Research article

Adaptive clustering algorithm based on improved marine predation algorithm and its application in bearing fault diagnosis

  • Received: 04 August 2023 Revised: 19 September 2023 Accepted: 26 September 2023 Published: 06 November 2023
  • In cluster analysis, determining the number of clusters is an important issue because there is less information about the most appropriate number of clusters in the real problem. Automatic clustering is a clustering method that automatically finds the most appropriate number of clusters and divides instances into the corresponding clusters. In this paper, a novel automatic clustering algorithm based on the improved marine predator algorithm (IMPA) and K-means algorithm is proposed. The new IMPA utilizes refracted opposition-based learning in population initialization, generates opposite solutions to improve the diversity of the population and produces more accurate solutions. In addition, the sine-cosine algorithm is incorporated to balance global exploration and local development of the algorithm for dynamic updating of the predator and prey population positions. At the same time, the Gaussian-Cauchy mutation is combined to improve the probability of obtaining the globally optimal solution. The proposed IMPA is validated with some benchmark data sets. The calculation results show that IMPA is superior to the original MPA in automatic clustering. In addition, IMPA is also used to solve the problem of fault classification of Xi*an Jiaotong University bearing data. The results show that the IMPA has better and more stable results than other algorithms such as the original MPA, whale optimization algorithm, fuzzy C-means and K-means in automatic clustering.

    Citation: Zhuanzhe Zhao, Mengxian Wang, Yongming Liu, Zhibo Liu, Yuelin Lu, Yu Chen, Zhijian Tu. Adaptive clustering algorithm based on improved marine predation algorithm and its application in bearing fault diagnosis[J]. Electronic Research Archive, 2023, 31(11): 7078-7103. doi: 10.3934/era.2023359

    Related Papers:

  • In cluster analysis, determining the number of clusters is an important issue because there is less information about the most appropriate number of clusters in the real problem. Automatic clustering is a clustering method that automatically finds the most appropriate number of clusters and divides instances into the corresponding clusters. In this paper, a novel automatic clustering algorithm based on the improved marine predator algorithm (IMPA) and K-means algorithm is proposed. The new IMPA utilizes refracted opposition-based learning in population initialization, generates opposite solutions to improve the diversity of the population and produces more accurate solutions. In addition, the sine-cosine algorithm is incorporated to balance global exploration and local development of the algorithm for dynamic updating of the predator and prey population positions. At the same time, the Gaussian-Cauchy mutation is combined to improve the probability of obtaining the globally optimal solution. The proposed IMPA is validated with some benchmark data sets. The calculation results show that IMPA is superior to the original MPA in automatic clustering. In addition, IMPA is also used to solve the problem of fault classification of Xi*an Jiaotong University bearing data. The results show that the IMPA has better and more stable results than other algorithms such as the original MPA, whale optimization algorithm, fuzzy C-means and K-means in automatic clustering.



