Research article

On some extrapolation in generalized grand Morrey spaces with applications to PDEs

  • Received: 07 December 2022 Revised: 03 February 2023 Accepted: 10 February 2023 Published: 04 January 2024
  • Rubio de Francia's extrapolation in generalized grand Morrey spaces is derived. This result is applied to the investigation of the regularity of solutions for the second order partial differential equations with discontinuous coefficients in the framework of generalized grand Morrey spaces under the Muckenhoupt condition on weights. Density properties for these spaces are also investigated.

    Citation: Eteri Gordadze, Alexander Meskhi, Maria Alessandra Ragusa. On some extrapolation in generalized grand Morrey spaces with applications to PDEs[J]. Electronic Research Archive, 2024, 32(1): 551-564. doi: 10.3934/era.2024027

    Related Papers:

  • Rubio de Francia's extrapolation in generalized grand Morrey spaces is derived. This result is applied to the investigation of the regularity of solutions for the second order partial differential equations with discontinuous coefficients in the framework of generalized grand Morrey spaces under the Muckenhoupt condition on weights. Density properties for these spaces are also investigated.



    加载中


    [1] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Am. Math. Soc., 43 (1938), 126–166.
    [2] Y. Komori, S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr., 282 (2009), 219–231. https://doi.org/10.1002/mana.200610733 doi: 10.1002/mana.200610733
    [3] Y. Sawano, G. Di Fazio, D. I. Hakim, Morrey Spaces, CRC Press, New York, 2020. https://doi.org/10.1201/9781003042341
    [4] T. Iwaniec, C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal., 119 (1992), 129–143. https://doi.org/10.1007/BF00375119 doi: 10.1007/BF00375119
    [5] L. Greco, T. Iwaniec, C. Sbordone, Inverting the $p$ -harmonic operator, Manuscripta Math., 92 (1997), 249–258. https://doi.org/10.1007/BF02678192 doi: 10.1007/BF02678192
    [6] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Operators in Non-Standard Function Spaces, Springer International Publishing, Switzerland, 2016. https://doi.org/10.1007/978-3-319-21018-6
    [7] J. Duoandikietxea, M. Rosental, Extension and boundedness of operators on Morrey spaces from extrapolation techniques and embeddings, J. Geom. Anal., 28 (2018), 3081–3108. https://doi.org/10.1007/s12220-017-9946-5 doi: 10.1007/s12220-017-9946-5
    [8] V. Kokilashvili, A. Meskhi, M. A.Ragusa, Weighted extrapolation in Grand Morrey spaces and applications to partial differential equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., 30 (2019), 67–92. https://doi.org/10.4171/rlm/836 doi: 10.4171/rlm/836
    [9] V. Kokilashvili, A. Meskhi, The boundedness of sublinear operators in weighted morrey spaces defined on spaces of homogeneous type, in Function Spaces and Inequalities, (2017), 193–211. https://doi.org/10.1007/978-981-10-6119-6_9
    [10] R. Mustafayev, On boundedness of sublinear operators in weighted Morrey spaces, Azerb. J. Math. 2 (2012), 63–75.
    [11] M. Rosental, H. Schmeisser, The boundedness of operators in Muckenhoupt weighted Morrey spaces via extrapolation tecjniques and duality, Rev. Mat. Complut., 29 (2016), 623–657. https://doi.org/10.1007/s13163-016-0208-z doi: 10.1007/s13163-016-0208-z
    [12] N. Samko, On a Muckenhoupt-type condition for Morrey spaces, Mediterr. J. Math., 10 (2013), 941–951. https://doi.org/10.1007/s00009-012-0208-2 doi: 10.1007/s00009-012-0208-2
    [13] S. Shi, Z. Fu, F. Zhao, Estimates for operators on weighted Morrey spaces and their applications to nondivergence elliptic equations, J. Inequal. Appl., 390 (2013), https://doi.org/10.1186/1029-242X-2013-390 doi: 10.1186/1029-242X-2013-390
    [14] S. Nakamura, Y. Sawano, The singular integral operator and its commutator on weighted Morrey spaces, Collect. Math., 68 (2017), 145–174. https://doi.org/10.1007/s13348-017-0193-7 doi: 10.1007/s13348-017-0193-7
    [15] V. Kokilashvili, A. Meskhi, H. Rafeiro, Commutators of sublinear operators in grand Morrey spaces, Stud. Sci. Math. Hung., 56 (2019), 211–232 https://doi.org/10.1556/012.2019.56.2.1425 doi: 10.1556/012.2019.56.2.1425
    [16] V. Kokilashvili, A. Meskhi, H. Rafeiro, Boundedness of sublinear operators in weighted grand Morrey spaces, Math. Notes, 102 (2017), 664–676. https://doi.org/10.1134/S0001434617110062 doi: 10.1134/S0001434617110062
    [17] V. Kokilashvili, A. Meskhi, Weighted extrapolation in Iwaniec-Sbordone spaces. Applications to integral operators and theory of approximation, in Proceedings of the Steklov Institute of Mathematics, 293 (2016), 161–185. https://doi.org/10.1134/S008154381604012X
    [18] A. Meskhi, Maximal functions, potentials and singular integrals in grand Morrey spaces, Complex Var. Elliptic Equations, 56 (2011), 1003–1019. https://doi.org/10.1080/17476933.2010.534793 doi: 10.1080/17476933.2010.534793
    [19] H. Rafeiro, A note on boundedness of operators in Grand Grand Morrey spaces, in Advances in Harmonic Analysis and Operator Theory, (2013), 349–356. https://doi.org/10.1007/978-3-0348-0516-2_19
    [20] L. Pick, A. Kufner, O. John, S. Fucík, Function Spaces, De Gruyter academic publishing, Berlin, 2013. https://doi.org/10.1515/9783110250428
    [21] J. Strömberg, A. Torchinsky, Weighted Hardy Spaces, Springer, Berlin, 1989. https://doi.org/10.1007/BFb0091154
    [22] R. R. Coifman, G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Springer-Verlag, Berlin, 1971. https://doi.org/10.1007/BFb0058946
    [23] A. Meskhi, Y. Sawano, Density, duality and preduality in grand variable exponent lebesgue and morrey spaces, Mediterr. J. Math., 15 (2018). https://doi.org/10.1007/s00009-018-1145-5 doi: 10.1007/s00009-018-1145-5
    [24] D. I. Hakim, M. Izuki, Y. Sawano, Complex interpolation of grand Lebesgue spaces, Monatsh. Math., 184 (2017), 245–272. https://doi.org/10.1007/s00605-017-1022-5 doi: 10.1007/s00605-017-1022-5
    [25] G. Pradolini, O. Salinas, Commutators of singular integrals on spaces of homogeneous type, Czech. Math. J., 57 (2007), 75–93. https://doi.org/10.1007/s10587-007-0045-9 doi: 10.1007/s10587-007-0045-9
    [26] J. Duoandikoetxea, Extrapolation of weights revisited: New proofs and sharp bounds, J. Funct. Anal., 260 (2011), 1886–1901. https://doi.org/10.1016/j.jfa.2010.12.015 doi: 10.1016/j.jfa.2010.12.015
    [27] D. Cruz-Uribe, J. M. Martell, C. Perez, Extrapolation from $A_{\infty}$ weights and applications, J. Funct. Anal., 213 (2004), 412–439. https://doi.org/10.1016/j.jfa.2003.09.002 doi: 10.1016/j.jfa.2003.09.002
    [28] V. Kokilashvili A. Meskhi, Extrapolation in grand Lebesgue spaces with $A_{\infty}$ weights, Math. Notes, 104 (2018), 518-–529. https://doi.org/10.1134/S0001434618090195 doi: 10.1134/S0001434618090195
    [29] T. P. Hytönen, C. Pérez, E. Rela, Sharp reverse Hölder property for $A_{\infty}$ weights on spaces of homogeneous type, J. Funct. Anal., 263 (2012), 3883–3899. https://doi.org/10.1016/j.jfa.2012.09.013 doi: 10.1016/j.jfa.2012.09.013
    [30] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, $2^{nd}$ edition, Springer–Verlag, Berlin, 1983.
    [31] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Commun. Pure Appl. Math., 12 (1959), 623–727. https://doi.org/10.1002/cpa.3160120405 doi: 10.1002/cpa.3160120405
    [32] N. Meyers, An $L^p$ estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Sc. Norm. Super. Pisa-classe Sci., 17 (1963), 189–206.
    [33] G. Talenti, Equazioni lineari ellittiche in due variabili, Matematiche, 21 (1966), 339–376.
    [34] C. Miranda, Sulle equazioni ellittiche del secondo ordine di tipo non variazionale a coefficienti discontinui, Ann. Mat. Pura Appl., 63 (1963), 353–386. https://doi.org/10.1007/BF02412185 doi: 10.1007/BF02412185
    [35] F. John, L. Nirenberg, On functions of bounded mean oscillation, Commun. Pure Appl. Math., 14 (1961), 415–426. https://doi.org/10.1002/cpa.3160140317 doi: 10.1002/cpa.3160140317
    [36] D. Sarason, Functions of vanishing mean oscillation, Trans. Am. Math. Soc., 207 (1975), 391–405.
    [37] F. Chiarenza, M. Frasca, P. Longo, $W^{2, p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with $VMO$ coefficients, Trans. Am. Math. Soc., 336 (1993), 841–853.
    [38] F. Chiarenza, M. Frasca, P. Longo, Interior $W^{2, p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ricerche Mat., 40 (1991), 149–168.
    [39] F. Chiarenza, M. Franciosi, M. Frasca, $L^p$-estimates for linear elliptic systems with discontinuous coefficients, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 5 (1994), 27–32.
    [40] L. Caffarelli, Elliptic second order equations, Seminario Mat. e. Fis. di Milano, 58 (1988), 253–284. https://doi.org/10.1007/BF02925245 doi: 10.1007/BF02925245
    [41] S. Campanato, Sistemi parabolici del secondo ordine, non variazionali a coefficienti discontinui, Ann. Univ. Ferrara, 23 (1977), 169–187. https://doi.org/10.1007/BF02825996 doi: 10.1007/BF02825996
    [42] L. Grafakos, Classical Fourier Analysis, Springer, New York, 2014. https://doi.org/10.1007/978-1-4939-1194-3
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(706) PDF downloads(53) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog