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1. Introduction

The well-known Maxwell’s equations are a system of coupled partial differential equations (PDEs),
which form the foundation of classical electromagnetism, classical optics, and electric circuits. The
equations provide a mathematical model for countless applications involving electric, optical, and
radio technologies, such as lenses, radar, power generation, electric motors, wireless communication,
etc. Due to the importance of Maxwell’s equations, many robust and efficient numerical methods have
been developed and implemented in solving Maxwell’s equations over the past several decades (cf.,
monographs [1–8] and references therein).

In recent years, many new electromagnetic materials (e.g., metamaterials [9–11], graphene [12,13])
have been successfully constructed. To efficiently simulate wave propagation in these new media,
many new numerical methods have been developed in recent years. In this paper, we give a review on
some recent progress on the mathematical analysis and numerical simulations for Maxwell’s equations
in these media.

The rest of the paper is organized as follows. In Section 2, we present a review on metamaterials.
In Section 3, we give the review on graphene. In Section 4, our review goes to the perfectly matched
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layer (PML), which can be treated as a special medium. Finally, we conclude our review in Section 5.

2. Metamaterials

Electromagnetic metamaterials are artificially structured materials with some exotic properties that
are not observed in natural materials. Here we are interested in a specific type of metamaterials with
both permittivity and permeability being negative. Study of such a negative index metamaterial (NIM)
was initiated by Veselago [14] back in 1968. In this seminar paper, Veselago found that simultane-
ously negative permittivity ϵ and permeability µ of a material lead to a negative refractive index in the
material, and waves in such metamaterials travel backward toward the source wave location. Since
NIMs do not exist in nature, Veselago’s work didn’t get much attention until the successful construc-
tion of such a material in 2000 [15] and successful demonstration of the negative refraction index in
2001 [16]. Another catalyst for great interest in studying metamaterials is caused by Pendry’s perfect
lens paper [17]. According to [11, p.317], these four seminar papers together made the birth of the
subject of metamaterials.

Since 2000, there has been a tremendous growing interest in studying the design of metamaterials
and the investigation of their potential applications [10, 18] ranging from electronics and telecom-
munications to sensing, radar and defense, nanolithography with light, subwavelength imaging, data
storage, and electromagnetic cloaking device to achieve invisibility. Detailed overviews of the state
of the art in the progress on metamaterials can be consulted from some recent books published in this
area (e.g., [10, 11, 19, 20]).

The appearance of metamaterials provides many challenging problems that require novel incorpora-
tions of complex material models (e.g., [21–23]) into the Maxwell’s equations, and it offers many new
problems in terms of mathematical and numerical issues (cf. [24–35]). [36,37] provided some reviews
on the mathematical models for metamaterials and their numerical analysis. Due to the special interest
in invisibility cloaking, below we will focus on this subject.

The idea of designing invisibility cloaks with metamaterials was originated in 2006 by Leonhardt
[38] and Pendry et al. [39] independently. In addition to a huge amount of publications in physics and
engineering (cf. [20,40]), there are many excellent works published in the mathematics community, too.
In [41], Ammari et al. used the scattering coefficients vanishing approach to consider near-cloaking
for the full Maxwell equations in the frequency domain. Near cloaking for Maxwell’s equations is
also considered in [42]. When considering near-cloaking for the Helmholtz equation [43], Ammari et
al. proved that cloaking is increasingly difficult as the cloaked object becomes bigger or the operating
frequency becomes higher. Cloaking by anomalous localized resonance was proposed and studied
intensively, too (e.g., [44,45]). However, cloaking by anomalous localized resonance has some serious
limitations, and it can take place if and only if the dipole type source lies inside critical radii determined
by the radii of the core and the shell. Abstract mathematical analysis of cloaking phenomena has been
investigated in many papers (e.g., [41, 46–49]), and numerical analysis and computer simulations of
cloaking phenomena have been carried out by the Finite-Difference Time Domain (FDTD) method
(e.g., [19]), finite element method (FEM) (e.g., [50–52]), and the spectral element method (e.g., [53–
55]).

Broadband cloaking [48, 56, 57] encourages us to pursue the development and analysis of the fi-
nite element time-domain (FETD) method for simulating invisibility cloaks, which involves solving
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time-dependent Maxwell’s equations supplemented with some auxillary equations resulting from the
constitutive relations for the complex media [21, 25–27, 58]. In 2013, Wu and Li [59] showed that
total reflection and total transmission (cloaking) can be achieved through a zero index metamaterial
(ZIM) waveguide embedded with rectangular dielectric defects. In 2014, Li [60] analyzed a time-
domain spherical cloaking model. Later, Li and his collaborators studied some time-domain cylindrical
and elliptical cloaks [61] and several arbitrary star-shaped 2D electromagnetic cloaking models [62].
Time-domain finite element schemes were developed and cloaking phenomena were simulated by edge
elements.

Here we just illustrate an interesting “carpet cloak” originally proposed by Li and Pendry in 2008
[63] by using the quasi-conformal mapping technique. The idea is to transform a bulging reflecting
surface into a flat one, rendering anything under the bulging surface invisible from outside observers.
Experimental realizations of carpet cloaking were successfully demonstrated from microwave regime
to terahertz and optical frequencies. The governing equations for modeling the wave propagation in
the carpet cloak were derived in [64] and given as follows (cf. [65, (2.1)–(2.3)]):

∂t D = ∇ × H, (2.1)
ϵ0λ2

(
M−1

A ∂t2 E + ω2
pM−1

A E
)
= ∂t2 D + MC D, (2.2)

µ0µ∂tH = −∇ × E, (2.3)

where we denote H for the magnetic field, and D and E for the 2D electric displacement and 2D
electric field, respectively. Moreover, ∂tku denotes for the k-th derivative ∂ku/∂tk of a function u, and
we adopt the following 2D curl operators:

∇ × H = (
∂H
∂y
,−
∂H
∂x

)′, ∇ × E =
∂Ey

∂x
−
∂Ex

∂y
, ∀ E = (Ex, Ey)′,

where Ex and Ey are the x and y components of E, respectively. Here, ϵ0 and µ0 are, respectively, the
permittivity and permeability in vacuum, µ is the relative permeability, λ2 and ωp are some positive
constants, M−1

A is the inverse of a two-by-two positive definite matrix MA, and MC is a two-by-two
positive semi-definite matrix. Detailed expressions can be seen in [65].