    加载中


    [1] P. Liang, L. Xu, H. Shuai, X. Yuan, B. Wang, L. Zhang, Semisupervised subdomain adaptation graph convolutional network for fault transfer diagnosis of rotating machinery under time-varying speeds, IEEE/ASME Trans. Mechatron., (2023), 1–2. https://doi.org/10.1109/TMECH.2023.3292969 doi: 10.1109/TMECH.2023.3292969
    [2] S. Gawde, S. Patil, S. Kumar, P. Kamat, K. Kotecha, A. Abraham, Multi-fault diagnosis of Industrial Rotating Machines using Data-driven approach: A review of two decades of research, Eng. Appl. Artif. Intell., 123 (2023), 106139. https://doi.org/10.1016/j.engappai.2023.106139 doi: 10.1016/j.engappai.2023.106139
    [3] X. Xu, S. Hu, P. Shi, H. Shao, R. Li, Z. Li, Natural phase space reconstruction-based broad learning system for short-term wind speed prediction: Case studies of an offshore wind farm, Energy, 262 (2023), 125342. https://doi.org/10.1016/j.energy.2022.125342 doi: 10.1016/j.energy.2022.125342
    [4] M. Liang, K. Zhou, Probabilistic bearing fault diagnosis using Gaussian process with tailored feature extraction, Int. J. Adv. Manuf. Technol., 119 (2022), 2059–2076. https://doi.org/10.1007/s00170-021-08392-6 doi: 10.1007/s00170-021-08392-6
    [5] P. Liang, W. Wang, X. Yuan, S. Liu, L. Zhang, Y. Cheng, Intelligent fault diagnosis of rolling bearing based on wavelet transform and improved ResNet under noisy labels and environment, Eng. Appl. Artif. Intell., 115 (2022), 105269. https://doi.org/10.1016/j.engappai.2022.105269 doi: 10.1016/j.engappai.2022.105269
    [6] Y. Xu, Z. Li, S. Wang, W. Li, T. Sarkodie-Gyan, S. Feng, A hybrid deep-learning model for fault diagnosis of rolling bearings, Measurement, 169 (2021), 108502. https://doi.org/10.1016/j.measurement.2020.108502 doi: 10.1016/j.measurement.2020.108502
    [7] H. Yuan, Y. Tang, H. Hao, Y. Zhao, Y. Zhang, Y. Chen, Intelligent detection method of gearbox based on adaptive hierarchical clustering and subset, Comput. Intell. Neurosci., 2022 (2022), 6464516. https://doi.org/10.1155/2022/6464516 doi: 10.1155/2022/6464516
    [8] J. Hou, Y. Wu, H. Gong, A. S. Ahmad, L. Liu, A novel intelligent method for bearing fault diagnosis based on EEMD permutation entropy and GG clustering, Appl. Sci., 10 (2020), 386. https://doi.org/10.3390/app10010386 doi: 10.3390/app10010386
    [9] Y. Cheng, W. Jia, R. Chi, A. Li, A clustering analysis method with high reliability based on wilcoxon-mann-whitney testing, IEEE Access, 9 (2021), 19776–19787. https://doi.org/10.1109/ACCESS.2021.3053244 doi: 10.1109/ACCESS.2021.3053244
    [10] M. A. Mahdi, K. M. Hosny, I. Elhenawy, Scalable clustering algorithms for big data: A review, IEEE Access, 9 (2021), 80015–80027. https://doi.org/10.1109/ACCESS.2021.3084057 doi: 10.1109/ACCESS.2021.3084057
    [11] X. Xu, S. Hu, H. Shao, P. Shi, R. Li, D. Li, A spatio-temporal forecasting model using optimally weighted graph convolutional network and gated recurrent unit for wind speed of different sites distributed in an offshore wind farm, Energy, 284 (2023), 128565. https://doi.org/10.1016/j.energy.2023.128565 doi: 10.1016/j.energy.2023.128565
    [12] K. He, X. Niu, X. Min, F. Min, ERCP: Speedup path planning through clustering and presearching, Appl. Intell., 53 (2023), 12324–12339. https://doi.org/10.1007/s10489-022-04137-4 doi: 10.1007/s10489-022-04137-4
    [13] L. Abualigah, A. Diabat, Z. W. Geem, A comprehensive survey of the harmony search algorithm in clustering applications, Appl. Sci., 10 (2020), 3827. https://doi.org/10.3390/app10113827 doi: 10.3390/app10113827
    [14] A. M. Ikotun, A. E. Ezugwu, L. Abualigah, B. Abuhaija, J. Heming, K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data, Inf. Sci., 622 (2023), 178–210. https://doi.org/10.1016/j.ins.2022.11.139 doi: 10.1016/j.ins.2022.11.139
    [15] H. Xue, Z. Song, M. Wu, N. Sun, H. Wang, Intelligent diagnosis based on double-optimized artificial hydrocarbon networks for mechanical faults of in-wheel motor, Sensors, 22 (2022), 6316. https://doi.org/10.3390/s22166316 doi: 10.3390/s22166316
    [16] C. Mariela, S. René-Vinicio, C. Diego, A semi-supervised approach based on evolving clusters for discovering unknown abnormal condition patterns in gearboxes, J. Intell. Fuzzy Syst., 34 (2018), 3581–3593. https://doi.org/10.3233/JIFS-169535 doi: 10.3233/JIFS-169535
