization FIR systems. Under
the framework of system identification, a novel algorithm is designed to solve the system parameters
and attack strategies using the maximum likelihood method and binary measurement data. The compu-
tation method is also provided. To begin, the maximum likelihood function of the measurement data is
established. Then, parameter estimation algorithms are proposed for both known and unknown attack
strategies. The closeness between the estimated system parameter values obtained from this estimation
algorithm and the true values depends on the sample data size and whether the attack strategy is known
or unknown. In the case of an unknown attack strategy, the difficulty in algorithm design increases
due to the coupling between unknown parameters and attack strategies. The unknown variables in the
maximum likelihood function are simplified to the system of equations. The Newton-Raphson itera-
tion method is used to train the back propagation neural network (BPNN), and the attack strategy is
estimated in advance. The estimated value of the attack strategy is then substituted into the algorithm
to obtain the unknown parameter estimates. The results obtained from the algorithm show that with
a small sample data size, the estimation algorithm produces large fluctuations in the solved system
parameters. However, as the sample data size increases, the estimated values of the system parameters
tend to become closer to the true values.

The structure of this paper is as follows. Section 2 describes the data tampering detection problem
in binary quantization FIR systems; Section 3 presents the expression of the maximum likelihood func-
tion of the system; Section 4 discusses the use of maximum likelihood estimation to solve the system
parameters in the case of a known attack strategy; Section 5 discusses the step-by-step solution of sys-
tem parameters and attack strategies in the case of an unknown attack strategy; Section 6 validates the
estimation algorithm through numerical simulations; and Section 7 provides a summary and outlook
for this paper.

2. Problem formulation

Consider a single-input single-output discrete-time FIR system:

yk = a1uk + a2uk−1 + · · · + anuk−n−1 + dk

= ϕT
k θ + dk, k = 1, 2, . . . , (1)

where uk is the quantized system input and its possible value is in {µ1, µ2, . . . , µr}, i.e., uk ∈

{µ1, µ2, . . . , µr}; ϕk = [uk, . . . , uk−n−1]T is the regression vector composed of quantized inputs, since uk

can only take r different values, ϕk has l = rn possible values, which can be represented as π1, π2, . . . , πl,
that is, ϕk ∈ {π1, π2, . . . , πl}; θ = [a1, . . . , an]T is the unknown parameters of the system; dk is the system
noise; yk is the system output, measured by a binary sensor with threshold C ∈ (−∞,∞), and it can be
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represented by an indicator function as:

s0
k = I{yk≤C} =

1, yk ≤ C;
0, else.

(2)

From here on, the superscript T denotes the transpose of a matrix or vector.

FIR

system

Binary-valued
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𝑢𝑘 𝑠𝑘
0
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center

Data Tampering Attack
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Figure 1. System block diagram.

As shown in Figure 1, s0
k is transmitted through a communication network to a data center, but it is

susceptible to data tampering attacks during the communication process. The data received by the data
center is denoted as sk, and its relationship with s0

k is as follows:Pr(sk = 1|s0
k = 0) = p0;

Pr(sk = 0|s0
k = 1) = p1.

(3)

The above equation essentially describes a data tampering attack strategy, which is denoted as
(p0, p1).

In this paper, a maximum likelihood estimation method is used to provide an estimation algorithm
for the unknown parameters θ, and the convergence performance of the algorithm is also analyzed.

Assumption 1. The system noise {dk} is an independent and identically distributed (i.i.d.) sequence
of normal random variables with zero mean and variance σ2, and its probability distribution function
and probability density function are denoted as F(·) and f (·), respectively.

Remark 1. 1) This paper is concerned with the binary observation. For the case of multi-threshold
quantization, it can be converted into multiple binary values for processing [29]. 2) The attack pro-
cess here is independent, and the existing literature often studies the cases where it is dependent and
modeled as Markov processes [30]. The method in this paper can provide reference for the case of
nonindependent attack process.

3. Maximum likelihood function of available data

Maximum likelihood estimate is a commonly used parameter estimation method in statistics that
estimates model parameters by maximizing the likelihood function of the sample data. This section
presents the maximum likelihood function of the data received at the receiving center, laying the foun-
dation for the subsequent algorithm design.

From Eqs (1) and (2), we can determine the probability of s0
k = 1 being equal to

Electronic Research Archive Volume 32, Issue 6, 4181–4198.



4185

Pr(yk ≤ C) = Pr(ϕT
k θ + dk ≤ C)

= Pr(dk ≤ C − ϕT
k θ)

= F(C − ϕT
k θ). (4)

Combining this with Eq (3) and using the law of total probability, we obtain:

Pr(sk = 1)
= Pr(sk = 1|s0

k = 0) · Pr(s0
k = 0) + Pr(sk = 1|s0

k = 1) · Pr(s0
k = 1)

= p0 · Pr(yk > C) + (1 − p1) · Pr(yk ≤ C)

= p0 · (1 − F(C − ϕT
k θ)) + (1 − p1) · F(C − ϕT

k θ)
def
= gk. (5)

Then,

Pr(sk) = gsk
k · (1 − gk)(1−sk). (6)

Based on Eq (5), gk can be simplified as:

gk = (1 − p0 − p1)F(C − ϕT
k θ) + p0. (7)

Hence, for a data length of N, the maximum likelihood function of s1, s2, . . . , sN is:

L(θ|s1, s2, . . . , sN) =Pr(s1, s2, . . . , sN)
=Pr(s1) · Pr(s2) · · · · · Pr(sN)

=

N∏
k=1

gsk
k · (1 − gk)(1−sk). (8)

4. Identification algorithm: the attack strategy is known

The principle of maximum likelihood estimation is based on the intuitive idea that a parameter is
the most reasonable estimate if it gives the greatest probability that the sample data will occur. For the
maximum likelihood function, the parameters at its maximum value are called the maximum likelihood
estimates. In this section, the attack strategy (p0, p1) is assumed to be known. Two functions are defined
as follows:

h1(x) =
(1 − p0 − p1) f (C − x)

(1 − p0 − p1)F(C − x) + p0
, h2(x) =

(1 − p0 − p1) f (C − x)
(p0 + p1 − 1)F(C − x) + 1 − p0

. (9)

Let
∂

∂θ
ln L(s1, s2, . . . , sN) = 0. (10)

The solution of the equation is denoted as θ̂N = θ̂N(s1, s2, . . . , sN), which is the maximum likelihood
estimate of θ.
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Since Eq (10) is highly nonlinear, an explicit solution generally doesn’t exist. Here, an approximate
solution method is presented. Taking the logarithm of Eq (8), we have

ln L(θ|s1, s2, . . . , sN)

=

N∑
k=1

[
sk · ln gk + (1 − sk) · ln(1 − gk)

]
=

N∑
k=1

sk · ln [F(C − ϕT
k θ)(1 − p0 − p1) + p0]

+

N∑
k=1

(1 − sk) · ln [F(C − ϕT
k θ)(p0 + p1 − 1) + 1 − p0]. (11)

Taking the partial derivative of the above equation with respect to θ, we get

∂

∂θ
ln L(θ|s1, s2, . . . , sN)

=

N∑
k=1

sk ·
(1 − p0 − p1) f (C − ϕT

k θ) · (−ϕ
T
k )

(1 − p0 − p1)F(C − ϕT
k θ) + p0

+

N∑
k=1

(sk − 1) ·
(1 − p0 − p1) f (C − ϕT

k θ) · (−ϕ
T
k )

(p0 + p1 − 1)F(C − ϕT
k θ) + 1 − p0

. (12)

By Eq (9), Eq (12) can be expressed as:

∂

∂θ
ln L(θ) =

N∑
k=1

skh1(ϕT
k θ)(−ϕ

T
k ) +

N∑
k=1

(sk − 1)h2(ϕT
k θ)(−ϕ

T
k ). (13)

Since ϕT
k can take the values π1, π2, . . . , πl, grouping the above expression based on these values, we

can rearrange it as:

∂

∂θ
ln L(θ) =

N∑
k=1,ϕT

k =π1

skh1(π1θ)(−π1) +
N∑

k=1,ϕT
k =π1

(sk − 1)h2(π1θ)(−π1)

+

N∑
k=1,ϕT

k =π2

skh1(π2θ)(−π2) +
N∑

k=1,ϕT
k =π2

(sk − 1)h2(π2θ)(−π2)

+ · · ·

+

N∑
k=1,ϕT

k =πl

skh1(πlθ)(−πl) +
N∑

k=1,ϕT
k =πl

(sk − 1)h2(πlθ)(−πl). (14)

In Eq (15), if we have

N∑
k=1,ϕT

k =πi

skh1(πiθ) +
N∑

k=1,ϕT
k =πi

(sk − 1)h2(πiθ) = 0, i = 1, 2, . . . , l, (15)
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then ∂
∂θ

ln L(θ) = 0. Thus, the problem of solving the equation ∂
∂θ

ln L(θ) = 0 is reduced to solving the
system of Eq (15).

By rearranging (15), we get

[h1(πiθ) + h2(πiθ)]
N∑

k=1,ϕT
k =πi

sk = h2(πiθ)
N∑

k=1,ϕT
k =πi

1.

As a result, we obtain ∑N
k=1 skI{ϕT

k = πi}∑N
k=1 I{ϕT

k = πi}
=

h2(πiθ)
h1(πiθ) + h2(πiθ)

= H(πiθ), (16)

where H(x) = h2(x)
h1(x)+h2(x) , h1(x), and h2(x) are given by (9). Let the H(x) reverse function be H−1(x), and

we have

H(x) = (1 − p0 − p1)F(C − x) + p0

⇒ H(x) − p0 = (1 − p0 − p1)F(C − x)

⇒
H(x) − p0

1 − p0 − p1
= F(C − x) (17)

⇒ F−1
(

H(x) − p0

1 − p0 − p1

)
= C − x. (18)

Therefore, from (16), we have

πiθ = C − F−1(

∑N
k=1 sk I

{ϕTk =πi}∑N
k=1 I

{ϕTk =πi}
− p0

1 − p0 − p1
), i = 1, 2, . . . , l.

Expressing the above equation set in matrix form, we have


π1
...

πl

 θ =


C − F−1(

∑N
k=1 sk I

{ϕTk =π1}∑N
k=1 I

{ϕTk =π1}
−p0

1−p0−p1
)

...

C − F−1(

∑N
k=1 sk I

{ϕTk =πl}∑N
k=1 I

{ϕTk =πl}
−p0

1−p0−p1
)


. (19)

Let Φ = [πT
1 , π

T
2 , . . . , π

T
l ]T , ηN,i = C − F−1(

∑N
k=1 sk I

{ϕTk =πi}∑N
k=1 I

{ϕTk =πi}
−p0

1−p0−p1
), i = 1, 2, . . . , l. The maximum likelihood

estimate of θ is obtained as:
θ̂N = Φ

+[ηN,1, . . . , ηN,l]T , (20)

where + denotes the Moore-Penrose inverse of the matrix.

Remark 2. From the above, it can be seen that the distribution function of the system noise plays an
important role in the algorithm design. For the unknown case, an estimation algorithm can be designed
to estimate it, and then the estimated value can be used instead of the true value, so as to realize the
adaptive identification of unknown parameters [29].
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Theorem 1. Consider the system (1) and the binary observation (2) under the data tampering at-
tack (3). If Assumption 1 holds, the matrix Φ generated by the system input is full rank, and∑N

k=1 I{ϕT
k =πi}

→ ∞ as N → ∞ for i = 1, 2, . . . , l, then the maximum likelihood-based parameter es-

timate θ̂N given by (20) converges strongly to the true value θ, i.e.,

θ̂N → θ, N → ∞, w.p.1.

Proof. By (5), it is known that

E(skI{ϕT
k =πi}

) = p0 · (1 − F(C − πiθ)) + (1 − p1) · F(C − πiθ)
= p0 + (1 − p0 − p1)F(C − πiθ).

According to the Law of Large Numbers, for i = 1, 2, . . . , l, we have∑N
k=1 skI{ϕT

k =π1}∑N
k=1 I{ϕT

k =π1}

→ p0 + (1 − p0 − p1)F(C − πiθ), N → ∞, (21)

which implies that

C − F−1(

∑N
k=1 sk I

{ϕTk =π1}∑N
k=1 I

{ϕTk =π1}
− p0

1 − p0 − p1
)→ πiθ, N → ∞. (22)

Since Φ is full rank, from (19) and (20), the theorem is proved.

5. Identification algorithm: the attack strategy is unknown

In the previous section, an identification algorithm with unknown parameters was designed under
the assumption of known attack strategies. In the case of unknown attack strategies, the design of the
identification algorithm becomes more difficult. This is mainly because the unknown parameters and
attack strategies are coupled together. This section primarily addresses this problem.