Theorem 1. The following energy identity holds true for the solution (D,H, E) of (2.1)–(2.3):

ENG(t) − ENG(0)

= 2
∫ t

0

[
ϵ0λ2(M−1

A ∂t2 E + ω2
pM−1

A E, ∂t D) + (MC∂t D, ∂t2 E) + ω2
p(MC D, ∂tE)

]
dt, (2.4)

where we denote

ENG(t) :=
[
ϵ0λ2||M

− 1
2

A ∂t2 E||2L2(Ω) + 2ϵ0λ2ω
2
p||M

− 1
2

A ∂tE||2L2(Ω) + ϵ0λ2ω
4
p||M

− 1
2

A E||2L2(Ω)

+
1
µ0µ
||∇ × ∂tE||2L2(Ω) +

ω2
p

µ0µ
||∇ × E||2L2(Ω) + ||∂t D||2L2(Ω) + ||M

1
2
C D||2L2(Ω)

 (t). (2.5)

Moreover, we have the following stability:

ENG(t) ≤ ENG(0) · exp(C∗t), ∀ t ∈ [0,T ], (2.6)

where the positive constant C∗ depends on the model physical parameters.
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In [65], we developed two finite element methods to solve the carpet cloak model (2.1)–(2.3) with
edge elements. Stability and convergence estimates were established also in [65]. Figure 1 shows some
snapshots of the numerical magnetic fields H obtained with an incident Gaussian wave

Hz(x, y, t) = sin(2π f ) exp(−
|x − xc|

2

L2 )

imposed on a 45-degree angle line segment. This figure shows that the incident wave is totally reflected
from the flat ground. This produces the invisibility cloaking phenomenon, and our result is similar to
the simulation obtained by software COMSOL for the acoustic carpet cloak [66, Figure 7.7].

Figure 1. Carpet cloak simulation: The magnetic fields H obtained at 12,000, 24,000,
40,000, and 50,000 time steps (oriented counterclockwise). From Figure 2 of [65]
(https://doi.org/10.1007/s10444-022-09948-0) with kind permission of Springer Nature and
Copyright Clearance Center.

3. Graphene

Graphene is an atom-thick planar sheet of sp2-bonded carbon atoms packed in a honeycomb lat-
tice. Graphene was first isolated and characterized by Novoselov, Geim and co-workers [67] at the
University of Manchester in 2004. The Nobel Prize in Physics 2010 was awarded jointly to Andre
Geim and Konstantin Novoselov “for groundbreaking experiments regarding the two-dimensional ma-
terial graphene.” Since then, the study of graphene has attracted great interest of researchers (e.g.,
[12, 13, 68, 69]) due to its many interesting properties. For example, graphene exhibits high electronic
mobility as a result of its unique gapless conical band structure, which promotes the quantum Hall
effect at low temperatures and generates high magnetic fields for both electrons and holes. Graphene
has low absorption of light over a wide wavelength range, an extremely high thermal conductivity,
and saturable absorption (an interesting phenomenon where the light absorption decreases with an in-
creasing light intensity). Graphene also exhibits some unique mechanical properties, such as low mass
density, high surface area-to-volume ratio, and Young’s modulus. The excellent properties of graphene
bring a broad range of promising applications in various fields. Researchers have been successfully
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utilizing graphene to generate picosecond laser pulses due to its wide absorption range, fast decay,
and high stability properties. Graphene can be used in sensors to simultaneously sense gas, mass,
charge, tension, diseases, and explosives; graphene can be used in many high-performance products,
including low-cost display screens of mobile devices, lithium-ion batteries with fast recharge capacity,
ultracapacitors with improved performance relative to that of batteries, hydrogen storage for fuel cell-
powered cars, and low-cost fuel cells and water desalination, etc. Graphene and its derivatives have
potential usages in bio-imaging, ultraviolet lens,frequency multiplier, Hall effect sensors, conductive
ink, optoelectronics, spintronics, charge conductor, sound transducers, radio wave absorption, catalyst,
waterproof coating, condenser coating, and coolant additive [70].

Though physical research on graphene and graphene-based devices has progressed a lot, the study
of graphene in the mathematics community still lags behind. In recent years, some papers have pub-
lished on the mathematical analysis of graphene and modeling (e.g., [71–77] and references therein).
However, except our recent papers [58, 78, 79], to our best knowledge, we are unaware of other papers
on time-domain finite element analysis and applications for graphene models.

In 2020, the author and his collaborators initiated a study on graphene based devices. Starting from
the Kubo formula for the graphene conductivity, we derived the following graphene model [78]:

ϵ0∂tE = ∇ × H − Jd − J p, (3.1)
1
ϵ0ω2

pe
∂t Jd +

γ

ϵ0ω2
pe

Jd = E, (3.2)

b2∂tt J p + b1∂t J p + J p = a2∂ttE + a1∂tE + a0E, (3.3)
µ0∂tH = −∇ × E, (3.4)

where E = (Ex, Ey)′ and H = Hz are the electric field and magnetic field, repsectively, ϵ0 and µ0 are
the permittivity and permeability in vacuum, ωpe, γ, b2, b1, a2, a1, a0 are physical constants, and Jd and
J p are the induced current densities through the intraband and interband conductivities, respectively.
Note that this model is formed as a system of 7 coupled differential equations. Developing an accurate
and efficient numerical method for solving it is quite challenging. In [78], we further proposed and
analyzed an FETD method for solving the coupled system (3.1)–(3.4). The surface plasmon polaritons
(SPP) propagating along the graphene sheet are achieved by our proposed FETD scheme, which treats
the graphene as a thin plate with finite thickness.

The technique by treating graphene with some thickness can become impracticable due to the high
requirements in terms of memory storage and computer time, since a very fine mesh is usually needed
to adequately discretize the thin graphene layer in order to achieve a good numerical accuracy. In 2022,
we proposed a new finite element scheme by treating the graphene as a zero-thickness sheet. In this
case, the govening equations are Maxwell’s equations coupled with an ordinary differential equation
on the graphene interface [79]:

ϵ0∂tE = ∇ × H, in Ω, (3.5)
µ0∂tH = −∇ × E − Ks, in Ω, (3.6)
τ0∂t J + J = σ0E, on Γ, (3.7)

where we denote Ks for an imposed magnetic source function, J := Jd (as denoted in [78]) for the
induced intraband surface current in graphene, the positive constant τ0for the relaxation time, and the

Electronic Research Archive Volume 32, Issue 3, 1901–1922.



1906

positive constant σ0 for the graphene surface conductivity. Moreover, we denote Γ for the graphene
sheet buried in the physical domain Ω. In a 2D domain, the graphene sheet appears as a line (cf.
Figure 2 shown below). Comparing to the modeling equations with a finite thickness (3.1)–(3.3), the
new model (3.5)–(3.7) is much simpler. We now need to impose the following graphene interface
boundary conditions:

n̂1 × E1 = n̂2 × E2, on Γ, (3.8)
H1 − H2 = J × n̂ := Jxny − Jynx, on Γ, (3.9)

i.e., across the graphene interface, the tangential electric field is continuous, and the jump of the mag-
netic field is equal to the tangential surface current. Here we denote H1 and H2 for the magnetic field
above and below the interface, respectively, n̂ := (nx, ny)′ for the unit normal vector pointing upward,
and n̂1 and n̂2 are the unit outward normal vectors from top and bottom subdomains of the interface,
respectively.

Compared to treating graphene with some thickness, this way uses less meshes and avoids the strin-
gent time step size caused by the fine mesh needed in the graphene region. Similar SPP phenomenon
is achieved by our new method [79]. In Figure 2, we present the SPP simulation along a bifurcated
graphene sheet to demonstrate the flexibility of our FETD scheme in handling the complex geometry.
Some snapshots of the obtained numerical magnetic fields H are presented in Figure 2, which shows
that our new method captures the SPPs very well.

For graphene simulation, how to choose the right interface conditions is challenging. Engineers
have proposed many different interface conditions [80] such as impedance transmission boundary
condition, impedance matrix boundary condition, surface current boundary condition, and surface
impedance boundary condition. How to incorporate these interface conditions to time-domain grahene
simulations and theoretically justify them from mathematical point of view would be very interesting.
Graphene is known to be spatially dispersive (also known as nonlocal), i.e., the graphene conductivity
tensor varies with wavevectors. For example, when considering the graphene ribbon in the nanometer
scale, the graphene’s surface conductivity becomes spatially dispersive [81]. Hence, accurate modeling
of the spatial dispersion effects is vital for the simulation of both passive and active 2D nano-device.
However, the nonlocal conductivity makes the modeling equations more complicated and challenging.
In 2018, A Discontinuous Galerkin time domain (DGTD) framework was developed to study the effects
of the spatial dispersion due to the nonlocality of the graphene’s conductivity in [81, Eqs (10)–(12)]).
Here, a third-order approximate nonlocal model leads to four extra time-dependent PDEs (cf., [81, Eqs
(10)–(12)]). When the thermal energy is much less than the chemical potential of graphene, the sur-
face current J(t) of graphene becomes a highly nonlinear function of the electric field. In [82], a novel
FDTD scheme has been proposed to model the nonlinear electrodynamic properties of graphene at
THz frequencies.

4. Perfectly matched layers

In practice, many interesting wave propagation and radiation/scattering problems happen in un-
bounded domains, and due to limited computer memory we usually have to truncate the unbounded
domain to a bounded one by either using the so-called absorbing boundary conditions [83–85], or
PMLs.
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Figure 2. The simulation setup for the bifurcated graphene sheet (Top left); Snapshots of
the magnetic field H: 500 steps (Top right): 1000 steps (Middle left); 4000 steps (Middle
right); 6000 steps (Bottom left): 10,000 steps (Bottom right). From Figures 7 and 8 of [79]
(https://doi.org/10.1016/j.camwa.2023.05.003) with kind permission of RightsLink/Elsevier.

The PML concept was originally introduced by Bérenger in 1994 [86] for efficiently solving the
unbounded electromagnetic problems with the finite-difference time-domain method. The PML idea is
to surround the computational domain with a specially designed artificial (nonphysical) absorbing layer
of finite thickness to absorb the outgoing waves (leaving the physical domain) without any spurious
reflections.

Inspired by Bérenger’s work, many different PML models have been proposed and analyzed for
solving Maxwell’s equations in the past two decades. In [87], a Maxwellian material based PML model
was developed for the time-dependent Maxwell’s equations. Later, we carried out the stability analysis
for this PML model in its original form [88] and in integro-differential form [89]. Finite element
methods are proposed and its wave absorbing performances are demonstrated in [88, 89]. In [90],
Cohen and Monk developed another PML model for the time-dependent Maxwell’s equations by using
the stretched coordinates approach. The PML performance is tested by a finite element method with
mass-lumped edge elements. Later in [91], we estabilshed a stability result for the Cohen-Monk model,
and a new finite element scheme was proposed, analyzed, and implemented. In [92], a new type of
absorbing layer for Maxwell’s equations and the linearized Euler equations in the time domain were
proposed and analyzed. The PML model for the Maxwell’s equations is augmented from the free

Electronic Research Archive Volume 32, Issue 3, 1901–1922.



1908

space Maxwell’s equations with six additional unknowns and three damping functions. One major
interest from the mathematics community is in the convergence analysis of the PMLs. For time-
harmonic electromagnetic scattering problems, the exponential convergence has been established in
terms of the thickness of the PML layer for the circular or spherical PML method (e.g., [93–98]) and
in [57, 15, 17, 19, 20] for the uniaxial (or Cartesian) PML method (e.g., [99–101]). On the other
hand, there are fewer works on the convergence analysis of PML models in the time domain. The
exponential decays and convergence of the PML solutions are established for the one-dimensional
time-dependent Maxwell system, acoustic equations and hyperbolic systems in [102], which is the
first result on exponential decays and convergence of PMLs for time-dependent systems. For the
transient electromagnetic scattering problems [103, 104], similar exponential convergences have been
established for the spherical PML method [105] and the uniaxial PML method [106]. A good survey
on PML models for Maxwell’s equations can be seen in the reivew article by Teixeira and Chew [107].

Due to its excellent performance demonstrated for electromagnetic wave simulations (e.g., [108–
111]), the PML technique originally proposed for the Maxwell’s equations has been quickly extended
to solve other wave problems. For example, PML models have been studied for the linearized Euler
equations (e.g., [112,113]), for elastic wave problems (cf., a recent review paper by Pled and Desceliers
[114] and references therein), for general hyperbolic systems [115], for hyperbolic-parabolic systems
[116], for the wave equation [117], for the 2D Helmholtz equation [118], and for the elastodynamic
problems [119–121].

4.1. Berenger’s PML

Consider the two-dimensional Bérenger’s T Ez PML model (Transverse Electric with the electric
field lying in the (x, y) plane), which involves only three unknowns, Ex, Ey,Hz, and is given as [86,
(3.a)–(3.d)]: i

ϵ0∂tEx + σy(y)Ex = ∂y(Hzx + Hzy), (4.1a)
ϵ0∂tEy + σx(x)Ey = −∂x(Hzx + Hzy), (4.1b)
µ0∂tHzx + σ

∗
x(x)Hzx = −∂xEy, (4.1c)

µ0∂tHzy + σ
∗
y(y)Hzy = ∂yEx, (4.1d)

where (Ex, Ey) and Hz = Hzx + Hzy (splitting Hz into two components) are the electric and magnetic
fields, respectively; ϵ0 = 8.854 · 10−12F/m and µ0 = 4π · 10−7H/m are the vacuum permittivity and
permeability, respectively; and σx, σx, σ

∗
x, σ

∗
y are the electric and magnetic conductivities. To avoid

the reflection across the vacuum-medium interface, we require the following impedance matching
conditions to be satisfied:

σi

ϵ0
=
σ∗i
µ0
, i = x, y. (4.2)

The Bérenger’s PML model, such as (4.1a)–(4.1d), works very well in practical simulations. How-
ever, the mathematical study by Abarbanel and Gottlieb [122] pointed out that Bérenger’s PML model
is weakly well-posed but not strongly well-posed, i.e., it may suffer the long time instability. Later, a
careful study by Becache and Joly [123] proved that for the Cauchy problem made of Eqs (4.1a)–(4.1d)
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with σy(y) = σ∗y(y) = 0 (i.e., in the PML layer parallel to the y axis) and ϵ0 = µ0 = 1, the following
stability [123, Theorem 1.2]:

∥U(·, t)∥L2(R2) ≤ Cσ∥U0∥H1(R2), (4.3)

holds true for any initial function U0 ∈ (H1(R2))4, where U = (Ex, Ey,Hzx,Hzy)′ denotes the solution
of (4.1a)–(4.1d) with the initial condition

Ex(0) = E0
x, Ey(0) = E0

y ,Hzx(0) = H0
zx,Hzy(0) = H0

zy.

Here, the constant Cσ = C min (1, 1/σ) and σ = σx = σ
∗
x > 0. The stability (4.3) shows that the

weak well-posedness appears in the loss of regularity between the initial data and the solution at time
t. They proved further [123, Theorem 1.3] that the loss of regularity only affects the split fields, while
the physical fields E = (Ex, Ey)′ and Hz = Hzx + Hzy still satisfy the usual estimate, as for the standard
Maxwell’s equations, i.e.,

∥E(t)∥L2(R2) + ∥Hz(t)∥L2(R2) ≤ C∥U0∥L2(R2), (4.4)

where constant C > 0 is independent of σ.
In [123], Becache and Joly also used the energy techniques to prove some nice stability results for

the PML model based on Zhao-Cangellaris’s formulation [124] for general positive variable conduc-
tivities. It is a pity that their proof of Theorem 2.7 in [123] has some typos. Inspired by Becache
and Joly’s work [123], we rederived the TEz PML model (by correcting their typos and putting the
physical permittivity and permeability back), which is given as follows [125, Eqs (5)–(9)]: For any
(x, t) ∈ Ω × (0,T ],

ϵ0∂tE + Σ∗∗E = ∇ × H := (∂yH,−∂xH)′, (4.5a)

ϵ0∂t Ẽ = ϵ0∂tE + Σ∗∗E, (4.5b)

µ0∂tH∗ = −∇ × Ẽ := −(∂xẼy − ∂yẼx), (4.5c)

∂tH̃ = H, (4.5d)

∂tH + ϵ−1
0 (σx + σy)H + ϵ−2

0 σxσyH̃ = ∂tH∗, (4.5e)

where we denote E = (Ex, Ey)′ and H for the electric field and magnetic field, and Ẽ = (Ẽx, Ẽy)′, H̃
and H∗ for the auxiliary variables. Moreover, we denote

Σ∗∗ = diag(σy, σx), Σ∗∗ = diag(σx, σy),

where σx(x), σy(y) ≥ 0 are the damping functions in the x, y directions, respectively. Here, Ω is
assumed to be an open bounded Lipschitz polygon in R2 with boundary ∂Ω and outward unit normal
vector n. Furthermore, we assume that the model problem (4.5a)–(4.5e) satisfies the perfect electric
conductive (PEC) boundary condition:

n× E = 0 on ∂Ω, (4.6)

and the initial conditions:

E(x, 0) = E0(x), Ẽ(x, 0) = Ẽ0(x), H(x, 0) = H0(x), H∗(x, 0) = H∗0(x), H̃(x, 0) = H̃0(x), ∀ x ∈ Ω,
(4.7)
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where E0, Ẽ0,H0,H∗0 and H̃0 are some given functions.
Following the technique developed by Becache and Joly in [123], we established the following

stability for the model (4.5a)–(4.5e).

Theorem 2. [125, Theorem 1] Denote the energy at any time t for the solution (E, Ẽ,H, H̃) of (4.5a)–
(4.5e) subject to the PEC boundary condition as:

Ete(t) := ϵ0
(
∥Ẽ∥2L2(Ω) + ∥Ẽ − E∥2L2(Ω)

)
+ µ0∥H∥2L2(Ω) + ϵ

−2
0 µ0∥(σxσy)

1
2 H∥2L2(Ω).

Under the PEC boundary condition, we have

Ete(t) ≤ exp
[
4(∥σx∥∞ + ∥σy∥∞)t/ϵ0

]
· Ete(0). (4.8)

Once the continuous stability is establiished, we can develop various numerical methods to solve
this PML model (4.5a)–(4.5e). In [125], both an FDTD method (with 4th order in space and 2nd order
in time convergence) and an FEM using edge elements are developed and analyzed. A novel explicit
unconditionally stable finite element scheme using edge elements was proposed and analyzed recently
in [126].

4.2. PML models for metamaterials

It is known that the classical Berenger’s PML is unstable when it is used to interact with metama-
terials directly due to the presence of backward waves. This phenomenon was pointed out in several
papers from the physicist community (cf., [127–131]). Furthermore, they proposed some stable PML
models to overcome the unstability. In 2015, Bécache et al. [132] systematically derived a new PML
model with 16 unknowns to overcome this unstability issue, and they carried out some simulations by
the FDTD method to demonstrate the stability of the PML model. Unfortunately they did not provide
any details about the specific numerical scheme in [132] and their continuous work [133].

Inspired by [132], recently we proposed, analyzed and implemented both an FDTD method [134]
and a finite element method [135] for a special case of the Drude PML model established by Bécache
et al. (cf. [132, Eq (48)] and [134, (2.1)]):

∂tEx + ω
2
e Jx + ϵ

−1
0 σyEx = ϵ

−1
0 ∂y(Hx + Hy), (4.9)

∂tJx − Ex = 0, (4.10)
∂tEy + ω

2
e Jy + ϵ

−1
0 σxEy = −ϵ

−1
0 ∂x(Hx + Hy), (4.11)

∂tJy − Ey = 0, (4.12)
∂tHx + ω2

mKx + µ−1
0 σyHx = µ−1

0 ∂yEx, (4.13)
∂tKx − Hx = 0, (4.14)
∂tHy + ω2

mKy + µ−1
0 σxHy = −µ−1

0 ∂xEy, (4.15)
∂tKy − Hy = 0. (4.16)

where E = (Ex, Ey) and H = Hx+Hy are the electric field and magnetic field (in split form) respectively,
J = (Jx, Jy) and K = (Kx,Ky) are the auxiliary variables, σx(x) ≥ 0 and σy(y) ≥ 0 are the damping
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functions in the x and y directions, ωe and ωm are the electric and the magnetic plasma frequencies
given in the following Drude model:

ϵ(ω) = ϵ0(1 −
ω2

e

ω2 ), µ(ω) = µ0(1 −
ω2

m

ω2 ), (4.17)

where ω denotes the general wave frequency. In Figure 3, we presented our simulation result for a
transmission problem originally proposed in [132] and simulated by the FDTD method without much
details. This transmission problem is given between vacuum and a Drude metamaterial surrounded by
Berenger′s PML and the metamaterial PML, respectively. Snapshots of the magnetic field H obtained
by our finite element method [135] with edge elements are presented in Figure 3, which is similar to
what Bécache et al. obtained by the FDTD method [132, Figure 12].

In [134], we established the following energy identity and stabiltiy result for the solution to the
PML model (4.9)–(4.16) subject to a PEC boundary condition.

Theorem 3. [134, Theorem 2.1] Define the energy

E(t) =
1
2

[
ϵ0(||Ex||

2
L2(Ω) + ||Ey||

2
L2(Ω)) + ϵ0ω

2
e(||Jx||

2
L2(Ω) + ||Jy||

2
L2(Ω))

+µ0||Hx + Hy||2L2(Ω) + µ0ω
2
m||K

x + Ky||2L2(Ω)

]
. (4.18)

For any nonnegative functions σx(x) and σy(y), we have

d
dt
E(t) + ||σ

1
2
y Ex||

2
L2(Ω) + ||σ

1
2
x Ey||

2
L2(Ω) + ||σ

1
2
y Hx||2L2(Ω) + ||σ

1
2
x Hy||2L2(Ω) +

(
(σx + σy)Hx,Hy

)
= 0. (4.19)

When σx = σy = σ ≥ 0 (i.e., a positive constant), the energy is decreasing:

E(t) ≤ E(0), ∀ t ∈ [0,T ]. (4.20)

We like to remark that the above stability results are established only when the damping functions
σx = σy are a positive constant. It is still an open issue whether or not the stability holds true when
the damping functions vary with spatial variables, which happens in practical applications. Though
some nice analytical results are established for PML models in metamaterials or general dispersive
media [132, 133, 136], few works have been done for those models in terms of numerical method
developments and applications.

5. Conclusions

Here we reviewed some recent progress on mathematical analysis and numerical simulations for
Maxwell’s equations in metamaterials, graphene, and perfectly matched layers. Some open issues are
mentioned in the review. Actually many PML models used in practice are quite challenging to establish
their stabilities. More mathematical works are needed for analyzing those differential equations devel-
oped to simulate wave interactions with other complex media such as metasurfaces (e.g., [137–139])
and time-varying media (e.g., [140–144]).
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Figure 3. The simulation setup for the refocusing simulation (Top left); Snapshots of the
magnetic field H: 800 steps (Top right): 2000 steps (Middle left); 4000 steps (Middle
right); 8000 steps (Bottom left): 10,000 steps (Bottom right). From Figures 1 and 2 of [135]
(https://doi.org/10.1016/j.cam.2023.115575) with kind permission of RightsLink/Elsevier.
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type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech.
Anal., 208 (2013), 667–692. https://doi.org/10.1007/s00205-012-0605-5

45. R. V. Kohn, J. Lu, B. Schweizer, M. I. Weinstein, A variational perspective on
cloaking by anomalous localized resonance, Commun. Math. Phys., 328 (2014), 1–27.
https://doi.org/10.1007/s00220-014-1943-y

Electronic Research Archive Volume 32, Issue 3, 1901–1922.