    [17] L. Wan, G. Zhang, H. Li, C. Li, A novel bearing fault diagnosis method using spark-based parallel aco-k-means clustering algorithm, IEEE Access, 9 (2021), 28753–28768. https://doi.org/10.1109/ACCESS.2021.3059221 doi: 10.1109/ACCESS.2021.3059221
    [18] A. M. Ikotun, M. S. Almutari, A. E. Ezugwu, K-means-based nature-inspired metaheuristic algorithms for automatic data clustering problems: Recent advances and future directions, Appl. Sci., 11 (2021), 11246. https://doi.org/10.3390/app112311246 doi: 10.3390/app112311246
    [19] A. M. Ikotun, A. E. Ezugwu, Enhanced firefly-K-means clustering with adaptive mutation and central limit theorem for automatic clustering of high-dimensional datasets, Appl. Sci., 12 (2022), 12275. https://doi.org/10.3390/app122312275 doi: 10.3390/app122312275
    [20] Y. Zhang, M. Martínez-García, R. S. Kalawsky, A. Latimer, Grey-box modelling of the swirl characteristics in gas turbine combustion system, Measurement, 151 (2020), 107266. https://doi.org/10.1016/j.measurement.2019.107266 doi: 10.1016/j.measurement.2019.107266
    [21] C. Yang, H. Sutrisno, A clustering-based symbiotic organisms search algorithm for high-dimensional optimization problems, Appl. Soft Comput., 97 (2020), 106722. https://doi.org/10.1016/j.asoc.2020.106722 doi: 10.1016/j.asoc.2020.106722
    [22] A. Faramarzi, M. Heidarinejad, S. Mirjalili, A. H. Gandomi, Marine Predators Algorithm: A nature-inspired metaheuristic, Expert Syst. Appl., 152 (2020), 113377. https://doi.org/10.1016/j.eswa.2020.113377 doi: 10.1016/j.eswa.2020.113377
    [23] M. A. Al-Betar, M. A. Awadallah, S. N. Makhadmeh, Z. A. A. Alyasseri, G. Al-Naymat, S. Mirjalili, Marine predators algorithm: A review, Arch. Comput. Methods Eng., 30 (2023), 3405–3435. https://doi.org/10.1007/s11831-023-09912-1 doi: 10.1007/s11831-023-09912-1
    [24] M. A. Elaziz, D. Mohammadi, D. Oliva, K. Salimifard, Quantum marine predators algorithm for addressing multilevel image segmentation, Appl. Soft Comput., 110 (2021), 107598. https://doi.org/10.1016/j.asoc.2021.107598 doi: 10.1016/j.asoc.2021.107598
    [25] M. Ramezani, D. Bahmanyar, N. Razmjooy, A new improved model of marine predator algorithm for optimization problems, Arab. J. Sci. Eng., 46 (2021), 8803–8826. https://doi.org/10.1007/s13369-021-05688-3 doi: 10.1007/s13369-021-05688-3
    [26] J. Saha, J. Mukherjee, CNAK: Cluster number assisted K-means, Pattern Recognit., 110 (2021), 107625. https://doi.org/10.1016/j.patcog.2020.107625 doi: 10.1016/j.patcog.2020.107625
    [27] R. Ghezelbash, A. Maghsoudi, E. J. M. Carranza, Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm, Comput. Geosci., 134 (2020), 104335. https://doi.org/10.1016/j.cageo.2019.104335 doi: 10.1016/j.cageo.2019.104335
    [28] A. Dey, S. Bhattacharyya, S. Dey, D. Konar, J. Platos, V. Snasel, et al., A review of quantum-inspired metaheuristic algorithms for automatic clustering, Mathematics, 11 (2023), 2018. https://doi.org/10.3390/math11092018 doi: 10.3390/math11092018
    [29] D. L. Davies, D. W. Bouldin, A cluster separation measure, IEEE Trans. Pattern Anal. Mach. Intell., 2 (1979), 224–227. https://doi.org/10.1109/TPAMI.1979.4766909 doi: 10.1109/TPAMI.1979.4766909
    [30] J. C. Dunn, Well-separated clusters and optimal fuzzy partitions, J. Cybern., 4 (1974), 95–104. https://doi.org/10.1080/01969727408546059 doi: 10.1080/01969727408546059
    [31] M. K. Pakhira, S. Bandyopadhyay, U. Maulik, Validity index for crisp and fuzzy clusters, Pattern Recognit., 37 (2004), 487–501. https://doi.org/10.1016/j.patcog.2003.06.005 doi: 10.1016/j.patcog.2003.06.005
    [32] K. Zhou, Enhanced feature extraction for machinery condition monitoring using recurrence plot and quantification measure, Int. J. Adv. Manuf. Technol., 123 (2022), 3421–3436. https://doi.org/10.1007/s00170-022-10392-z doi: 10.1007/s00170-022-10392-z
    [33] C. Chou, M. Su, E. Lai, A new cluster validity measure and its application to image compression, Pattern Anal. Appl., 7 (2004), 205–220. https://doi.org/10.1007/s10044-004-0218-1 doi: 10.1007/s10044-004-0218-1
    [34] A. Dey, S. Dey, S. Bhattacharyya, J. Platos, V. Snasel, Quantum inspired meta-heuristic approaches for automatic clustering of colour images, Int. J. Intell. Syst., 36 (2021), 4852–4901. https://doi.org/10.1002/int.22494 doi: 10.1002/int.22494
    [35] H. R. Tizhoosh, Opposition-based learning: A new scheme for machine intelligence, in International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), (2005), 695–701. https://doi.org/10.1109/CIMCA.2005.1631345
    [36] X. Dong, Y. Liu, C. Deng, Improved differential evolution algorithm and its application in complex function optimization, in The 26th Chinese Control and Decision Conference (2014 CCDC), (2014), 3698–3701. https://doi.org/10.1109/CCDC.2014.6852822
    [37] P. Shao, Z. Wu, X. Zhou, D. C. Tran, FIR digital filter design using improved particle swarm optimization based on refraction principle, Soft Comput., 21 (2017), 2631–2642. https://doi.org/10.1007/s00500-015-1963-3 doi: 10.1007/s00500-015-1963-3
    [38] S. Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowl.-Based Syst., 96 (2016), 120–133. https://doi.org/10.1016/j.knosys.2015.12.022 doi: 10.1016/j.knosys.2015.12.022
    [39] Y. Liu, L. Ma, Sine cosine algorithm with nonlinear decreasing conversion parameter, Comput. Eng. Appl., 53 (2017), 1–5.
    [40] X. Chen, A. Shen, Self-adaptive differential evolution with Gaussian–Cauchy mutation for large-scale CHP economic dispatch problem, Neural Comput. Appl., 34 (2022), 11769–11787. https://doi.org/10.1007/s00521-022-07068-w doi: 10.1007/s00521-022-07068-w
    [41] W. Yang, K. Xia, S. Fan, L. Wang, T. Li, J. Zhang, Y. Feng, A multi-strategy whale optimization algorithm and its application, Eng. Appl. Artif. Intell., 108 (2022), 104558. https://doi.org/10.1016/j.engappai.2021.104558 doi: 10.1016/j.engappai.2021.104558
    [42] A. S. Sadiq, A. A. Dehkordi, S. Mirjalili, Q. Pham, Nonlinear marine predator algorithm: A cost-effective optimizer for fair power allocation in NOMA-VLC-B5G networks, Expert Syst. Appl., 203 (2022), 117395. https://doi.org/10.1016/j.eswa.2022.117395 doi: 10.1016/j.eswa.2022.117395
    [43] S. Zhao, Y. Wu, S. Tan, J. Wu, Z. Cui, Y. Wang, QQLMPA: A quasi-opposition learning and Q-learning based marine predators algorithm, Expert Syst. Appl., 213 (2023), 119246. https://doi.org/10.1016/j.eswa.2022.119246 doi: 10.1016/j.eswa.2022.119246
    [44] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
    [45] P. Trojovský, M. Dehghani, Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications, Sensors, 22 (2022), 855. https://doi.org/10.3390/s22030855 doi: 10.3390/s22030855
    [46] A. Khare, S. Rangnekar, A review of particle swarm optimization and its applications in Solar Photovoltaic system, Appl. Soft Comput., 13 (2013), 2997–3006. https://doi.org/10.1016/j.asoc.2012.11.033 doi: 10.1016/j.asoc.2012.11.033
    [47] A. H. Elsheikh, M. A. Elaziz, Review on applications of particle swarm optimization in solar energy systems, Int. J. Environ. Sci. Technol., 16 (2019), 1159–1170. https://doi.org/10.1007/s13762-018-1970-x doi: 10.1007/s13762-018-1970-x
    [48] S. K. Sahoo, A. K. Saha, S. Nama, M. Masdari, An improved moth flame optimization algorithm based on modified dynamic opposite learning strategy, Artif. Intell. Rev., 56 (2023), 2811–2869. https://doi.org/10.1007/s10462-022-10218-0 doi: 10.1007/s10462-022-10218-0
    [49] H. Wang, J. Wang, G. Wang, A survey of fuzzy clustering validity evaluation methods, Inf. Sci., 618 (2022), 270–297, https://doi.org/10.1016/j.ins.2022.11.010 doi: 10.1016/j.ins.2022.11.010
    [50] J. Xue, B. Shen, A novel swarm intelligence optimization approach: sparrow search algorithm, Syst. Sci. Control Eng., 8 (2020), 22–34. https://doi.org/10.1080/21642583.2019.1708830 doi: 10.1080/21642583.2019.1708830
    [51] B. Wang, Y. Lei, N. Li, N. Li, A hybrid prognostics approach for estimating remaining useful life of rolling element bearings, IEEE Trans. Reliab., 69 (2020), 401–412. https://doi.org/10.1109/TR.2018.2882682 doi: 10.1109/TR.2018.2882682
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(891) PDF downloads(36) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog