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1. Introduction

Let (X, ρ, µ) be a quasi–metric measure space with a quasi–metric ρ and a finite doubling measure
µ. We deal with Rubio de Francia’s extrapolation in generalized weighted grand Morrey spaces
Mp),q,φ(·)

w (X) defined on (X, ρ, µ), where w is a weight function on X. p, q and φ(·) are appropriate
parameters of the space, and the ”grandification” of the space is taken with respect to p.

Morrey spaces, introduced by Morrey in [1], describe the regularity of solutions of elliptic partial
differential equations (PDEs) more precisely than Lebesgue spaces.

Let w be a weight function on X, i.e., w is a µ- a.e. positive integrable function on X. Let Mp,q
w (X)

be the weighted Morrey space defined with respect to the norm [2]:

∥ f ∥Mp,q
w (X) := sup

B

1(
w(B)
) 1

p−
1
q

∥ f ∥Lp
w(B) := sup

B

1(
w(B)
) 1

p−
1
q

( ∫
B

| f (x)|pw(x)dµ(x)
) 1

p

,
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where 1 < p ≤ q, and the supremum is taken over all balls B in X. It is easy to notice that if p = q,
then we have the weighted Lebesgue space denoted by Lp

w(X). For definitions and essential properties
of the classical Morrey spaces, we refer, e.g., to the recent monograph [3].

In 1992 Iwaniec and Sbordone [4] introduced new function spaces Lp)(Ω), called grand Lebesgue
spaces. That investigation was related to the integrability problem of the Jacobian on a bounded open
setΩ. More general spaces of Lp)(Ω), denoted by Lp),θ(Ω), appeared first in the work by Greco et al. [5]
in 1997 as the appropriate ambient spaces in which some nonlinear PDEs have to be considered.

Problems related to Harmonic Analysis in grand Lebesgue spaces and their associate spaces
(called small Lebesgue spaces), were intensively studied during the last two decades along with
various applications. The reader is referred, e.g., to the monographs [6] and references therein.

Denote by Φp the class of non-decreasing functions φ(·) on (0, p − 1) such that lim
ε→0

φ(ε) = 0.

Let w be a weight function on X, i.e., w is a µ− a.e. positive integrable function on X. We consider
the weighted grand Morrey space Mp),q,φ(·)

w (X) defined by the finite norm:

∥ f ∥Mp),q,φ(·)
w (X) := sup

0<ε<p−1
sup

B

φ(ε)(
w(B)
) 1

p−ε−
1
q

∥ f ∥Lp−ε
w (B)

:= sup
0<ε<p−1

φ(ε)∥ f ∥Mp−ε,q
w (X),

where 1 < p ≤ q, and φ(·) ∈ Φp. If φ(t) = tθ, where θ > 0, then we use the notation Mp),q,θ
w (X) for

Mp),q,φ(·)
w (X).
One of our motivations to study the extrapolation problem in Mp),q,φ(·)

w (X) is related to the
investigations carried out in [7] and [8], where the same problem was investigated in Mp,q

w (Rn) and
Mp),q,θ

w (X), respectively. Komori and Shirai [2] obtained pioneering results regarding the one-weight
problem for Harmonic Analysis operators in weighted classical Morrey spaces with Muckenhoupt Ap

weights defined on Rn. Similar problems for sublinear operators involving, for example, maximal,
fractional, Calderón-Zygmund integral operators in the spaces Mp,q

w (Rn) with Ap weights were
explored in [7, 9–14].

We emphasize that the one-weight estimates for sublinear operators including their commutators
in grand Morrey spaces were investigated in [15] and [16]. Extrapolation results in weighted grand
Lebesgue spaces were derived in [17].

Historically, unweighted grand Morrey spaces Lp),λ(X) were introduced and studied in [18]. Later,
these spaces were generalized in [19] by introducing grand grand Morrey spaces having the
“grandification” not only for p, but also for λ.

2. Preliminaries

Let (X, ρ, µ) be a quasi-metric measure space (QMMS , briefly), where X is an abstract set, ρ is
a quasi-metric on X, and µ is a measure defined on a σ- algebra of subsets of X. Quasi-metric ρ
on X is a non-negative function on X × X satisfying the following conditions: (a) ρ(x, y) = 0 if and
only if x = y; (b) ρ(x, y) = ρ(y, x), ∀x, y ∈ X; (c) there exists a constant κ ≥ 1 such that ρ(x, y) ≤
κ
[
ρ(x, z) + ρ(z, y)

]
, ∀x, y, z ∈ X. Denote by B(x,R) the ball with center x and radius R, i.e., B(x,R) :=

{y ∈ X : ρ(x, y) ≤ R}. We say that a measure µ satisfies the doubling condition if there exists a positive
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constant Cdc such that for all x ∈ X and r > 0, µB(x, 2r) ≤ Cdc µB(x, r). We will deal with a QMMS
with doubling measure. Such a QMMS is called a space of homogeneous type (S HT , briefly).

There are many important examples of an S HT . We list some of them:
• Carleson (regular) curves on C with arc-length measure dν and Euclidean distance on C;
• nilpotent Lie groups with Haar measure and homogeneous norm (homogeneous groups);
• the triple (Ω, ρ, dx), where Ω is a domain in Rn, ρ is the Euclidean metric, and dx is the Lebesgue

measure induced to Ω satisfying the A condition [20], i.e., there exists a constant C > 0 such that for
all x ∈ Ω and R ∈

(
0, diam(Ω)

)
,

µ(B̃(x,R)) ≥ CRn, (2.1)

where
B̃(x,R) := Ω ∩ B(x,R). (2.2)

Other properties and examples of S HT s can be found, e.g., in [21, 22].
Let 1 < s < ∞. We say that a weight w belongs to the class As(X) (Muckenhoupt class of weights) if

[
w
]

As
:= sup

B

µ(B)−1
∫
B

w(x)dµ(x)


µ(B)−1

∫
B

w1−s′(x)dµ(x)


s−1

< ∞, s′ =
s

s − 1
,

where the least upper bound is taken over all balls B ⊂ X. In the literature,
[
w
]

As
is called As

characteristic of the weight w.
Furthermore, a weight function w is in the class A1(X) if Mw(x) ≤ Cw(x) a.e., where Mw is the

Hardy–Littlewood maximal function of w:

Mw(x) = sup
B∋x

1
µ(B)

∫
B

w(y)dµ(y) (B is a ball in X).

In this case, it is assumed that [w]A1(X) is determined as the essential supremum of Mw/w.
Furthermore, the following monotonicity property holds for Muckenhoupt classes:

Ar(X) ⊂ As(X), 1 ≤ r < s < ∞.

Let us recall that the class of weights A∞(X) is defined as follows: A∞(X) = ∪ℓ≥1Aℓ(X).

3. Density in Mp),q,φ(·)
w (X)

Let E be a Banach space and F be its subset. Let us denote by [F]E the closure of F in E. We are
interested in density in Mp),q,φ(·)

w (X) spaces. In particular we have the following statement [6, 23].

Proposition 3.1. Let 1 < p ≤ q and let φ(·) ∈ Φp. Suppose that w is a weight function on X. Then,

lim
ε→0

φ(ε)∥ f ∥Mp−ε,q
w (X) = 0 (3.1)

for f ∈
[
Mp,q

w (X)
]

Mp),q,φ(·)
w (X)

.
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Proof. Let f ∈
[
Mp,q

w (X)
]

Mp),q,φ(·)
w (X)

and ε0 > 0. Then, there is a function fn0 ∈ Mp,q
w (X) such that

∥ f − fn0∥Mp),q,φ(·)
w (X) < ε0.

Consequently, for such fn0 and ε0, in view of the condition φ(·) ∈ Φp, we have that for sufficiently
small ε, φ(ε)∥ fn0∥Mp,q

w (X) ≤ ε0. Hence,

φ(ε)∥ f ∥Mp−ε,q
w (X) = φ(ε) sup

B
w(B)−

1
p−ε+

1
q ∥ f ∥Lp−ε

w (B)

≤ φ(ε)∥ f − fn0∥Mp−ε,q
w (X) + φ(ε)∥ fn0∥Mp,q

w (X) ≤ ∥ f − fn0∥Mp),q,φ(·)
w (X) + φ(ε)∥ fn0∥Mp,q

w (X)