http://dx.doi.org/https://doi.org/10.1142/S0218202509004121
http://dx.doi.org/https://doi.org/10.1093/imamat/hxs039
http://dx.doi.org/https://doi.org/10.1137/100810071
http://dx.doi.org/https://doi.org/10.1016/j.cam.2012.09.033
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2017.07.025
http://dx.doi.org/https://doi.org/10.1126/science.1126493
http://dx.doi.org/https://doi.org/10.1126/science.1125907
http://dx.doi.org/https://doi.org/10.1137/120903610
http://dx.doi.org/https://doi.org/10.1016/j.matpur.2013.10.010
http://dx.doi.org/https://doi.org/10.1007/s00205-012-0605-5
http://dx.doi.org/https://doi.org/10.1007/s00220-014-1943-y


1916

46. R. V. Kohn, D. Onofrei, M. S. Vogelius, M. I. Weinstein, Cloaking via change of vari-
ables for the Helmholtz equation, Commun. Pure Appl. Math., 63 (2010), 973–1016.
https://doi.org/10.1002/cpa.20326

47. A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann, Cloaking devices, electromagnetics wormholes
and transformation optics, SIAM Rev., 51 (2009), 3–33. https://doi.org/10.1137/080716827

48. F. Guevara Vasquez, G. W. Milton, D. Onofrei, Broadband exterior cloaking, Opt. Express, 17
(2009), 14800–14805. https://doi.org/10.1364/OE.17.014800

49. M. Lassas, M. Salo, L. Tzou, Inverse problems and invisibility cloaking for FEM
models and resistor networks, Math. Mod. Meth. Appl. Sci., 25 (2015), 309–342.
https://doi.org/10.1142/S0218202515500116

50. S. C. Brenner, J. Gedicke, L. Y. Sung, An adaptive P1 finite element method for two-dimensional
transverse magnetic time harmonic Maxwell’s equations with general material properties and gen-
eral boundary conditions, J. Sci. Comput., 68 (2016), 848–863. https://doi.org/10.1007/s10915-
015-0161-x

51. J. J. Lee, A mixed method for time-transient acoustic wave propagation in metamaterials, J. Sci.
Comput., 84 (2020). https://doi.org/10.1007/s10915-020-01275-0

52. S. Nicaise, J. Venel, A posteriori error estimates for a finite element approximation of transmis-
sion problems with sign changing coefficients, J. Comput. Appl. Math., 235 (2011), 4272–4282.
https://doi.org/10.1016/j.cam.2011.03.028

53. Z. Yang, L. L. Wang, Accurate simulation of ideal circular and elliptic
cylindrical invisibility cloaks, Commun. Comput. Phys., 17 (2015), 822–849.
https://doi.org/10.4208/cicp.280514.131014a

54. Z. Yang, L. L. Wang, Z. Rong, B. Wang, B. Zhang, Seamless integration of global Dirichlet-to-
Neumann boundary condition and spectral elements for transformation electromagnetics, Comput.
Methods Appl. Mech. Engrg., 301 (2016), 137–163. https://doi.org/10.1016/j.cma.2015.12.020

55. B. Wang, Z. Yang, L. L. Wang, S. Jiang, On time-domain NRBC for Maxwell’s equations and
its application in accurate simulation of electromagnetic invisibility cloaks, J. Sci. Comput., 86
(2021). https://doi.org/10.1007/s10915-020-01354-2

56. U. Leonhardt, T. Tyc, Broadband invisibility by non-Euclidean cloaking, Science, 323 (2009),
110–112. https://doi.org/10.1126/science.1166332

57. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, Broadband ground-plane cloak, Science,
323 (2009), 366–369. https://doi.org/10.1126/science.1166949

58. J. Li, Two new finite element schemes and their analysis for modeling of wave propagation in
graphene, Results Appl. Math., 9 (2021), 100136. https://doi.org/10.1016/j.rinam.2020.100136

59. Y. Wu, J. Li, Total reflection and cloaking by zero index metamaterials loaded with rectangular
dielectric defects, Appl. Phys. Lett., 102 (2013), 183105. https://doi.org/10.1063/1.4804201

60. J. Li, Well-posedness study for a time-domain spherical cloaking model, Comput. Math. Appl., 68
(2014), 1871–1881. https://doi.org/10.1016/j.camwa.2014.10.007

Electronic Research Archive Volume 32, Issue 3, 1901–1922.

http://dx.doi.org/https://doi.org/10.1002/cpa.20326
http://dx.doi.org/https://doi.org/10.1137/080716827
http://dx.doi.org/https://doi.org/10.1364/OE.17.014800
http://dx.doi.org/https://doi.org/10.1142/S0218202515500116
http://dx.doi.org/https://doi.org/10.1007/s10915-015-0161-x
http://dx.doi.org/https://doi.org/10.1007/s10915-015-0161-x
http://dx.doi.org/https://doi.org/10.1007/s10915-020-01275-0
http://dx.doi.org/https://doi.org/10.1016/j.cam.2011.03.028
http://dx.doi.org/https://doi.org/10.4208/cicp.280514.131014a
http://dx.doi.org/https://doi.org/10.1016/j.cma.2015.12.020
http://dx.doi.org/https://doi.org/10.1007/s10915-020-01354-2
http://dx.doi.org/https://doi.org/10.1126/science.1166332
http://dx.doi.org/https://doi.org/10.1126/science.1166949 
http://dx.doi.org/https://doi.org/10.1016/j.rinam.2020.100136
http://dx.doi.org/https://doi.org/10.1063/1.4804201
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2014.10.007


1917

61. J. Li, Y. Huang, W. Yang, Well-posedness study and finite element simulation of
time-domain cylindrical and elliptical cloaks, Math. Comput., 84 (2015), 543–562.
https://doi.org/10.1090/s0025-5718-2014-02911-6

62. W. Yang, J. Li, Y. Huang, Mathematical analysis and finite element time domain simulation
of arbitrary star-shaped electromagnetic cloaks, SIAM J. Numer. Anal., 56 (2018), 136–159.
https://doi.org/10.1137/16M1093835

63. J. Li, J. B. Pendry, Hiding under the carpet: a new strategy for cloaking, Phys. Rev. Lett., 101
(2008), 2039014. https://doi.org/10.1103/PhysRevLett.101.203901

64. J. Li, Y. Huang, W. Yang, A. Wood, Mathematical analysis and time-domain fi-
nite element simulation of carpet cloak, SIAM J. Appl. Math., 74 (2014), 1136–1151.
https://doi.org/10.1137/140959250

65. J. Li, C. W. Shu, W. Yang, Development and analysis of two new finite element schemes for a time-
domain carpet cloak model, Adv. Comput. Math., 48 (2022), 24. https://doi.org/10.1007/s10444-
022-09948-0

66. J. Li, Z. Liang, J. Zhu, X. Zhang, Anisotropic metamaterials for transformation acoustics and
imaging, in Acoustic Metamaterials: Negative Refraction, Imaging, Sensing and Cloaking (eds.
R. V. Craster and S. Guenneau), Springer Series in Materials Science, 166 (2013), 169–195.
https://doi.org/10.1007/978-94-007-4813-2 7

67. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et
al., Electric field effect in atomically thin carbon films, Science, 306 (2004), 666–669.
https://doi.org/10.1126/science.1102896

68. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, Graphene photonics and optoelectronics, Nat.
Photonics, 4 (2010), 611–622. https://doi.org/10.1038/nphoton.2010.186

69. F. H. L. Koppens, D. E. Chang, F. J. Garcia de Abajo, Graphene plasmonics: A platform for strong
light-matter interactions, Nano Lett., 11 (2011), 3370–3377. https://doi.org/10.1021/nl201771h

70. S. K. Tiwari, S. Sahoo, N. Wang, A. Huczko, Graphene research and their
outputs: Status and prospect, J. Sci.: Adv. Mater. Devices, 5 (2020), 10–29.
https://doi.org/10.1016/j.jsamd.2020.01.006

71. G. Bal, P. Cazeaux, D. Massatt, S. Quinn, Mathematical models of topologically pro-
tected transport in twisted bilayer graphene, Multiscale Model. Simul., 21 (2023), 1081–1121.
https://doi.org/10.1137/22M1505542

72. Y. Hong, D. P. Nicholls, On the consistent choice of effective permittivity and conductivity for
modeling graphene, JOSA A, 38 (2021), 1511–1520. https://doi.org/10.1364/JOSAA.430088

73. J. P. Lee-Thorp, M. I. Weinstein, Y. Zhu, Elliptic operators with honeycomb symmetry: Dirac
points, edge states and applications to photonic graphene, Arch. Ration. Mech. Anal., 232 (2019),
1–63. https://doi.org/10.1007/s00205-018-1315-4

74. M. Maier, D. Margetis, M. Luskin, Dipole excitation of surface plasmon on a conducting
sheet: finite element approximation and validation, J. Comput. Phys., 339 (2017), 126–145.
https://doi.org/10.1016/j.jcp.2017.03.014

Electronic Research Archive Volume 32, Issue 3, 1901–1922.

http://dx.doi.org/https://doi.org/10.1090/s0025-5718-2014-02911-6 
http://dx.doi.org/https://doi.org/10.1137/16M1093835
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.101.203901
http://dx.doi.org/https://doi.org/10.1137/140959250
http://dx.doi.org/https://doi.org/10.1007/s10444-022-09948-0
http://dx.doi.org/https://doi.org/10.1007/s10444-022-09948-0
http://dx.doi.org/https://doi.org/10.1007/978-94-007-4813-2_7
http://dx.doi.org/https://doi.org/10.1126/science.1102896
http://dx.doi.org/https://doi.org/10.1038/nphoton.2010.186
http://dx.doi.org/https://doi.org/10.1021/nl201771h
http://dx.doi.org/https://doi.org/10.1016/j.jsamd.2020.01.006
http://dx.doi.org/https://doi.org/10.1137/22M1505542
http://dx.doi.org/https://doi.org/10.1364/JOSAA.430088
http://dx.doi.org/https://doi.org/10.1007/s00205-018-1315-4
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2017.03.014


1918

75. M. Maier, D. Margetis, M. Luskin, Generation of surface plasmon-polaritons by edge effects,
Commun. Math. Sci., 16 (2018), 77–95.

76. J. H. Song, M. Maier, M. Luskin, Adaptive finite element simulations of waveguide configurations
involving parallel 2D material sheets, Comput. Methods Appl. Mech. Eng., 351 (2019), 20–34.
https://doi.org/10.1016/j.cma.2019.03.039

77. J. Wilson, F. Santosa, P. A. Martin, Temporally manipulated plasmons on graphene, SIAM J. Appl.
Math., 79 (2019), 1051–1074. https://doi.org/10.1137/18M1226889

78. W. Yang, J. Li, Y. Huang, Time-domain finite element method and analysis for modeling of surface
plasmon polaritons in graphene devices, Comput. Methods Appl. Mech. Eng., 372 (2020), 113349.
https://doi.org/10.1016/j.cma.2020.113349

79. J. Li, L. Zhu, T. Arbogast, A new time-domain finite element method for simulation sur-
face plasmon polaritons on graphene sheets, Comput. Math. Appl., 142 (2023), 268–383.
https://doi.org/10.1016/j.camwa.2023.05.003

80. Y. Gong, N. Liu, Advanced numerical methods for graphene simulation with equivalent boundary
conditions: a review, Photonics, 10 (2023), 712. https://doi.org/10.3390/photonics10070712
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92. J. L. Lions, J. Métral, O. Vacus, Well-posed absorbing layer for hyperbolic problems, Numer.
Math., 92 (2002), 535–562. https://doi.org/10.1007/s002110100263

93. G. Bao, H. Wu, Convergence analysis of the perfectly matched layer problems for
time-harmonic Maxwell’s equations, SIAM J. Numer. Anal., 43 (2005), 2121–2143.
https://doi.org/10.1137/040604315

94. J. H. Bramble, J. E. Pasciak, Analysis of a finite PML approximation for the three dimensional
time-harmonic Maxwell and acoustic scattering problems, Math. Comput., 76 (2007), 597–614.
https://doi.org/10.1090/S0025-5718-06-01930-2

95. J. Chen, Z. Chen, An adaptive perfectly matched layer technique for 3-D time-
harmonic electromagnetic scattering problems, Math. Comput., 77 (2007), 673–698.
https://doi.org/10.1090/S0025-5718-07-02055-8

96. Z. Chen, W. Zheng, PML method for electromagnetic scattering problem in a two-layer medium,
SIAM J. Numer. Anal., 55 (2017), 2050–2084. https://doi.org/10.1137/16M1091757

97. T. Hohage, F. Schmidt, L. Zschiedrich, Solving time-harmonic scattering problems based on the
pole condition II: convergence of the PML method, SIAM J. Math. Anal., 35 (2003), 547–560.
https://doi.org/10.1137/S0036141002406485

98. M. Lassas, E. Somersalo, On the existence and convergence of the solution of PML equations,
Computing, 60 (1998), 229–241. https://doi.org/10.1007/BF02684334

99. J. H. Bramble, J. E. Pasciak, Analysis of a finite element PML approximation for
the three dimensional time-harmonic Maxwell problem, Math. Comput., 77 (2008), 1–10.
https://doi.org/10.1090/S0025-5718-07-02037-6

100.Z. Chen, W. Zheng, Convergence of the uniaxial perfectly matched layer method for time-
harmonic scattering problems in two-layered media, SIAM J. Numer. Anal., 48 (2010), 2158–2185.
https://doi.org/10.1137/090750603

101.Z. Chen, T. Cui, L. Zhang, An adaptive anisotropic perfectly matched layer method for 3-
D time harmonic electromagnetic scattering problems, Numer. Math., 125 (2013), 639–677.
https://doi.org/10.1007/s00211-013-0550-8

102.Y. Lin, K. Zhang, J. Zou, Studies on some perfectly matched layers for one-dimensional time-
dependent systems, Adv. Comput. Math., 30 (2009), 1–35. https://doi.org/10.1007/s10444-007-
9055-2

103.Y. Gao, P. Li, Electromagnetic scattering for time-domain Maxwell’s equations in
an unbounded structure, Math. Models Methods Appl. Sci., 27 (2017), 1843–1870.
https://doi.org/10.1142/S0218202517500336

Electronic Research Archive Volume 32, Issue 3, 1901–1922.

http://dx.doi.org/https://doi.org/10.1016/S0045-7825(98)00154-6
http://dx.doi.org/https://doi.org/10.1016/S0045-7825(98)00154-6
http://dx.doi.org/https://doi.org/10.1007/s00211-020-01166-4
http://dx.doi.org/https://doi.org/10.1007/s00211-020-01166-4
http://dx.doi.org/https://doi.org/10.1007/s002110100263
http://dx.doi.org/https://doi.org/10.1137/040604315
http://dx.doi.org/https://doi.org/10.1090/S0025-5718-06-01930-2
http://dx.doi.org/https://doi.org/10.1090/S0025-5718-07-02055-8
http://dx.doi.org/https://doi.org/10.1137/16M1091757
http://dx.doi.org/https://doi.org/10.1137/S0036141002406485
http://dx.doi.org/https://doi.org/10.1007/BF02684334
http://dx.doi.org/https://doi.org/10.1090/S0025-5718-07-02037-6
http://dx.doi.org/https://doi.org/10.1137/090750603
http://dx.doi.org/https://doi.org/10.1007/s00211-013-0550-8
http://dx.doi.org/https://doi.org/10.1007/s10444-007-9055-2
http://dx.doi.org/https://doi.org/10.1007/s10444-007-9055-2
http://dx.doi.org/https://doi.org/10.1142/S0218202517500336


1920

104.P. Li, L. Wang, A. Wood, Analysis of transient electromagnetic scattering from a three-dimensional
open cavity, SIAM J. Appl. Math., 75 (2015), 1675–1699. https://doi.org/10.1137/140989637

105.C. Wei, J. Yang, B. Zhang, Convergence analysis of the PML method for time-
domain electromagnetic scattering problems, SIAM J. Numer. Anal., 58 (2020), 1918–1940.
https://doi.org/10.1137/19M126517X

106.C. Wei, J. Yang, B. Zhang, Convergence of the uniaxial PML method for time-domain elec-
tromagnetic scattering problems, ESAIM Math. Model. Numer. Anal., 55 (2021), 2421–2443.
https://doi.org/10.1051/m2an/2021064

107.F. L. Teixeira, W. C. Chew, Advances in the theory of perfectly matched layers, in Fast and Effi-
cient Algorithms in Computational Electromagnetics, Artech House, Boston, 7 (2001), 283–346.

108.W. C. Chew, W. H. Weedon, A 3D perfectly matched medium from modified Maxwell’s
equations with stretched coordinates, Microwave Opt. Technol. Lett., 7 (1994), 599–604.
https://doi.org/10.1002/mop.4650071304

109.F. Collino, P. Monk, Optimizing the perfectly matched layer, Comput. Methods Appl. Mech. Eng.,
164 (1998), 157–171. https://doi.org/10.1016/S0045-7825(98)00052-8

110.T. Lu, P. Zhang, W. Cai, Discontinuous Galerkin methods for dispersive and lossy Maxwell’s
equations and PML boundary conditions, J. Comput. Phys., 200 (2004), 549–580.

111.J. L. Hong, L. H. Ji, L. H. Kong, Energy-dissipation splitting finite-difference time-domain method
for Maxwell equations with perfectly matched layers, J. Comput. Phys., 269 (2014), 201–214.
https://doi.org/10.1016/j.jcp.2014.03.025

112.J. S. Hesthaven, On the analysis and construction of perfectly matched layers for the linearized
Euler equations, J. Comput. Phys., 142 (1998), 129–147. https://doi.org/10.1006/jcph.1998.5938

113.F. Q. Hu, On absorbing boundary conditions for linearized euler equations by a perfectly matched
layer, J. Comput. Phys., 129 (1996), 201–219. https://doi.org/10.1006/jcph.1996.0244

114.F. Pled, C. Desceliers, Review and recent developments on the perfectly matched layer (PML)
method for the numerical modeling and simulation of elastic wave propagation in unbounded
domains, Arch. Comput. Methods Eng., 29 (2022), 471–518. https://doi.org/10.1007/s11831-021-
09581-y
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