Using the maximum likelihood function, Eq (11) is used to obtain the maximum likelihood esti-
mates of θ, p0, and p1, which results in a system of equations consisting of n + 2 equations involving
θ, p0, and p1. Solving this system of equations yields the estimates θ̂, p̂0, and p̂1. However, solving
a system of n + 2 dimensional equations numerically will be challenging and time-consuming. The
solution process is illustrated in Figure 2, divided into three steps below.
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Solve the system of equations

Newton-Raphson iteration method

Solve the system of equations

Figure 2. Solution steps.

Step 1: Construction of system of equations for θ and (p0, p1)

Based on the analysis process, when the attack strategies are known, the likelihood function
L(θ|s1, s2, . . . , sN) is first logarithmically transformed into a logarithmic form and then differentiated.
From Eqs (16) and (17), it can be determined that the problem of solving the extremum of the maxi-
mum likelihood function is equivalent to the problem of solving the following system of equations:

F(C − π1θ) =

∑N
k=1 sk I

{ϕTk =π1}∑N
k=1 I

{ϕTk =π1}
−p0

1−p0−p1
;

F(C − π2θ) =

∑N
k=1 sk I

{ϕTk =π2}∑N
k=1 I

{ϕTk =π2}
−p0

1−p0−p1
;

...

F(C − πlθ) =

∑N
k=1 sk I

{ϕTk =πl}∑N
k=1 I

{ϕTk =πl}
−p0

1−p0−p1
.

(23)

If πiθ is treated as an unknown variable, then the above system of equations has l + 2 unknowns but
only l equations. Therefore, it is generally unsolvable. To address this, the correlation between πi is
utilized, which leads to the second step.

Step 2: Solve the system of equations for θ and (p0, p1), and obtain the estimated values of the
attack strategies ( p̂N,0, p̂N,1)

Let the number of maximal linearly independent sets of π1, π2, . . . , πl be denoted as l0. Without
loss of generality, assume that π1, π2, . . . , πl0 form a maximal linearly independent set of π1, π2, . . . , πl.
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Then, each πi can be expressed as a linear combination of π1, π2, . . . , πl0 , as follows:

πi =

l0∑
j=1

αi, jπ j, i = 1, 2, . . . , l. (24)

Substituting the above equation into Eq (23), we get

F(C −
∑l0

j=1 α1, jπ jθ) =

∑N
k=1 sk I

{ϕTk =π1}∑N
k=1 I

{ϕTk =π1}
−p0

1−p0−p1
;

F(C −
∑l0

j=1 α2, jπ jθ) =

∑N
k=1 sk I

{ϕTk =π2}∑N
k=1 I

{ϕTk =π2}
−p0

1−p0−p1
;

...

F(C −
∑l0

j=1 αl, jπ jθ) =

∑N
k=1 sk I

{ϕTk =πl}∑N
k=1 I

{ϕTk =πl}
−p0

1−p0−p1
.

(25)

The above system of equations consists of l equations, and the number of unknowns is reduced to
l0 + 2. Solving the above system of equations, denoted as g(s1, s2, . . . , sN) = (g1, g2, . . . , gl0+2), which
gives the estimated values of π1θ, π2θ, . . . , πl0θ, and (p0, p1) as follows:

π̂1θN = g1(s1, s2, . . . , sN); (26)
... (27)

π̂l0θN = gl0(s1, s2, . . . , sN); (28)
p̂N,0 = gl0+1(s1, s2, . . . , sN); (29)
p̂N,1 = gl0+2(s1, s2, . . . , sN). (30)

Equations (29) and (30) provide the estimated values of the attack strategies.
The most critical part is how to obtain the expression of g(s1, s2, . . . , sN), which can be divided

into two cases. One case is when the system of Eq (25) has an analytical solution, in which case
the expression of g(·) can be obtained through mathematical operations. The other case is when (25)
does not have an analytical solution, in which case the expression of g(·) can be approximated using
numerical methods and neural networks. The process is as follows.

Consider the following system of equations:

F(C −
∑l0

j=1 α1, jx j) =
β1−xl0+1

1−xl0+1−xl0+2
;

F(C −
∑l0

j=1 α2, jx j) =
β2−xl0+1

1−xl0+1−xl0+2
;

...

F(C −
∑l0

j=1 αl, jx j) =
βl−xl0+1

1−xl0+1−xl0+2
,

(31)

where X = [x1, x2, . . . , xl0+2]T ∈ Rl0+2 is the unknown variable, and β1, β2, . . . , βl are known parameters.
Given a step size ∆ ∈ (0, 1), we uniformly sample the interval [0, 1] to obtain a set

Γ = {( j − 1)∆ : j = 1, 2, . . . , ⌈
1
∆
⌉}, (32)
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where ⌈·⌉ denotes the ceiling function. We randomly take any element β = [β1, β2, . . . , βl] from Γl and
substitute it into Eq (31). Then, we solve the Eq (31) using the Newton-Raphson iteration method to
obtain the solution X = X(β). Specifically, let ϖi(x1, x2, . . . , xl0+2) = F(C −

∑l0
j=1 αi, jx j) −

βi−xl0+1

1−xl0+1−xl0+2
,

i = 1, 2, . . . , l. Then, the system of Eq (31) can be equivalently written as:

Ω(X) =


ϖ1(x1, x2, . . . , xl0+2)
ϖ2(x1, x2, . . . , xl0+2)

...

ϖl(x1, x2, . . . , xl0+2)

 = 0. (33)

The Jacobian matrix of the above equations is given by:

J(X) =


∂ϖ1
∂x1

· · ·
∂ϖ1
∂xl0+2

...
. . .

...
∂ϖl
∂x1

· · ·
∂ϖl
∂xl0+2


=


−α1,1 f (C −

∑l0
j=1 α1, jx j) · · ·

1−β1−xl0+2

(1−xl0+1−xl0+2)2

β1+xl0+1

(1−xl0+1−xl0+2)2

...
. . .

...
...

−αl,1 f (C −
∑l0

j=1 α1, jx j) · · ·
1−βl−xl0+2

(1−xl0+1−xl0+2)2

βl+xl0+1

(1−xl0+1−xl0+2)2

 . (34)

Given an initial value X0, let Xt = [x{t}1 , x
{t}
2 , . . . , x

{t}
l0+2]T represent the zero of the system of equations

for the solution of Eq (33) obtained at the t-th iteration. Then,

Xt = Xt−1 − J−1(Xt−1)Ω(Xt−1). (35)

Repeat the above process and iteratively calculate until ∥Xt − Xt−1∥ < ε is satisfied, where X(β) = Xt

is the solution to the system of Eq (31), ∥ · ∥ denotes the norm of a vector, and ε > 0 is a given constant
called the iteration stopping tolerance.

Repeat the above process, letting β traverse Γl, and simultaneously obtaining the solution X = X(β)
for Eq (31). This way, a set of data {β, X(β) : β ∈ Γl} is obtained. Treat β as the input and X(β) as the
output of a BPNN*, and train the neural network as g0(β1, β2, . . . , βl). As a result, g(s1, s2, . . . , sN) can
be computed as follows:

g(s1, s2, . . . , sN) = g0(

∑N
k=1 skI{ϕT

k =π1}∑N
k=1 I{ϕT

k =π1}

, . . . ,

∑N
k=1 skI{ϕT

k =πl}∑N
k=1 I{ϕT

k =πl}

). (36)

The above process can be summarized into the following algorithm:

*Here we choose BPNN as the fitting algorithm, mainly to show our thinking and method. In specific use, one can also choose other
regression algorithms, such as random forest and so on.
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Algorithm 1 Algorithm for computing function g(. . .)
1. Initial values: sample step size ∆ of (0, 1); set D = ∅; iteration tolerance ε > 0 for stopping
Newton-Raphson iteration.
2. Set Γ based on (32), then obtain set Γl with m elements denoted as β1, β2, . . . , βm

3. Loop: i = 1, 2, . . ., m
3.1. Substitute βi into system of Eq (31)
3.2. Initialize X0, and use Newton-Raphson iteration to solve (31), obtain solution Xi = Xi(βi)
3.3. Update data set D = D ∪ {(βi, Xi)}

4. End loop
5. Train the BPNN g0(β1, β2, . . . , βl) based on data set D
6. Calculate g(. . .) based on (36)

Step 3: Obtain the estimated values of the unknown parameters θ̂N
Express the π̂1θN , π̂2θN , . . . , π̂l0θN obtained in Step 2 in vector form. Based on Eqs (26) and (28),

we have: 
π1
...

πl0

 θ̂N =


g1(s1, s2, . . . , sN)
...

gl0(s1, s2, . . . , sN)

 .
Letting [πT

1 , . . . , π
T
l0

]T = Φ, we can obtain the estimate of θ as:

θ̂N = Φ
+


g1(s1, s2, . . . , sN)

...

gl0(s1, s2, . . . , sN)

 . (37)

In the above equation, the expressions of g1, . . . , gl0 may contain the attack strategies (p0, p1) as
parameters. In this case, replace them with their estimated values from (29) and (30).

Theorem 2. Under the condition of Theorem 1, if the matrix Φ generated by the system input is full
rank, the function g(·) given by Algorithm 1 is the solution to the Eq (33), then the maximum likelihood-
based parameter estimate θ̂N given by (37) converges strongly to the true value θ, i.e.,

θ̂N → θ, N → ∞, w.p.1.

Proof. According to the conditions of the theorem and by (23) and (25), it is known that the solution
to (31) is

X = X([p0 + (1 − p0 − p1)F(C − π1θ), . . . , p0 + (1 − p0 − p1)F(C − πlθ)]T )
= [π1θ, . . . , πl0θ]

T . (38)

From (21), we have
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g0(

∑N
k=1 skI{ϕT

k =π1}∑N
k=1 I{ϕT

k =π1}

, . . . ,

∑N
k=1 skI{ϕT

k =πl}∑N
k=1 I{ϕT

k =πl}

)

→ g0(p0 + (1 − p0 − p1)F(C − π1θ), . . . , p0 + (1 − p0 − p1)F(C − πlθ)), N → ∞,

which together with (36) gives

g(s1, . . . , sN)→ g0(p0 + (1 − p0 − p1)F(C − π1θ), . . . , p0 + (1 − p0 − p1)F(C − πlθ))

as N → ∞. Combining the above and (38), by (37), it can be seen that

θ̂N = Φ
+


g1(s1, s2, . . . , sN)

...

gl0(s1, s2, . . . , sN)

→ Φ+

π1θ
...

πl0θ

 , N → ∞. (39)

Considering that Φ is full rank, the proof is completed.

6. Numerical simulation

Consider the system

yk = ϕT
k θ + dk;

s0
k = I{yk≤C};

with the system parameters θ = [a1, . . . , an]T = [−2, 4, 8]T and the system input uk ∈ {1, 3, 5}; the
threshold for the binary sensor output is C = 30; and the system noise follows an independent and
identically distributed normal random variable sequence dk ∼ (0, 402). The system output is transmitted
to the data center through a communication network and is subjected to data tampering attacks with
attack strategy (p0, p1) = (0.4, 0.2).

The data center receives the tampered data sk after the original data s0
k has been attacked. The

relationship between the data is shown in Figure 3. The original data s0
k has been randomly altered.

Experiments are conducted on algorithms (10)–(22) to compute the estimated system parameter
values θ̂N , where the length of the data sample is N = 80, 000. The results are shown in Figure 4,
which indicate that: when the data sample size N is small, the estimated parameter values θ̂N have large
convergence biases; When the data sample size N exceeds a critical value, the estimated parameter
values θ̂N are close to the true values θ; as the data sample size N further increases, the deviation
between the estimated parameter values θ̂N and the true values decreases.
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Figure 3. Comparison between original data and data after random attacks.
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Figure 4. Estimation of system parameters when the attack strategy is known.

Experiments are conducted on algorithms (23)–(39) for T = 150 times, and the average results
of each experiment are computed to obtain θ̂N , p0, and p1, where the length of the data sample is
N = 60, 000. The results are shown in Figures 5 and 6, which indicate that: As the data sample size
N increases, the estimated system parameter values θ̂N approach the true values, and the estimated
attack strategy values p̂0 and p̂1 also approach the true values. Moreover, due to the large number of
experiments T , the convergence of each parameter improves as the data sample size N increases.
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Figure 5. Estimation of system parameters when the attack strategy is unknown.
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Figure 6. Estimation of the attack strategy when the attack strategy is unknown.

7. Conclusions

In the framework of system identification, this paper carried out the research of security issue based
on the maximum likelihood estimation method. For FIR systems with binary observations and data
tampering attacks, the parameter estimation algorithms are proposed in the two cases of known and
unknown attack strategy, and the convergence condition and convergence proof of these algorithms
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are given.
The maximum likelihood estimation is a very classical and effective method. This paper explores

its application in CPS security identification. In the future, this method can be extended to nonlinear
systems, multi-threshold observations, colored noise, and other more general cases.
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