≤ ε0 + φ(ε)∥ fn0∥Mp,q
w (X) ≤ [1 +Cφ,p]ε0

for sufficiently small ε, where the constant Cφ,p depends only on φ and p. Here, we used the embedding

Ms,q
w (X) ↪→ Mp,q

w (X), 1 ≤ p ≤ s ≤ q,

which follows from the Hölder inequality and the definition of the weighted Morrey norm. □

Proposition 3.2. Let 1 < p ≤ q, φ(·) ∈ Φp. Suppose that w is a weight function on X. Then,[
L∞(X)

]
Mp),q,φ(·)

w (X)
=

{
f ∈ Mp),q,φ(·)

w (X) : lim
N→∞

∥∥∥χ{| f |>N} f
∥∥∥

Mp),q,φ(·)
w (X)

= 0
}
. (3.2)

Proof. We use arguments from [24]. Initially observe that if lim
N→∞

∥∥∥χ{| f |>N} f
∥∥∥

Mp),q,φ(·)
w (X)

= 0, then f ∈[
L∞(X)

]
Mp),q,φ(·)

w (X)
because f = χ{| f |>N} f + χ{| f |≤N} f , where χ{| f |≤N} f ∈ L∞(X).

Let us now take f ∈
[
L∞(X)

]
Mp),q,φ(·)

w (X)
and let ε0 > 0. We choose g ∈ L∞(X) such that ∥ f −

g∥Mp),q,φ(·)
w (X) < ε0. In view of the representation

∣∣∣χ{| f |>N} f
∣∣∣ ≤ | f − g| +

∣∣∣∣∣∣χ{| f |>N}∩{|g|≤ N
2Cp

}g
∣∣∣∣∣∣ +
∣∣∣∣∣∣χ{|g|> N

2Cp

}g
∣∣∣∣∣∣,

where N ∈ N and Cp = φ(p − 1), we have

|g| ≤
N

2Cp
<
| f |

2Cp
≤
| f − g|
2Cp

+
|g|

2Cp
, on the set {| f | > N} ∩ {2Cp|g| ≤ N}.

Hence, |g| ≤ C| f − g|, where the positive constant C is independent of f and g. Therefore, if N >

2Cp∥g∥L∞(X), we have
∥∥∥χ{| f |>N} f

∥∥∥
Mp),q,φ(·)

w (X)
≤ c ∥ f − g∥Mp),q,φ(·)

w (X) < cε0. Finally, we are done. □

4. Weighted extrapolation

The main result regarding the extrapolation reads as follows:

Theorem 4.1. Assume that 1 ≤ p0 < ∞ and that F (X) is a family of pairs of non-negative measurable
functions defined on X. Let, for all ( f , g) ∈ F (X) and w ∈ Ap0(X), the inequality

∥g∥Lp0
w (X) ≤ N

(
p0, [w]Ap0 (X)

)
∥ f ∥Lp0

w (X) (4.1)

hold, where N
(
p0, [w]Ap0 (X)

)
is the positive constant depending only on p0 and [w]Ap0 (X) such that the

mapping · 7→ N(p0, ·) is a non-decreasing for a fixed p0. Then, for every 1 < p ≤ q, φ(·) ∈ Φp and
w ∈ Ap(X), the estimate

∥g∥Mp),q,φ(·)
w (X) ≤ C∥ f ∥Mp),q,φ(·)

w (X), ( f , g) ∈ F (X),

holds, where the constant C is independent of ( f , g).
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Extrapolation result for A∞ weights is given by the next statement:

Theorem 4.2. Suppose that F (X) is a class of pairs of functions ( f , g), where f and g are µ-
measurable functions on X. Let p0 ∈ (0,∞) and l ≥ 1 be fixed parameters. Suppose that there is a
function N : (0,∞) × (0,∞) 7→ (0,∞), which is non-decreasing with respect to the second variable,
such that the inequality

∥g∥Lp0
w (X) ≤ N(p0, [w]Al(X))∥ f ∥Lp0

w (X) (4.2)

holds for all ( f , g) ∈ F (X) and w ∈ Al(X). Then, for every 1 < p ≤ q, φ(·) ∈ Φp and all w ∈ A∞(X) the
estimate

∥g∥Mp),q,φ(·)
w (X) ≤ C∥ f ∥Mp),q,φ(·)

w (X), ( f , g) ∈ F (X), (4.3)

is valid, where the constant C does not depend on ( f , g).

These statements for φ(t) = tθ, t > 0 were proved in [8].

Remark 4.1. According to Theorem 4.1 and the fact that the Muckenhoupt condition w ∈ Ap0(X)
guarantees the boundedness of Harmonic Analysis operators such as Calderón–Zygmund singular
integrals, commutators of singular integrals, fractional integrals and commutators of fractional
integrals in Lp0

w (X) spaces [21, 25], we have appropriate one-weight norm estimates for those
operators in grand Morrey spaces Mp),q,φ(·)

w (X) for w ∈ Ap(X).

To prove Theorem 4.2 we need some auxiliary statements from [7, 8]:

Lemma 4.1. Let 0 < γ < 1 and let f be a µ-locally integrable function on X. Then, (M f )γ ∈ A1(X).
Moreover, [

(M f )γ
]

A1
≤

Cκ,µ

1 − γ
,

where Cκ,µ is a structural constant.

Lemma 4.2. Let 1 ≤ γ < p < ∞ and let w ∈ Ap/γ(X). Suppose that p ≤ q. Then, there is q0 ∈ (γ, p)
such that for all r ∈ [γ, q0], all s ∈ (1, s0(r,w)), where s0(r,w) is the constant depending on r and w,
all balls B, sufficiently small numbers ε, and all h ∈ L(p/r)′

w (B) with ∥h∥L(p/r)′
w (B) = 1, the inequality

∥ f ∥Lr
(HW)s,B

(X) ≤ C(w(B))
1

p−ε−
1
q ∥ f ∥Mp−ε,q

w (X) (4.4)

holds, where
(HW)s,B := M(hswsχB)

1
s , (4.5)

and the constant C does not depend on f , B and ε.

Proof of Theorem 4.1. Following [7, 8], initially observe that in view of the Hölder inequality we
have for σ < ε < p − 1,

1

w(B)
1

p−ε−
1
q

( ∫
B

gp−εwdµ
)1/(p−ε)

≤
1

w(B)
1

p−σ−
1
q

( ∫
B

gp−σwdµ
)1/(p−σ)

, g ≥ 0. (4.6)
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So, it is enough to show that there is a positive constant Cµ,σ,w depending only on µ, σ, w such that

sup
0<ε<σ

φ(ε)

w(B)
1

p−ε−
1
q

( ∫
B

gp−εwdµ
)1/(p−ε)

≤ Cµ,σ,w∥ f ∥Mp),q,φ(·)
w (X)

for some sufficiently small positive number σ.
Let 1 < p < ∞. A classical extrapolation result [17, 26] yields that

∥g∥Lp
w(X) ≤ Cψ([w]Ap(X))∥ f ∥Lp

w(X), w ∈ Ap(X), (4.7)

for all ( f , g) ∈ F (X), where C is the constant independent of ( f , g) and w, and the mapping · 7→ ψ(·) is
non-decreasing. Furthermore, take w ∈ Ap(X) and choose s > 1 and r ∈ (1, p) so that inequality (4.4)
holds. Introducing the notation pε := p−ε

r , for a ball B ⊂ X, we find that

( ∫
B

gp−εwdµ
) 1

p−ε

=

( ∫
B

gpεrwdµ
) 1

pεr

= sup
∥h∥

L
p′ε
w (X)
=1

( ∫
B

grhwdµ
) 1

r

.

For such an h, in view of Lemma 4.1 we see that [(HW)s,B]Aq ≤ [(HW)s,B]A1 ≤
Cµ

1−s−1 . Furthermore,
observe that (4.7) implies that( ∫

X
grwdµ

) 1
r

≤ Cµψ([w]Ar(X))
( ∫

X
f rwdµ

) 1
r

for all w ∈ Ar(X) and all ( f , g) ∈ F (X), where the mapping · 7→ φ(·) is non-decreasing. Therefore, in
view of Lemmas 4.2 and 4.1, we get

( ∫
X

grhwχBdµ
) 1

r

≤

( ∫
X

gr(HW)s,Bdµ
) 1

r

≤ Cψ
(
[(HW)s,B]Ar(X)

)( ∫
X

f r(HW)s,Bdµ
) 1

r

≤ CC̃φ
([

(HW)s,B

]
Ar(X)

)
w(B)

1
p−ε−

1
q ∥ f ∥Mp−ε,q

w (X)

≤ CC̃ψ
([

(HW)s,B

]
A1(X)

)
w(B)

1
p−ε−

1
qφ(ε)−1∥ f ∥Mp),q,φ(·)

w (X)

≤ CC̃ψ
( Cµ

1 − s−1

)
w(B)

1
p−ε−

1
qφ(ε)−1∥ f ∥Mp),q,φ(·)

w (X),

where C̃ is the constant depending only on p, σ, w.
Finally we deduce

φ(ε)

w(B)
1

p−ε−
1
q

( ∫
B

gp−εwdµ
) 1

p−ε

≤ C∥ f ∥Mp),q,φ(·)
w (X)

for sufficiently small ε. Since (see (4.6))

∥g∥Mp,φ(·)
w (X) ∼ sup

0<ε<σ

φ(ε)

w(B)
1

p−ε−
1
q

( ∫
B

gp−εwdµ
) 1

p−ε

,
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where σ ∈ (0, p − 1), we are done.
□

Proof of Theorem 4.2. Let (4.2) hold for some p0 > 0. Then, the classical A∞ extrapolation [27, 28]
gives

∥g∥Lp
w(X) ≤ Cpψ

(
[w]Ap

)
∥ f ∥Lp

w(X) (4.8)

for all 1 < p < ∞ and w ∈ Ap, where Cp is the positive constant depending on p, and ψ(·) is a
non-decreasing mapping.

Let 1 < p < ∞ and let w ∈ A∞. Now, we will show that (4.3) holds for such a weight w and all
( f , g) ∈ F (X). If p ≥ r, then Ar ⊂ Ap, and by (4.8) and Theorem 4.1, we get that (4.3) holds for that w
and all ( f , g) ∈ F (X).

Suppose now that p < r. Since w ∈ Ar, by the openness property of Muckenhoupt classes [21] we
have that w ∈ Ar−σ for some small positive σ (the exact value of σ can be found in [29]). Consequently,
by the monotonicity property of Muckenhoupt classes, w ∈ Ar−η for all η satisfying 0 < η < σ. Hence,
in view of (4.8), we find that∥∥∥∥|g| p−εr−η

∥∥∥∥
Mr−η, r(p−ε)

r−η (X)
≤ Cp,r,ε,ηψ

([
w
]

Ar−η

)∥∥∥∥| f | p−εr−η

∥∥∥∥
Mr−η, r(p−ε)

r−η (X)
, (4.9)

were Cp,r,ε,η is the positive constant depending only on p, r, ε, η, and ψ is a non-decreasing function.
Since

[
w
]

Ar−η
≤
[
w
]

Ar−σ
and supε,η Cp,r,ε,η < ∞ (see also the proof of Theorem 4.1 for this fact), we

have that
sup
ε,η

Cp,r,ε,ηψ
([

w
]

Ar−η

)
< ∞,

where the least upper bound is taken over all sufficiently small η and ε. Due to (4.9) we see that∥∥∥∥g∥∥∥∥ p−ε
r−η

Mp−ε,q(X)
≤ Cp,r,ε,ηψ

([
w
]

Ar−η

)∥∥∥∥ f
∥∥∥∥ p−ε

r−η

Mp−ε,q(X)
. (4.10)

Raising both sides of (4.10) to the power r−η
p−ε , multiplying them by φ(ε) and taking the supremum with

respect to ε, we are done.
□

5. Applications to PDEs

During the last three decades a quite large number of papers explored local and global regularity
problems for strong solutions to elliptic PDEs with discontinuous coefficients. To be evident, we take
the second order PDE

Lu(x) ≡
n∑

i, j=1

ai j(x)Dxi x ju(x) = f (x) for almost all x ∈ Ω, (5.1)

where L denotes a uniformly elliptic operator on a bounded domain Ω ⊂ Rn, n ≥ 2.
Suppose that Ω is a domain in Rn. As we know, the triple (Ω, ρ, dx) satisfying the condition A

(see (2.1) for this condition), where ρ is the Euclidean metric, and dx is the Lebesgue measure induced
to Ω, is an example of an S HT . Hence, the previous statements are true for such domains.
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The regularizing property of L in Hölder spaces (i.e., Lu ∈ Cα(Ω̄) implies u ∈ C2+α(Ω̄)) has been
intensively investigated for the case of Hölder continuous coefficients ai j. Also, we emphasize that
unique classical solvability of the Dirichlet problem for (5.1) has been obtained in this case (we refer
to [30] and references therein). For uniformly continuous coefficients ai j, an Lp-Schauder theory has
been elaborated for the operator L [30, 31]. In particular, Lu ∈ Lp(Ω) implies that the strong solution
to (5.1) belongs to the Sobolev space W2,p(Ω) for each p ∈ (1,∞). However, the situation becomes
more complicated if we try to allow discontinuity at the principal coefficients of L. In general, it
is known (cf. [32]) that discontinuity of the coefficients ai j implies that the Lp-theory of L and the
strong solvability of the Dirichlet problem for (5.1) fail. A considerable exception of that rule is
the two-dimensional case (Ω ⊂ R2). Talenti [33] proved that the solely condition on measurability
and boundedness of the ai j’s guarantees isomorphic properties for L as a function from W2,2(Ω) ∩
W1,2

0 (Ω) to L2(Ω). For the multidimensional case, i.e., when n ≥ 3, except the uniform ellipticity,
some additional properties on the coefficients ai j are assumed in order to ensure that L possesses the
regularizing property in Sobolev functional scales. In particular, if ai j belong to W1,n(Ω) (cf. [34]),
or if the difference between the largest and the smallest eigenvalues of {ai j} is sufficiently small (the
Cordes condition), then Lu ∈ L2(Ω) yields u ∈ W2,2(Ω), and these results can be extended to W2,p(Ω)
for p ∈ (2 − ε, 2 + ε) with sufficiently small ε.

Later, the Sarason class of functions with vanishing mean oscillation (denoted by V MO) was applied
in the investigation of local and global Sobolev regularity of the strong solutions for (5.1).

Furthermore, let us define the space BMO of functions of bounded mean oscillation, and the smaller
class of functions of vanishing mean oscillation denoted by V MO, where we consider coefficients ai j

and later that one where we consider the known term f .
In the sequel, we will assume that Ω is an open bounded set in Rn.

Definition 5.1. For f ∈ L1
loc(Ω), define the integral mean fx,R by the formula

fx,R := |B(x,R)|−1
∫

B̃(x,R)

f (y)dy,

where B̃(x,R) is defined by (2.2).

If there is no need to specify the center, we just use the symbol BR for B(x,R).

We now recall the definition of the class of functions with bounded mean oscillation functions
(denoted by BMO) that appeared for the first time in the publication by John and Nirenberg [35].

Definition 5.2. For f ∈ L1
loc(Ω), we say that f belongs to BMO(Ω) if ∥ f ∥∗ < ∞, where

∥ f ∥∗ := sup
B(x,R)
|B(x,R)|−1

∫
B̃(x,R)

| f (y) − fx,R|dy.

Next, we consider the class of functions with Vanishing Mean Oscillation (V MO), introduced by
Sarason [36].

Definition 5.3. Let f ∈ BMO(Ω) and define

η( f ,R) := sup
ρ≤R
|Bρ|

−1
∫
B̃ρ

| f (y) − fρ|dy.
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Furthermore, a function f belongs to the class V MO(Ω) if limR→0 η( f ,R) = 0.

In fact, the class V MO is the subspace of BMO whose BMO norm over a ball vanishes when
the radius of balls goes to zero. From this property it follows that a number of good features of
functions from V MO are not shared by BMO functions; for example, functions from this class can
be approximated by smooth functions. The V MO class was studied by various authors from different
viewpoints. It is worth mentioning the work by Chiarenza et al. [37], in which the authors answer
a question that arose thirty years before Miranda [34]. In the latter work the author considered linear
elliptic PDEs, in which the coefficients ai j with the higher order derivatives belong to the class W1,n(Ω),
and, moreover, he asked whether the gradient of the solution is bounded, if p > n. In the work [37] the
authors supposed that ai j ∈ V MO and proved that Du is Hölder continuous.

