Review Special Issues

Recent progress on mathematical analysis and numerical simulations for Maxwell's equations in perfectly matched layers and complex media: a review

  • Received: 18 December 2023 Revised: 02 February 2024 Accepted: 18 February 2024 Published: 04 March 2024
  • In this paper, we presented a review on some recent progress achieved for simulating Maxwell's equations in perfectly matched layers and complex media such as metamaterials and graphene. We mainly focused on the stability analysis of the modeling equations and development and analysis of the numerical schemes. Some open issues were pointed out, too.

    Citation: Jichun Li. Recent progress on mathematical analysis and numerical simulations for Maxwell's equations in perfectly matched layers and complex media: a review[J]. Electronic Research Archive, 2024, 32(3): 1901-1922. doi: 10.3934/era.2024087

    Related Papers:

  • In this paper, we presented a review on some recent progress achieved for simulating Maxwell's equations in perfectly matched layers and complex media such as metamaterials and graphene. We mainly focused on the stability analysis of the modeling equations and development and analysis of the numerical schemes. Some open issues were pointed out, too.



    加载中


    [1] G. Bao, P. Li, Maxwell's Equations in Periodic Structures, Series on Applied Mathematical Sciences, Science Press, Beijing/Springer, Singapore, 2022.
    [2] W. Cai, Computational Methods for Electromagnetic Phenomena Electrostatics in Solvation, Scattering, and Electron Transport, Cambridge University Press, 2013.
    [3] L. Demkowicz, Computing With hp-Adaptive Finite Elements, I: One and Two-Dimensional Elliptic and Maxwell Problems, CRC Press, Taylor and Francis, 2006.
    [4] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszenski, W. Rachowicz, A. Zdunek, Computing with hp-Adaptive Finite Elements, II: Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications, CRC Press, Taylor and Francis, 2007.
    [5] J. M. Jin, The Finite Element Method in Electromagnetics, 3rd edition, Piscataway, NJ, USA, IEEE Press, 2014.
    [6] P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, 2003.
    [7] A. Taflove, S. C. Haguess, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edition, Artech House, Norwood, 2005.
    [8] A. Taflove, A. Oskooi, S. G. Johnson, Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology, Artech House, Boston, 2013.
    [9] T. J. Cui, D. R. Smith, R. Liu, Metamaterials: Theory, Design, and Applications, Springer, 2010.
    [10] N. Engheta, R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations, Wiley-IEEE Press, 2006.
    [11] L. Solymar, E. Shamonina, Waves in Metamaterials, Oxford University Press, 2009.
    [12] Q. Bao, K. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices, ACS Nano, 6 (2012), 3677–3694. https://doi.org/10.1021/nn300989g doi: 10.1021/nn300989g
    [13] A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater., 6 (2007), 183–191. https://doi.org/10.1038/nmat1849
    [14] V. G. Veselago, The electrodynamics of substances with simultaneously negative values of $\epsilon$ and $\mu$, Sov. Phys. Usp., 47 (1968), 509–514.
    [15] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett., 84 (2000), 4184–4187. https://doi.org/10.1103/PhysRevLett.84.4184 doi: 10.1103/PhysRevLett.84.4184
    [16] A. Shelby, D. R. Smith, S. Schultz, Experimental verification of a negative index of refraction, Science, 292 (2001), 489–491. https://doi.org/10.1126/science.1058847 doi: 10.1126/science.1058847
    [17] J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett., 85 (2000), 3966–3969. https://doi.org/10.1103/PhysRevLett.85.3966 doi: 10.1103/PhysRevLett.85.3966
    [18] A. J. Holden, Towards some real applications for negative materials, Photonics Nanostruct. Fundam. Appl., 3 (2005), 96–99. https://doi.org/10.1016/j.photonics.2005.09.014 doi: 10.1016/j.photonics.2005.09.014
    [19] Y. Hao, R. Mittra, FDTD Modeling of Metamaterials: Theory and Applications, Artech House Publishers, 2008.
    [20] D. H. Werner, D. H. Kwon, Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications, Springer, 2013.
    [21] V. A. Bokil, Y. Cheng, Y. Jiang, F. Li, Energy stable discontinuous Galerkin methods for Maxwell's equations in nonlinear optical media, J. Comput. Phys., 350 (2017), 420–452. https://doi.org/10.1016/j.jcp.2017.08.009 doi: 10.1016/j.jcp.2017.08.009
    [22] N. Schmitt, C. Scheid, S. Lanteri, A. Moreau, J. Viquerat, A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects, J. Comput. Phys., 316 (2016), 396–415. https://doi.org/10.1016/j.jcp.2016.04.020 doi: 10.1016/j.jcp.2016.04.020
    [23] J. Lin, An adaptive boundary element method for the transmission problem with hyperbolic metamaterials, J. Comput. Phys., 444 (2021), 110573. https://doi.org/10.1016/j.jcp.2021.110573 doi: 10.1016/j.jcp.2021.110573
    [24] B. Donderici, F. L. Teixeira, Mixed finite-element time-domain method for transient Maxwell equations in doubly dispersive media, IEEE Trans. Microwave Theory Tech., 56 (2008), 113–120. https://doi.org/10.1109/TMTT.2007.912217 doi: 10.1109/TMTT.2007.912217
    [25] J. Li, J. S. Hesthaven, Analysis and application of the nodal discontinuous Galerkin method for wave propagation in metamaterials, J. Comput. Phys., 258 (2014), 915–930. https://doi.org/10.1016/j.jcp.2013.11.018 doi: 10.1016/j.jcp.2013.11.018
    [26] C. Scheid, S. Lanteri, Convergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media, IMA J. Numer. Anal., 33 (2013), 432–459. https://doi.org/10.1093/imanum/drs008 doi: 10.1093/imanum/drs008
    [27] Z. Xie, J. Wang, B. Wang, C. Chen, Solving Maxwell's equation in meta-materials by a CG-DG method, Commun. Comput. Phys., 19 (2016), 1242–1264. https://doi.org/10.4208/cicp.scpde14.35s doi: 10.4208/cicp.scpde14.35s
    [28] W. Li, D. Liang, The spatial fourth-order compact splitting FDTD scheme with modified energy-conserved identity for two-dimensional Lorentz model, J. Comput. Appl. Math., 367 (2020), 112428. https://doi.org/10.1016/j.cam.2019.112428 doi: 10.1016/j.cam.2019.112428
    [29] W. Li, D. Liang, Symmetric energy-conserved S-FDTD scheme for two-dimensional Maxwell's equations in negative index metamaterials, J. Sci. Comput., 69 (2016), 696–735. https://doi.org/10.1007/s10915-016-0214-9 doi: 10.1007/s10915-016-0214-9
    [30] X. Bai, H. Rui, New energy analysis of Yee scheme for metamaterial Maxwell's equations on non-uniform rectangular meshes, Adv. Appl. Math. Mech., 13 (2021), 1355–1383. https://doi.org/10.4208/aamm.OA-2020-0208 doi: 10.4208/aamm.OA-2020-0208
    [31] S. Nicaise, Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations, Math. Control Relat. Fields, 13 (2023), 265–302. https://doi.org/10.3934/mcrf.2021057 doi: 10.3934/mcrf.2021057
    [32] P. Fernandes, M. Raffetto, Well-posedness and finite element approximability of time-harmonic electromagnetic boundary value problems involving bianisotropic materials and metamaterials, Math. Model. Methods Appl. Sci., 19 (2009), 2299–2335. https://doi.org/10.1142/S0218202509004121 doi: 10.1142/S0218202509004121
    [33] P. Fernandes, M. Ottonello, M. Raffetto, Regularity of time-harmonic electromagnetic fields in the interior of bianisotropic materials and metamaterials, IMA J. Appl. Math., 79 (2014), 54–93. https://doi.org/10.1093/imamat/hxs039 doi: 10.1093/imamat/hxs039
    [34] P. Cocquet, P. Mazet, V. Mouysset, On the existence and uniqueness of a solution for some frequency-dependent partial differential equations coming from the modeling of metamaterials, SIAM J. Math. Anal., 44 (2012), 3806–3833. https://doi.org/10.1137/100810071 doi: 10.1137/100810071
    [35] E. T. Chung, P. Ciarlet Jr., A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and metamaterials, J. Comput. Appl. Math., 239 (2013), 189–207. https://doi.org/10.1016/j.cam.2012.09.033 doi: 10.1016/j.cam.2012.09.033
    [36] M. Cassier, P. Joly, M. Kachanovska, Mathematical models for dispersive electromagnetic waves: An overview, Comput. Math. Appl., 74 (2017), 2792–2830. https://doi.org/10.1016/j.camwa.2017.07.025 doi: 10.1016/j.camwa.2017.07.025
    [37] J. Li, A literature survey of mathematical study of metamaterials, Int. J. Numer. Anal. Model., 13 (2016), 230–243.
    [38] U. Leonhardt, Optical conformal mapping, Science, 312 (2006), 1777–1780. https://doi.org/10.1126/science.1126493
    [39] J. B. Pendry, D. Schurig, D. R. Smith, Controlling electromagnetic fields, Science, 312 (2006), 1780–1782. https://doi.org/10.1126/science.1125907 doi: 10.1126/science.1125907
    [40] J. Li, Y. Huang, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials, Springer Series in Computational Mathematics (vol.43), Springer, 2013.