Furthermore, it is possible to see that bounded uniformly functions belong to the class V MO as well
as functions belonging to fractional Sobolev spaces Wθ, n

θ , θ ∈ (0, 1).
The investigation of Sobolev regularity of strong solutions of (5.1) was initiated in 1991 by the

pioneering work of Chiarenza et al. [38]. In that work it was proved that, if ai j ∈ V MO ∩ L∞(Ω)
and Lu ∈ Lp(Ω), then u ∈ W2,p(Ω) for each value of p ∈ (1,∞). Moreover, well-posedness of the
Dirichlet problem for (5.1) in W2,p(Ω)∩W1,p

0 (Ω) was obtained. As a consequence, if the exponent p is
sufficiently large, then it follows Hölder continuity for the strong solution or for its gradient.

By virtue of the fundamental accessibility of the works [37,39], many other authors have used V MO
class to obtain regularity results for PDEs and systems with discontinuous coefficients.

It can be checked that Hölder continuity can be inferred for small p if one has more information on
Lu, such as, for example, its belonging to suitable Morrey class Lp,λ(Ω).

We denote by Lp,λ(Ω) the Morrey space defined on a domain Ω ⊂ Rn which is determined by the
following norm:

∥ f ∥p,λ := sup
x∈Ω

0<R<diam (Ω)

( 1
Rλ

∫
B̃(x,R)
| f (y)|p dy

)1/p

,

where B̃(x,R) is defined by (2.2).
The exponent λ can take values outside (0, n) but, as usual, the unique case of real interest is that

one for which λ ∈ (0, n). Indeed, from the definition we easily see that Lp,λ(Ω) = Lp(Ω), if λ ≤ 0. It
is also clear that Lp,0(Ω) = Lp(Ω).
Moreover, if λ = n, by using the Lebesgue differentiation theorem, we find that

lim
ρ→0+

ρ−n
∫

B̃(x,ρ)
| f (y)|p dy= lim

ρ→0+
ρ−n
∫

B(x,ρ)
| f (y)|pdy=C| f (x)|p

for every Lebesgue point x ∈ Ω. Then, f (x) ∈ Lp,n(Ω) if and only if f is bounded. This means that
Lp,n(Ω) = L∞(Ω). Furthermore, if λ > n, then Lp,λ(Ω) = {0}.

In view of the spaces defined above, a natural problem arises when one studies the regularizing
properties of the operatorL in Morrey spaces for the case of V MO principal coefficients. In [40] it was
proved that each W2,p-viscosity solution to (5.1) lies in C1+α(Ω) if f belongs to Ln,nα(Ω) with α ∈ (0, 1).

One of the main results of this note is to obtain local regularity in generalized grand Morrey spaces
Mp),q,φ(·)

w (X), for highest order derivatives of solutions of elliptic PDEs in non-divergence form with
coefficients, which might be discontinuous.
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We recall the work by Agmon et al. [31] in which the appropriate results were obtained for the
case of continuous coefficients of the above kind of equation. Later, discontinuous coefficients were
considered also by Campanato [41].

In this paper we continue the study of the Lp regularity of solutions of second order elliptic PDEs
to the maximum order derivatives of the solutions to a certain class of linear elliptic PDEs in
nondivergence form having discontinuous coefficients [8].

We consider the second order differential operator

L ≡

n∑
i, j=1

ai jDi j, Di j ≡
∂2

∂xi∂x j
.

Here, we have adopted the usual summation convention on repeated indices.
We will also need the following regularity and ellipticity assumptions for the coefficients of

L, ∀i, j = 1 . . . n :
ai j ∈ L∞(Ω) ∩ V MO,

ai j(x) = a ji(x), for a.e. x ∈ Ω,

∃ κ > 0 : 1
κ
|ξ|2 ≤ ai j(x)ξiξ j ≤ κ|ξ|

2, ∀ξ ∈ Rn, for a.e. x ∈ Ω.

(5.2)

Set ηi j for the V MO-modulus of the function ai j and suppose that η =
(∑n

i, j=1 η
2
i j

)1/2
. In this case the

normalized fundamental solution is given by the formula

Γ(x, ξ) =
1

n(2 − n)ωn
√

det{ai j(x)}

 n∑
i, j=1

Ai j(x)ξiξ j


(2−n)/2

, ∀ξ ∈ Rn \ {0}and a.e. x,

where Ai j(x) are the entries of the inverse matrix of the matrix {ai j(x)}i, j=1,...,n, and ωn is the volume of
the unit ball in Rn. We set

Γi(x, ξ) =
∂

∂ξi
Γ(x, ξ), Γi j(x, ξ) =

∂

∂ξi∂ξ j
Γ(x, ξ),

M = max
i, j=1,...,n

max
|α|≤2n

∥∥∥∥∥∥∂αΓi j(·, ξ)
∂ξα

∥∥∥∥∥∥
L∞(Ω×Σ)

.

It is well known that Γi j(x, ξ) are Calderón–Zygmund kernels with respect to the variable ξ.
Recall that since the conditionA for Ω is satisfied, Ω with the Euclidean distance and the Lebesgue

measure induced on Ω is a special case of S HT .

Theorem 5.1. Suppose that (5.2) holds, 1 < p ≤ q < ∞, φ(·) ∈ Φp. Let Ω be a domain satisfying A
condition (see (2.1)) and let w be a weight on Ω such that w ∈ Ap(Ω). Then, for every ball Bρ ⊂⊂ Ω,
and every u ∈ W2,p

0 (Bρ) with Lu ∈ Mp),q,φ(·)
w (Bρ), we have Di ju ∈ Mp),q,φ(·)

w (Bρ), and moreover, there exist
positive constants c = c(n, κ, p, q, φ(·),M,w) such that the estimate

∥Di ju∥Mp),q,φ(·)
w (Bρ) ≤ c∥Lu∥Mp),q,φ(·)

w (Bρ), ∀i, j = 1, . . . , n (5.3)

holds.
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Proof. Initially observe that the representation for the second order derivatives of functions in W2,p
0 (B),

where B is an open ball in Rn, is given by the formula: [38]:

Di ju(x) =P.V.
∫
B

Γi j(x, x − y)
n∑

h,k=1

(ahk(x) − ahk(y))Dhku(y)dy (5.4)

+ P.V.
∫
B

Γi j(x, x − y)Lu(y)dy +Lu(x)
∫
|ξ|=1

Γi(x, ξ)ξ jdσξ.

Let us remark that

i) The first and the second integrals appearing in (5.4) are Principal Value ones (In fact, they are
commutators of the Calderón–Zygmund singular integrals. The reader is referred, e.g., to [42],
Ch. 7, [25], and references therein for appropriate weighted inequalities), and we can use
Theorem 4.1 together with Remark 4.1 and Condition (2.1) to obtain the appropriate weighted
inequality in Mp),q,φ(·)

w (Ω), where w is the Muckenhoupt weight.
ii)
∫
|ξ|=1
Γi(·, ξ)ξ j dσξ ∈ L∞(Bρ) with a bound independent of ρ.

Now, taking the Mp),q,φ(·)
w (Bρ) norms of both sides in (5.4), applying Theorem 4.1 and taking into

account Remark 4.1 and Condition (2.1), we get

∥Di ju∥Mp),q,φ(·)
w (Bρ) ≤ c

(
η(ρ)∥Di ju∥Mp),q,φ(·)

w (Bρ) + ∥Lu∥Mp),q,φ(·)
w (Bρ)

)
.

This way, in view of the V MO assumption on the coefficients ai j(x), it is possible to choose ρ0 so small
that cη(ρ0) ≤ 1/2 and then

∥Di ju∥Mp),q,φ(·)
w (Bρ) ≤ c∥Lu∥Mp),q,φ(·)

w (Bρ) for each ρ < ρ0.

□

6. Conclusions

The authors obtained regularity results for solutions of second order PDEs having discontinuous
coefficients in the framework of generalized grand Morrey spaces under the Muckenhoupt condition on
weights. In the future it will be possible to extend the obtained properties to other kinds of equations,
making use of density properties and extrapolation in generalized weighted grand Morrey spaces, that
are proved in the present paper.
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