    [41] H. Ammari, H. Kang, H. Lee, M. Lim, S. Yu, Enhancement of near cloaking for the full Maxwell equations, SIAM J. Appl. Math., 73 (2013), 2055–2076. https://doi.org/10.1137/120903610 doi: 10.1137/120903610
    [42] G. Bao, H. Liu, J. Zou, Nearly cloaking the full Maxwell equations: Cloaking active contents with general conducting layers, J. Math. Pures Appl., 101 (2014), 716–733. https://doi.org/10.1016/j.matpur.2013.10.010 doi: 10.1016/j.matpur.2013.10.010
    [43] H. Ammari, J. Garnier, V. Jugnon, H. Kang, H. Lee, M. Lim, Enhancement of near-cloaking. Part III: Numerical simulations, statistical stability, and related questions, Comtemp. Math., 577 (2012), 1–24.
    [44] H. Ammari, G. Ciraolo, H. Kang, H. Lee, G. W. Milton, Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., 208 (2013), 667–692. https://doi.org/10.1007/s00205-012-0605-5 doi: 10.1007/s00205-012-0605-5
    [45] R. V. Kohn, J. Lu, B. Schweizer, M. I. Weinstein, A variational perspective on cloaking by anomalous localized resonance, Commun. Math. Phys., 328 (2014), 1–27. https://doi.org/10.1007/s00220-014-1943-y doi: 10.1007/s00220-014-1943-y
    [46] R. V. Kohn, D. Onofrei, M. S. Vogelius, M. I. Weinstein, Cloaking via change of variables for the Helmholtz equation, Commun. Pure Appl. Math., 63 (2010), 973–1016. https://doi.org/10.1002/cpa.20326 doi: 10.1002/cpa.20326
    [47] A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, Cloaking devices, electromagnetics wormholes and transformation optics, SIAM Rev., 51 (2009), 3–33. https://doi.org/10.1137/080716827 doi: 10.1137/080716827
    [48] F. Guevara Vasquez, G. W. Milton, D. Onofrei, Broadband exterior cloaking, Opt. Express, 17 (2009), 14800–14805. https://doi.org/10.1364/OE.17.014800
    [49] M. Lassas, M. Salo, L. Tzou, Inverse problems and invisibility cloaking for FEM models and resistor networks, Math. Mod. Meth. Appl. Sci., 25 (2015), 309–342. https://doi.org/10.1142/S0218202515500116 doi: 10.1142/S0218202515500116
    [50] S. C. Brenner, J. Gedicke, L. Y. Sung, An adaptive $P_1$ finite element method for two-dimensional transverse magnetic time harmonic Maxwell's equations with general material properties and general boundary conditions, J. Sci. Comput., 68 (2016), 848–863. https://doi.org/10.1007/s10915-015-0161-x doi: 10.1007/s10915-015-0161-x
    [51] J. J. Lee, A mixed method for time-transient acoustic wave propagation in metamaterials, J. Sci. Comput., 84 (2020). https://doi.org/10.1007/s10915-020-01275-0
    [52] S. Nicaise, J. Venel, A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients, J. Comput. Appl. Math., 235 (2011), 4272–4282. https://doi.org/10.1016/j.cam.2011.03.028 doi: 10.1016/j.cam.2011.03.028
    [53] Z. Yang, L. L. Wang, Accurate simulation of ideal circular and elliptic cylindrical invisibility cloaks, Commun. Comput. Phys., 17 (2015), 822–849. https://doi.org/10.4208/cicp.280514.131014a doi: 10.4208/cicp.280514.131014a
    [54] Z. Yang, L. L. Wang, Z. Rong, B. Wang, B. Zhang, Seamless integration of global Dirichlet-to-Neumann boundary condition and spectral elements for transformation electromagnetics, Comput. Methods Appl. Mech. Engrg., 301 (2016), 137–163. https://doi.org/10.1016/j.cma.2015.12.020 doi: 10.1016/j.cma.2015.12.020
    [55] B. Wang, Z. Yang, L. L. Wang, S. Jiang, On time-domain NRBC for Maxwell's equations and its application in accurate simulation of electromagnetic invisibility cloaks, J. Sci. Comput., 86 (2021). https://doi.org/10.1007/s10915-020-01354-2
    [56] U. Leonhardt, T. Tyc, Broadband invisibility by non-Euclidean cloaking, Science, 323 (2009), 110–112. https://doi.org/10.1126/science.1166332 doi: 10.1126/science.1166332
    [57] R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, Broadband ground-plane cloak, Science, 323 (2009), 366–369. https://doi.org/10.1126/science.1166949
    [58] J. Li, Two new finite element schemes and their analysis for modeling of wave propagation in graphene, Results Appl. Math., 9 (2021), 100136. https://doi.org/10.1016/j.rinam.2020.100136 doi: 10.1016/j.rinam.2020.100136
    [59] Y. Wu, J. Li, Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects, Appl. Phys. Lett., 102 (2013), 183105. https://doi.org/10.1063/1.4804201 doi: 10.1063/1.4804201
    [60] J. Li, Well-posedness study for a time-domain spherical cloaking model, Comput. Math. Appl., 68 (2014), 1871–1881. https://doi.org/10.1016/j.camwa.2014.10.007 doi: 10.1016/j.camwa.2014.10.007
    [61] J. Li, Y. Huang, W. Yang, Well-posedness study and finite element simulation of time-domain cylindrical and elliptical cloaks, Math. Comput., 84 (2015), 543–562. https://doi.org/10.1090/s0025-5718-2014-02911-6 doi: 10.1090/s0025-5718-2014-02911-6
    [62] W. Yang, J. Li, Y. Huang, Mathematical analysis and finite element time domain simulation of arbitrary star-shaped electromagnetic cloaks, SIAM J. Numer. Anal., 56 (2018), 136–159. https://doi.org/10.1137/16M1093835 doi: 10.1137/16M1093835
    [63] J. Li, J. B. Pendry, Hiding under the carpet: a new strategy for cloaking, Phys. Rev. Lett., 101 (2008), 2039014. https://doi.org/10.1103/PhysRevLett.101.203901 doi: 10.1103/PhysRevLett.101.203901
    [64] J. Li, Y. Huang, W. Yang, A. Wood, Mathematical analysis and time-domain finite element simulation of carpet cloak, SIAM J. Appl. Math., 74 (2014), 1136–1151. https://doi.org/10.1137/140959250 doi: 10.1137/140959250
    [65] J. Li, C. W. Shu, W. Yang, Development and analysis of two new finite element schemes for a time-domain carpet cloak model, Adv. Comput. Math., 48 (2022), 24. https://doi.org/10.1007/s10444-022-09948-0 doi: 10.1007/s10444-022-09948-0
    [66] J. Li, Z. Liang, J. Zhu, X. Zhang, Anisotropic metamaterials for transformation acoustics and imaging, in Acoustic Metamaterials: Negative Refraction, Imaging, Sensing and Cloaking (eds. R. V. Craster and S. Guenneau), Springer Series in Materials Science, 166 (2013), 169–195. https://doi.org/10.1007/978-94-007-4813-2_7
    [67] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., Electric field effect in atomically thin carbon films, Science, 306 (2004), 666–669. https://doi.org/10.1126/science.1102896 doi: 10.1126/science.1102896
    [68] F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics, 4 (2010), 611–622. https://doi.org/10.1038/nphoton.2010.186 doi: 10.1038/nphoton.2010.186
    [69] F. H. L. Koppens, D. E. Chang, F. J. Garcia de Abajo, Graphene plasmonics: A platform for strong light-matter interactions, Nano Lett., 11 (2011), 3370–3377. https://doi.org/10.1021/nl201771h doi: 10.1021/nl201771h
    [70] S. K. Tiwari, S. Sahoo, N. Wang, A. Huczko, Graphene research and their outputs: Status and prospect, J. Sci.: Adv. Mater. Devices, 5 (2020), 10–29. https://doi.org/10.1016/j.jsamd.2020.01.006 doi: 10.1016/j.jsamd.2020.01.006
    [71] G. Bal, P. Cazeaux, D. Massatt, S. Quinn, Mathematical models of topologically protected transport in twisted bilayer graphene, Multiscale Model. Simul., 21 (2023), 1081–1121. https://doi.org/10.1137/22M1505542 doi: 10.1137/22M1505542
    [72] Y. Hong, D. P. Nicholls, On the consistent choice of effective permittivity and conductivity for modeling graphene, JOSA A, 38 (2021), 1511–1520. https://doi.org/10.1364/JOSAA.430088 doi: 10.1364/JOSAA.430088
    [73] J. P. Lee-Thorp, M. I. Weinstein, Y. Zhu, Elliptic operators with honeycomb symmetry: Dirac points, edge states and applications to photonic graphene, Arch. Ration. Mech. Anal., 232 (2019), 1–63. https://doi.org/10.1007/s00205-018-1315-4 doi: 10.1007/s00205-018-1315-4
    [74] M. Maier, D. Margetis, M. Luskin, Dipole excitation of surface plasmon on a conducting sheet: finite element approximation and validation, J. Comput. Phys., 339 (2017), 126–145. https://doi.org/10.1016/j.jcp.2017.03.014 doi: 10.1016/j.jcp.2017.03.014
    [75] M. Maier, D. Margetis, M. Luskin, Generation of surface plasmon-polaritons by edge effects, Commun. Math. Sci., 16 (2018), 77–95.
    [76] J. H. Song, M. Maier, M. Luskin, Adaptive finite element simulations of waveguide configurations involving parallel 2D material sheets, Comput. Methods Appl. Mech. Eng., 351 (2019), 20–34. https://doi.org/10.1016/j.cma.2019.03.039 doi: 10.1016/j.cma.2019.03.039
    [77] J. Wilson, F. Santosa, P. A. Martin, Temporally manipulated plasmons on graphene, SIAM J. Appl. Math., 79 (2019), 1051–1074. https://doi.org/10.1137/18M1226889 doi: 10.1137/18M1226889
    [78] W. Yang, J. Li, Y. Huang, Time-domain finite element method and analysis for modeling of surface plasmon polaritons in graphene devices, Comput. Methods Appl. Mech. Eng., 372 (2020), 113349. https://doi.org/10.1016/j.cma.2020.113349 doi: 10.1016/j.cma.2020.113349
    [79] J. Li, L. Zhu, T. Arbogast, A new time-domain finite element method for simulation surface plasmon polaritons on graphene sheets, Comput. Math. Appl., 142 (2023), 268–383. https://doi.org/10.1016/j.camwa.2023.05.003 doi: 10.1016/j.camwa.2023.05.003
    [80] Y. Gong, N. Liu, Advanced numerical methods for graphene simulation with equivalent boundary conditions: a review, Photonics, 10 (2023), 712. https://doi.org/10.3390/photonics10070712 doi: 10.3390/photonics10070712
    [81] P. Li, L. J. Jiang, H. Bağci, Discontinuous Galerkin time-domain modeling of graphene nanoribbon incorporating the spatial dispersion effects, IEEE Trans. Antennas Propag., 66 (2018), 3590–3598. https://doi.org/10.1109/TAP.2018.2826567 doi: 10.1109/TAP.2018.2826567
    [82] L. Yang, J. Tian, K. Z. Rajab, Y. Hao, FDTD modeling of nonlinear phenomena in wave transmission through graphene, IEEE Antennas Wirel. Propag. Lett., 17 (2018), 126–129. https://doi.org/10.1109/LAWP.2017.2777530 doi: 10.1109/LAWP.2017.2777530
    [83] B. Alpert, L. Greengard, T. Hagstrom, Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation, SIAM J. Numer. Anal., 37 (2000), 1138–1164. https://doi.org/10.1137/S0036142998336916 doi: 10.1137/S0036142998336916
    [84] B. Engquist, A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comput., 31 (1977), 629–651. https://doi.org/10.1073/pnas.74.5.1765 doi: 10.1073/pnas.74.5.1765
    [85] T. Hagstrom, T. Warburton, D. Givoli, Radiation boundary conditions for time-dependent waves based on complete plane wave expansions, J. Comput. Appl. Math., 234 (2010), 1988–1995. https://doi.org/10.1016/j.cam.2009.08.050 doi: 10.1016/j.cam.2009.08.050
    [86] J. P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), 185–200. https://doi.org/10.1006/jcph.1994.1159 doi: 10.1006/jcph.1994.1159
    [87] R. W. Ziolkowski, Maxwellian material based absorbing boundary conditions, Comput. Methods Appl. Mech. Eng., 169 (1999), 237–262. https://doi.org/10.1016/S0045-7825(98)00156-X doi: 10.1016/S0045-7825(98)00156-X
    [88] Y. Huang, J. Li, Z. Fang, Mathematical analysis of Ziolkowski's PML model with application for wave propagation in metamaterials, J. Comp. Appl. Math., 366 (2020), 112434. https://doi.org/10.1016/j.cam.2019.112434 doi: 10.1016/j.cam.2019.112434
    [89] J. Li, L. Zhu, Analysis and application of two novel finite element methods for solving Ziolkowski's PML model in the integro-differential form, SIAM J. Numer. Anal., 61 (2023), 2209–2236. https://doi.org/10.1137/22M1506936 doi: 10.1137/22M1506936
    [90] G. C. Cohen, P. Monk, Mur-Nédélec finite element schemes for Maxwell's equations, Comput. Methods Appl. Mech. Eng., 169 (1999), 197–217. https://doi.org/10.1016/S0045-7825(98)00154-6 doi: 10.1016/S0045-7825(98)00154-6
    [91] M. Chen, Y. Huang, J. Li, Development and analysis of a new finite element method for the Cohen-Monk PML model, Numer. Math., 147 (2021), 127–155. https://doi.org/10.1007/s00211-020-01166-4 doi: 10.1007/s00211-020-01166-4
    [92] J. L. Lions, J. Métral, O. Vacus, Well-posed absorbing layer for hyperbolic problems, Numer. Math., 92 (2002), 535–562. https://doi.org/10.1007/s002110100263 doi: 10.1007/s002110100263
    [93] G. Bao, H. Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell's equations, SIAM J. Numer. Anal., 43 (2005), 2121–2143. https://doi.org/10.1137/040604315 doi: 10.1137/040604315
    [94] J. H. Bramble, J. E. Pasciak, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems, Math. Comput., 76 (2007), 597–614. https://doi.org/10.1090/S0025-5718-06-01930-2 doi: 10.1090/S0025-5718-06-01930-2
    [95] J. Chen, Z. Chen, An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems, Math. Comput., 77 (2007), 673–698. https://doi.org/10.1090/S0025-5718-07-02055-8 doi: 10.1090/S0025-5718-07-02055-8
    [96] Z. Chen, W. Zheng, PML method for electromagnetic scattering problem in a two-layer medium, SIAM J. Numer. Anal., 55 (2017), 2050–2084. https://doi.org/10.1137/16M1091757 doi: 10.1137/16M1091757
    [97] T. Hohage, F. Schmidt, L. Zschiedrich, Solving time-harmonic scattering problems based on the pole condition II: convergence of the PML method, SIAM J. Math. Anal., 35 (2003), 547–560. https://doi.org/10.1137/S0036141002406485 doi: 10.1137/S0036141002406485
    [98] M. Lassas, E. Somersalo, On the existence and convergence of the solution of PML equations, Computing, 60 (1998), 229–241. https://doi.org/10.1007/BF02684334 doi: 10.1007/BF02684334
    [99] J. H. Bramble, J. E. Pasciak, Analysis of a finite element PML approximation for the three dimensional time-harmonic Maxwell problem, Math. Comput., 77 (2008), 1–10. https://doi.org/10.1090/S0025-5718-07-02037-6 doi: 10.1090/S0025-5718-07-02037-6
    [100] Z. Chen, W. Zheng, Convergence of the uniaxial perfectly matched layer method for time-harmonic scattering problems in two-layered media, SIAM J. Numer. Anal., 48 (2010), 2158–2185. https://doi.org/10.1137/090750603 doi: 10.1137/090750603
    [101] Z. Chen, T. Cui, L. Zhang, An adaptive anisotropic perfectly matched layer method for 3-D time harmonic electromagnetic scattering problems, Numer. Math., 125 (2013), 639–677. https://doi.org/10.1007/s00211-013-0550-8 doi: 10.1007/s00211-013-0550-8
    [102] Y. Lin, K. Zhang, J. Zou, Studies on some perfectly matched layers for one-dimensional time-dependent systems, Adv. Comput. Math., 30 (2009), 1–35. https://doi.org/10.1007/s10444-007-9055-2 doi: 10.1007/s10444-007-9055-2
    [103] Y. Gao, P. Li, Electromagnetic scattering for time-domain Maxwell's equations in an unbounded structure, Math. Models Methods Appl. Sci., 27 (2017), 1843–1870. https://doi.org/10.1142/S0218202517500336 doi: 10.1142/S0218202517500336
    [104] P. Li, L. Wang, A. Wood, Analysis of transient electromagnetic scattering from a three-dimensional open cavity, SIAM J. Appl. Math., 75 (2015), 1675–1699. https://doi.org/10.1137/140989637 doi: 10.1137/140989637
    [105] C. Wei, J. Yang, B. Zhang, Convergence analysis of the PML method for time-domain electromagnetic scattering problems, SIAM J. Numer. Anal., 58 (2020), 1918–1940. https://doi.org/10.1137/19M126517X doi: 10.1137/19M126517X
    [106] C. Wei, J. Yang, B. Zhang, Convergence of the uniaxial PML method for time-domain electromagnetic scattering problems, ESAIM Math. Model. Numer. Anal., 55 (2021), 2421–2443. https://doi.org/10.1051/m2an/2021064 doi: 10.1051/m2an/2021064
    [107] F. L. Teixeira, W. C. Chew, Advances in the theory of perfectly matched layers, in Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, 7 (2001), 283–346.
    [108] W. C. Chew, W. H. Weedon, A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates, Microwave Opt. Technol. Lett., 7 (1994), 599–604. https://doi.org/10.1002/mop.4650071304 doi: 10.1002/mop.4650071304
    [109] F. Collino, P. Monk, Optimizing the perfectly matched layer, Comput. Methods Appl. Mech. Eng., 164 (1998), 157–171. https://doi.org/10.1016/S0045-7825(98)00052-8 doi: 10.1016/S0045-7825(98)00052-8
    [110] T. Lu, P. Zhang, W. Cai, Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions, J. Comput. Phys., 200 (2004), 549–580.
    [111] J. L. Hong, L. H. Ji, L. H. Kong, Energy-dissipation splitting finite-difference time-domain method for Maxwell equations with perfectly matched layers, J. Comput. Phys., 269 (2014), 201–214. https://doi.org/10.1016/j.jcp.2014.03.025 doi: 10.1016/j.jcp.2014.03.025
    [112] J. S. Hesthaven, On the analysis and construction of perfectly matched layers for the linearized Euler equations, J. Comput. Phys., 142 (1998), 129–147. https://doi.org/10.1006/jcph.1998.5938 doi: 10.1006/jcph.1998.5938
    [113] F. Q. Hu, On absorbing boundary conditions for linearized euler equations by a perfectly matched layer, J. Comput. Phys., 129 (1996), 201–219. https://doi.org/10.1006/jcph.1996.0244 doi: 10.1006/jcph.1996.0244
    [114] F. Pled, C. Desceliers, Review and recent developments on the perfectly matched layer (PML) method for the numerical modeling and simulation of elastic wave propagation in unbounded domains, Arch. Comput. Methods Eng., 29 (2022), 471–518. https://doi.org/10.1007/s11831-021-09581-y doi: 10.1007/s11831-021-09581-y
    [115] D. Appelö, T. Hagstrom, G. Kreiss, Perfectly matched layers for hyperbolic systems: general formulation, well-posedness, and stability, SIAM J. Appl. Math., 67 (2006), 1–23. https://doi.org/10.1137/050639107 doi: 10.1137/050639107
    [116] D. Appelö, T. Hagstrom, A general perfectly matched layer model for hyperbolic-parabolic systems, SIAM J. Sci. Comput., 31 (2009), 3301–23. https://doi.org/10.1137/080713951 doi: 10.1137/080713951
    [117] D. H. Baffet, M. J. Grote, S. Imperiale, M. Kachanovska, Energy decay and stability of a perfectly matched layer for the wave equation, J. Sci. Comput., 81 (2019), 2237–2270. https://doi.org/10.1007/s10915-019-01089-9 doi: 10.1007/s10915-019-01089-9
    [118] Z. Yang, L. L. Wang, Y. Gao, A truly exact perfect absorbing layer for time-harmonic acoustic wave scattering problems, SIAM J. Sci. Comput., 43 (2021), A1027–A1061. https://doi.org/10.1137/19M1294071 doi: 10.1137/19M1294071
    [119] W. C. Chew, Q. H. Liu, Perfectly matched layers for elastodynamics: a new absorbing boundary condition, J. Comput. Acoust., 4 (1996), 341–349. https://doi.org/10.1142/S0218396X96000118 doi: 10.1142/S0218396X96000118
    [120] F. Collino, C. Tsogka, Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, Geophysics, 88 (2001), 43–73.
    [121] K. Duru, L. Rannabauer, A. A. Gabriel, G. Kreiss, M. Bader, A stable discontinuous Galerkin method for the perfectly matched layer for elastodynamics in first order form, Numer. Math., 146 (2020), 729–782. https://doi.org/10.1007/s00211-020-01160-w doi: 10.1007/s00211-020-01160-w
    [122] S. Abarbanel, D. Gottlieb, A mathematical analysis of the PML method, J. Comput. Phys., 134 (1997), 357–363. https://doi.org/10.1006/jcph.1997.5717 doi: 10.1006/jcph.1997.5717
    [123] E. Bécache, P. Joly, On the analysis of Bérenger's perfectly matched layers for maxwell's equations, ESAIM: M2AN, 36 (2002), 87–119. https://doi.org/10.1051/m2an:2002004 doi: 10.1051/m2an:2002004
    [124] L. Zhao, A. C. Cangellaris, A general approach for the development of unsplit-field time-domain implementations of perfectly matched layers for FDTD grid truncation, IEEE Microwave Guid Wave Lett., 6 (1996), 209–211. https://doi.org/10.1109/75.491508 doi: 10.1109/75.491508
    [125] Y. Huang, M. Chen, J. Li, Development and analysis of both finite element and fourth-order in space finite difference methods for an equivalent Berenger's PML model, J. Comput. Phys., 405 (2020), 109154. https://doi.org/10.1016/j.jcp.2019.109154 doi: 10.1016/j.jcp.2019.109154
    [126] Y. Huang, J. Li, X. Liu, Developing and analyzing an explicit unconditionally stable finite element scheme for an equivalent Bérenger's PML model, ESAIM: M2AN, 57 (2023), 621–644. https://doi.org/10.1051/m2an/2022086 doi: 10.1051/m2an/2022086
    [127] D. Correia, J. M. Jin, 3D-FDTD-PML analysis of left-handed metamaterials, Microwave Opt. Technol. Lett., 40 (2004), 201–205. https://doi.org/10.1002/mop.11328 doi: 10.1002/mop.11328
    [128] S. A. Cummer, Perfectly matched layer behavior in negative refractive index materials, IEEE Antennas Wirel. Propag. Lett., 3 (2004), 172–175. https://doi.org/10.1109/LAWP.2004.833710 doi: 10.1109/LAWP.2004.833710
    [129] X. T. Dong, X. S. Rao, Y. B. Gan, B. Guo, W. Y. Yin, Perfectly matched layer-absorbing boundary condition for left-handed materials, IEEE Microwave Wireless Compon. Lett., 14 (2004), 301–303. https://doi.org/10.1109/LMWC.2004.827104 doi: 10.1109/LMWC.2004.827104
    [130] P. R. Loh, A. F. Oskooi, M. Ibanescu, M. Skorobogatiy, S. G. Johnson, Fundamental relation between phase and group velocity, and application to the failure of perfectly matched layers in backward-wave structures, Phys. Rev. E, 79 (2009), 065601. https://doi.org/10.1103/PhysRevE.79.065601 doi: 10.1103/PhysRevE.79.065601
    [131] Y. Shi, Y. Li, C. H. Liang, Perfectly matched layer absorbing boundary condition for truncating the boundary of the left-handed medium, Microwave Opt. Technol. Lett., 48 (2006), 57–63. https://doi.org/10.1002/mop.21260 doi: 10.1002/mop.21260
    [132] E. Bécache, P. Joly, M. Kachanovska, V. Vinoles, Perfectly matched layers in negative index metamaterials and plasmas, ESAIM: Proc. Surv., 50 (2015), 113–132. https://doi.org/10.1051/proc/201550006 doi: 10.1051/proc/201550006
    [133] E. Bécache, P. Joly, M. Kachanovska, V. Vinoles, On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials, Math. Comput., 87 (2018), 2775–2810. https://doi.org/10.1090/mcom/3307 doi: 10.1090/mcom/3307
    [134] J. Li, L. Zhu, Analysis and FDTD simulation of a perfectly matched layer for the Drude metamaterial, Ann. Appl. Math., 38 (2022), 1–23.
    [135] Y. Huang, J. Li, X. Yi, H. Zhao, Analysis and application of a time-domain finite element method for the Drude metamaterial perfectly matched layer model, J. Comput. Appl. Math., 438 (2024), 115575. https://doi.org/10.1016/j.cam.2023.115575 doi: 10.1016/j.cam.2023.115575
    [136] E. Bécache, M. Kachanovska, Stable perfectly matched layers for a class of anisotropic dispersive models, Part I: necessary and sufficient conditions of stability, ESAIM: M2AN, 51 (2017), 2399–2434. https://doi.org/10.1051/m2an/2017019 doi: 10.1051/m2an/2017019
    [137] C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth, D.R. Smith, An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag., 54 (2012), 10–35. https://doi.org/10.1109/MAP.2012.6230714 doi: 10.1109/MAP.2012.6230714
    [138] K. Achouri, C. Caloz, Design, concepts, and applications of electromagnetic metasurfaces, Nanophotonics, 7 (2018), 1095–1116. https://doi.org/10.1515/nanoph-2017-0119 doi: 10.1515/nanoph-2017-0119
    [139] S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, C. R. Simovski, Metasurfaces: From microwaves to visible, Phys. Rep., 634 (2016), 1–72. https://doi.org/10.1016/j.physrep.2016.04.004 doi: 10.1016/j.physrep.2016.04.004
    [140] K. A. Lurie, An Introduction to the Mathematical Theory of Dynamic Materials, Springer, 2017.
    [141] P. A. Huidobro, E. Galiffi, S. Guenneau, R. V. Craster, J. B. Pendry, Fresnel drag in space-time-modulated metamaterials, Proc. Natl. Acad. Sci. U.S.A., 116 (2019), 24943–24948. https://doi.org/10.1073/pnas.1915027116 doi: 10.1073/pnas.1915027116
    [142] C. Caloz, Z. Deck-Léger, Spacetime metamaterials–Part II: theory and applications, IEEE Trans. Antennas Propag., 68 (2020), 1583–1598. https://doi.org/10.1109/TAP.2019.2944216 doi: 10.1109/TAP.2019.2944216
    [143] E. Galiffi, R. Tirole, S. Yin, H. Li, S. Vezzoli, P. A. Huidobro, et al., Photonics of time-varying media, Adv. Photonics, 4 (2022), 014002–014002. https://doi.org/10.1117/1.AP.4.1.014002 doi: 10.1117/1.AP.4.1.014002
    [144] N. Engheta, Four-dimensional optics using time-varying metamaterials, Science, 379 (2023), 1190–1191. https://doi.org/10.1126/science.adf1094 doi: 10.1126/science.adf1094
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1012) PDF downloads(116) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog