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Abstract: In cluster analysis, determining the number of clusters is an important issue because there 
is less information about the most appropriate number of clusters in the real problem. Automatic 
clustering is a clustering method that automatically finds the most appropriate number of clusters and 
divides instances into the corresponding clusters. In this paper, a novel automatic clustering algorithm 
based on the improved marine predator algorithm (IMPA) and K-means algorithm is proposed. The 
new IMPA utilizes refracted opposition-based learning in population initialization, generates opposite 
solutions to improve the diversity of the population and produces more accurate solutions. In addition, 
the sine-cosine algorithm is incorporated to balance global exploration and local development of the 
algorithm for dynamic updating of the predator and prey population positions. At the same time, the 
Gaussian-Cauchy mutation is combined to improve the probability of obtaining the globally optimal 
solution. The proposed IMPA is validated with some benchmark data sets. The calculation results show 
that IMPA is superior to the original MPA in automatic clustering. In addition, IMPA is also used to 
solve the problem of fault classification of Xi’an Jiaotong University bearing data. The results 
show that the IMPA has better and more stable results than other algorithms such as the original 
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MPA, whale optimization algorithm, fuzzy C-means and K-means in automatic clustering. 

Keywords: fault diagnosis; automatic clustering; cluster validity index; marine predator algorithm; 
K-means clustering 
 

1. Introduction 

Bearings are one of the important parts in machinery such as motors, gearboxes or wind turbines, and 
their functional state directly determines the performance and efficiency of the mechanical system [1]. 
Often working for long periods of time in environments with variable loads, speeds and vibrations, 
they are prone to failure, which can lead to significant economic losses and catastrophic accidents. 
Therefore, in order to detect potential faults in a timely manner and reduce their impact, advanced fault 
diagnosis technology must be developed [2]. 

In order to accurately detect bearing faults and with advances in computational intelligence 
technology, data-driven machine learning (ML) methods have been widely used in fault diagnosis 
because of their ability to characterize the intrinsic correlation between measurements and fault 
conditions [3]. Once a ML model is established, fault diagnosis can be effectively implemented [4]. 
ML techniques can be divided into supervised, unsupervised, semi-supervised and reinforcement 
learning. A variety of ML techniques are used for different types of problems. In general, supervised 
learning solves regression and classification processes, and common algorithms are k-nearest 
neighbor (KNN), support vector machines (SVM), decision tree (DT), random forest (BF) and neural 
network (NN). Liang et al. [5] integrated wavelet transform into the improved residual neural 
network and used the global singular value decomposition adaptive strategy for feature extraction 
for fault diagnosis of rolling bearings in noisy environments. The improved model has good anti-
noise robustness. Xu et al. [6] developed a hybrid deep learning model based on a convolutional neural 
network and deep forest model. Compared with other existing methods, although the computational 
efficiency is significantly reduced, it has better detection accuracy. The typical unsupervised method 
is the clustering algorithm, including k-means clustering (KCM), fuzzy clustering algorithm and 
density-based clustering method (DBSCAN). Yuan et al. [7] proposed a fault diagnosis algorithm 
based on adaptive hierarchical clustering and subset to extract features and apply them to gearbox fault 
diagnosis. Hou et al. [8] proposed a clustering fault diagnosis method for rolling bearings based on 
ensemble empirical mode decomposition, permutation entropy, linear discriminant analysis and the 
Gath-Geva clustering algorithm, which has the advantage of better class clustering compactness. 

Faced with the lack of labeled data for the training of fault diagnosis models, researchers often 
use clustering algorithms. It is a data analysis problem based on the given sample being grouped into 
several “classes” or “clusters” according to the similarity or distance of their features [9]. The purpose 
of cluster analysis is to discover the characteristics of the data or process the data through the obtained 
“classes” or “clusters,” and it has been widely used in data analysis problems in many fields such as 
image segmentation [10], wind speed forecasting [11], fault diagnosis [12] and so on. 

Cluster analysis algorithms are divided into two categories: partition clustering algorithms and 
hierarchical clustering algorithms [13]. The partition based method is a simple and commonly used 
clustering method that clusters objects by dividing them into mutually exclusive clusters, with each 
object belonging to only one cluster. The partitioning results aim to make the similarity between 
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clusters low and the similarity within clusters high. Common partitioning methods include k-means, 
k-medoids, K-prototype and other methods. The application of hierarchical clustering is second only 
to the partition-based clustering. The core idea is to divide the data into clusters of different layers 
according to the hierarchy of the data set, to form a tree-shaped cluster structure. According to the 
process of hierarchical clustering, it can be divided into bottom-up clustering and top-down splitting 
clustering. Aggregation clustering is represented by balanced iterative reducing and clustering using 
hierarchies (BIRCH), there is a robust clustering algorithm for categorical attributes (ROCK), and split 
clustering is represented by a divisive analysis (DIANA) algorithm. 

As an excellent clustering algorithm, the KCM [14] algorithm has the characteristics of fast 
computing speed, strong scalability and being simple, fast and easy to understand. It has been widely 
used in research of rotating machinery fault data analysis. Xue et al. [15] combined KCM with 
AdaBoost to optimize artificial hydrocarbon networks. They proposed an intelligent diagnosis based 
on double-optimized artificial hydrocarbon networks to identify mechanical faults of an in-wheel 
motor. Mariela et al. [16], inspired by KCM and the one nearest neighbor algorithm, put forward a 
framework to detect a new mode of abnormal conditions in gearboxes. Wan et al. [17] proposed a 
Spark-based parallel ant colony optimization KCM algorithm for rolling bearing fault diagnosis based 
on massive running state monitoring data of rolling bearings, to realize efficient and accurate fault 
diagnosis of rolling bearings. 

The above research shows that KCM and rotary fault diagnosis technology have a good 
combination and can effectively identify the fault state. However, most of these require some domain 
knowledge to select the appropriate cluster number for the dataset containing data objects with 
different densities and sizes. The requirement of predefined cluster number makes KCM inefficient for 
automatic cluster analysis and prone to problems such as slow convergence and low accuracy, thus 
affecting the efficiency and accuracy of fault diagnosis [18]. In recent years, KCM has been combined 
with naturally inspired metaheuristic optimization algorithms to overcome the challenges of traditional 
clustering algorithms in processing automatic data clustering. Metaheuristic optimization algorithms 
have global search capability for optimizing the number of clusters and the clustering centroid [19]. 
The metaheuristic algorithm is mainly used to help the K-means algorithm to get rid of locally optimal 
convergence by searching the globally optimal initial cluster centroid. Its effectiveness has been widely 
verified in the literature. Using global-local optimization as an idea, Zhang et al. [20] constructed a 
hybrid genetic algorithm-quasi-Newton method optimization parameter model, which can effectively 
identify a faulty combustor can based on gas temperature profile. In Yang and Sutrisno [21], the 
symbiotic organisms search (SOS) algorithm was applied to the initial solution of automatic K-means 
to create subpopulations, thereby improving the quality and efficiency of the search. The subeconomies 
created by automatic K-means enables the clustering-based symbiotic organisms search (CSOS) 
algorithm to combine local and global searches on datasets. 

The marine predators algorithm (MPA) is a novel and efficient metaheuristic algorithm proposed 
by Faramarzi et al. [22] in 2020. It is primarily inspired by the movement between predator and prey 
in the ocean and the optimal encounter rate strategy in biological interaction. MPA has many 
advantages, including fewer parameters, higher flexibility and ease of implementation [23], and it has 
been applied to solve many problems in different fields [24,25]. 

Therefore, this study aims to improve the MPA algorithm for better automatic clustering results. 
The initialization of MPA enters the high-speed ratio phase with random factors, greatly reducing 
optimization efficiency and robustness and slowing the initial convergence. In the intermediate stage 
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of optimization, the population wandering strategy needs to be more flexible to lead to an imbalance 
between exploration and exploitation. On the other hand, the MPA will converge prematurely if prey 
forages successfully. Therefore, an improved MPA algorithm is proposed and applied to the automatic 
clustering of bearing faults. The main contributions of this paper can be summarized as follows: 

•An improved marine predator algorithm (IMPA), combining refracted opposition-based learning 
(OBL), sine-cosine algorithm (SCA) and Gaussian-Cauchy mutation (GCM), is developed to improve 
the convergence accuracy of standard MPA and the ability to handle high-dimensional problems. The 
efficiency of the IMPA is tested by solving 10 classical optimization functions.  

•The proposed IMPA is applied to the automatic clustering of 7 common datasets and Xi’an 
Jiaotong University bearing data set, and the results are compared with the whale optimization 
algorithm (WOA), sparrow search algorithm (SSA) and k-means and fuzzy C-means (FCM) 
algorithms of automatic clustering. The results show that IMPA is more competitive than other 
optimization methods. 

The rest of this article is summarized as follows: Section 2 introduces the concept of cluster 
correlation, and Section 3 introduces MPA, IMPA and an improved hybrid algorithm for automatic 
clustering based on IMPA. Section 4 validates the hybrid algorithm. The conclusions and future 
research directions are presented in Section 5. 

2. Cluster analysis 

2.1. Description of clusters 

For a given dataset 𝑋 ൌ ሼ𝑥ଵ, 𝑥ଶ, … , 𝑥ேሽ, the clustering algorithm divides it into K classes, that is, 𝐶 ൌ
ሼ𝐶ଵ,𝐶ଶ, … ,𝐶௄ሽ. Get the partitioning matrix 𝑈ሺ𝑋ሻ, and the partition matrix 𝑈 ൌ ൣ𝜇௜௝൧௄ൈே, 𝑖 ൌ 1,2, … ,𝐾,
𝑗 ൌ 1,2, … ,𝑁, where 𝜇௜௝ is the attachment of the sample 𝑥௝ to the 𝐶௜ class. 

If 𝜇௜௝ satisfies 

𝜇௜௝ ൌ ቊ 1，if 𝑥௝ ∈ 𝐶௜
0, otherwise

 (1) 

and the result of cluster division is satisfied, that is, 𝐶௜ ് ∅;  𝐶௜ ∩ 𝐶௝ ൌ ∅, ሺ𝑖,ൌ 1,2, … ,𝐾, 𝑗 ൌ
1,2, . . ,𝑁;⋃ 𝐶௜ ൌ 𝑋௄

௜ୀଵ , then this is called cluster analysis. Each data object is assigned to a certain category 
according to the principle of similarity, which is generally measured by Euclidean distance [26], that is, 

𝑑൫𝑥⃗௜ ,𝐶௝൯ ൌ ට∑ ൫𝑥⃗௜,௣ െ 𝐶௝,௣൯ே
௣ୀଵ ൌ ฮ𝑥⃗௜ െ 𝐶௝ฮ. (2) 

2.2. KCM 

Since the proposed new automatic clustering method combines KCM in part, the basic principle of the 
K-means algorithm is briefly introduced. The goal of K-means is to divide the dataset into K separate parts 
to minimize the Euclidean distance between each object and the cluster to which it belongs. The main steps 
of a standard K-means algorithm are usually represented as follows [27]: 

1) Select K objects from N data as the initial cluster center {Ci}. 
2) Calculate the Euclidean distance from each data point to K initial clustering centers, and reclassify 
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the data according to the principle of minimum distance. 
3) Calculate the average of each dimension of the cluster to get the new center. Repeat steps 2) and 3) 

until the cluster center no longer changes or the distance at which the cluster center is less than the set 
threshold, and output the cluster center of the data set. 

As is known from the clustering process, improper selection of initial clustering center can cause falling 
into local optimization. The calculation formula of cluster center 𝐶௝ is as follows: 

𝐶௝ ൌ
1
𝐶௝
෍ 𝑥௜

ே

௜ୀଵ
, 𝑗 ൌ 1,2, … , K (3) 

Therefore, the initialization of KCM has randomness, which may take noise or an abnormal value as the 
initial center, resulting in a large difference in the results of each clustering and poor algorithm robustness. At 
the same time, the simple updating process will cause KCM to fall into local optimality. 

2.3. Automate clustering and objective functions 

In order to implement automatic clustering in this paper, we need cluster center information and 
activation threshold or switch vector. By setting a constant value, if the activation threshold is greater than 
this value, it indicates that the centroid of the cluster is an effective centroid. If we have K centers, the 
activation threshold part has K elements, and the coordinates of the center are 𝐾 ൈ 𝑁 elements, which is 
actually 𝐾 ൈ ሺ𝑁 ൅ 1ሻ. Overall, we have a matrix with K rows and 𝑁 ൅ 1 columns. The following matrix 
shows the relationship between the clustering centroid and the activation threshold: 

቎
𝑚ଵ|𝑎ଵ
⋮ |⋮

𝑚௄|𝑎௄
቏ቑ𝐾 

ே
↔

ଵ
↔ 

(4) 

where K represents the row, m is the centroid vector, N represents the column, and 𝑎 ∈ ሾ0,1ሿ is the activation 
threshold. In this article, the threshold is set to 0.4; if 𝑎 ൏ 0.4, the center is invalid. Figure 1 shows how to 
activate or deactivate a cluster center case. 

 

Figure 1. Illustration of the cluster centroid activated or deactivated. 
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In automatic clustering, the commonly used objective function is the optimization cluster validity index 
(CVI), used to evaluate clustering [28]. The validity index is a criterion for the degree of completion of cluster 
analysis. The objective function (CVI) needs to be minimized, and the lower the CVI value is, the better the 
clustering result, with better compactness and further cluster separation. In automatic clustering, if the number 
of clusters is specified, the previous objective function (Eq (2)) works fine; but if the number of clusters is 
unknown, another objective function must be used. To date, researchers have provided effectiveness indices 
for a number of clusters, such as the Davis-Bouldin index (DB) [29], Calinski-Harabasz index (CH) [30], 
Pakhira Bandyopadhyay Maulik index (PBM) [31], Silhouette [32] and compact separation index (CS) [33]. 

In this article, we use the CS index as the objective function to measure the effectiveness of the cluster. 
CS measures the quality of the clustering results using the ratio of scatter points within a cluster to the sum 
of separations between clusters. The lower the value of CS is, the better the separation, and more compact 
clustering is reflected. It has been reported to be a better CVI in terms of efficiently handling clusters with 
different densities, dimensions and sizes [34]. CS is expressed in Eq (5) below: 

𝐶𝑆 ൌ
∑ ቂ ଵ

ொ೔
∑ 𝑚𝑎𝑥𝑋௝ ∈ 𝑄൛𝑉൫𝑋௜ ,𝑋௝൯ൟ௑೔∈ொ ቃ௄

௜ୀଵ

∑ ൣ𝑚𝑖𝑛௝ୀ௄,௝ஷ௜൛𝑉൫𝑥௜ , 𝑥௝൯ൟ൧௄
௜ୀଵ

 (5) 

where the number of data points in cluster C is expressed as 𝑄 , and the distance between intra-cluster 
scattering 𝑋௜ and inter-cluster separation 𝑋௝ is expressed as the function 𝑉൫𝑋௜ ,𝑋௝൯. The distance between 
the data point and its center of mass is expressed as 𝑉൫𝑥௜ , 𝑥௝൯. 

3. MPA 

3.1. Standard MPA 

MPA is a new metaheuristic algorithm that draws inspiration from nature and is based on the 
various foraging techniques used by marine predators and the best encounter rate policy in biological 
interaction. Like most metaheuristics, the initial solution is evenly distributed in the search space. The 
initialization formula is as follows: 

𝑃௜௝ ൌ 𝑙௝ ൅ 𝑅ଵ൫𝑢௝ െ 𝑙௝൯ (6) 

where 𝑢௝and 𝑙௝ are the lower and upper bound of the variable, and 𝑅ଵ is a uniform random vector in 
the range of 0 to 1. The initialization creates the initial Prey matrix, as shown below: 

𝑃𝑟𝑒𝑦 ൌ ൦

𝑃ଵ,ଵ 𝑃ଵ,ଶ …
𝑃ଶ,ଵ 𝑃ଶ,ଶ …
⋮ ⋮ ⋱

𝑃ଵ,ௗ

𝑃ଶ,ௗ

⋮
𝑃௡,ଵ 𝑃௡,ଶ … 𝑃௡,ௗ

൪

௡ൈௗ

 (7) 

where n is the population number, and d is the problem dimension. 
Calculate the fitness of each prey, select the most fit prey individual as the top predator, and build 

it into the Elite matrix: 
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𝐸𝑙𝑖𝑡𝑒 ൌ

⎣
⎢
⎢
⎢
⎡𝑃ଵ,ଵ

ூ 𝑃ଵ,ଶ
ூ …

𝑃ଶ,ଵ
ூ 𝑃ଶ,ଶ

ூ …
⋮ ⋮ ⋱

𝑃ଵ,ௗ
ூ

𝑃ଶ,ௗ
ூ

⋮
𝑃௡,ଵ
ூ 𝑃௡,ଶ

ூ … 𝑃௡,ௗ
ூ ⎦
⎥
⎥
⎥
⎤

௡ൈௗ

 (8) 

The MPA optimization process is divided into three phases based on the different velocity ratios 
of the predator and prey. 1) At a high-velocity ratio, the prey moves faster than the predator. 2) At a 
unit-velocity ratio phase, both prey and predator speeds are similar. 3) At a low-velocity ratio phase, 
the prey is slower than the predator. At each stage, the movement of the predator and prey in nature is 
imitated separately. 

Phase 1: The high-velocity ratio phase at the beginning of the iteration. The best strategy for the 
predator is to remain completely immobile, while the prey obeys Brownian motion. The mathematical 
model for this phase is shown as follows: 

൜
𝑠௜ ൌ 𝑅஻⨂ሺ𝐸𝑙𝑖𝑡𝑒௜ െ 𝑅஻ ⊗ 𝑃𝑟𝑒𝑦௜ሻ
𝑃𝑟𝑒𝑦௜ ൌ 𝑃𝑟𝑒𝑦௜ ൅ 0.5𝑅௩ ⊗ 𝑠௜

𝑖 ൌ 1,2, . . . ,𝑛;  𝐼𝑡𝑒𝑟 ൏
1
3
𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 (9) 

where 𝑠௜ is the prey search step. 𝑅஻ represents the Brownian motion, which is a random vector with 
a normal distribution. The notion ⨂ indicates entry-wise multiplications. 𝑅௩ ∈ ሺ0,1ሻ is a uniformly 
distributed random vector. 𝐼𝑡𝑒𝑟 denotes the current number of iterations, and 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟  is the 
maximum number of iterations. 

Phase 2: The unit-velocity ratio phase is the middle of the iteration, requiring both exploration 
and exploitation. Thus, half of the population is used for exploitation to perform Lévy movement and 
the other half for exploration to practice Brownian motion. The following formulas are proposed in 
this regard: 

1
3
𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 ൏ 𝐼𝑡𝑒𝑟 ൏

2
3
𝑀𝑎𝑥_𝐼𝑡𝑒𝑟  

൜
𝑠௜ ൌ 𝑅௅ ⊗ ሺ𝐸𝑙𝑖𝑡𝑒௜ െ 𝑅௅ ⊗ 𝑃𝑟𝑒𝑦௜ሻ
𝑃𝑟𝑒𝑦௜ ൌ 𝐸𝑙𝑖𝑡𝑒௜ ൅ 0.5𝑅௩ ⊗ 𝑠௜

𝑖 ൌ 1,2, … ,
𝑛
2

; (10) 

൜
𝑠௜ ൌ 𝑅஻ ⊗ ሺ𝑅஻ ⊗ 𝐸𝑙𝑖𝑡𝑒௜ െ 𝑃𝑟𝑒𝑦௜ሻ
𝑃𝑟𝑒𝑦௜ ൌ 𝐸𝑙𝑖𝑡𝑒௜ ൅ 0.5𝐶ி ⊗ 𝑠௜

𝑖 ൌ
𝑛
2

, . . . ,𝑛;  (11) 

𝐶ி ൌ ൬1 െ
𝐼𝑡𝑒𝑟

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
൰

మൈ಺೟೐ೝ
ಾೌೣ_಺೟೐ೝ

 (12) 

where 𝑅௅  is a vector of random numbers based on Lévy distribution; 𝐶ி is considered an adaptive 
parameter for controlling the step size of predator movement. 

Phase 3: The exploitation process is mainly carried out. The best strategy for the predator is Lévy 
movement. Its mathematical model is 

൜
𝑠௜ ൌ 𝑅௅⨂ሺ𝑅௅ ⊗ 𝐸𝑙𝑖𝑡𝑒௜ െ 𝑃𝑟𝑒𝑦௜ሻ
𝑃𝑟𝑒𝑦௜ ൌ 𝐸𝑙𝑖𝑡𝑒௜ ൅ 0.5𝐶ி ⊗ 𝑠௜

𝑖 ൌ 1, . . . ,𝑛;  𝐼𝑡𝑒𝑟 ൐
2
3
𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 (13) 

In addition, environmental issues such as eddy formation or fish aggregating devices (FADs) also 
can cause behavioral changes in marine predators, which are considered locally optimal. So, longer 
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jumps are used to avoid stagnation when finding the best. The model of the process is as follows: 

𝑃𝑟𝑒𝑦௜ ൌ ൜
𝑃𝑟𝑒𝑦௜ ൅ 𝐶ிሾ𝑃௠௜௡ ൅ 𝑅௅ ⊗ ሺ𝑃௠௔௫ െ 𝑃௠௜௡ሻሿ ⊗ 𝑌,𝑅ଶ ൑ 0.2
𝑃𝑟𝑒𝑦௜ ൅ ሾ0.2ሺ1 െ 𝑅ଶሻ ൅ 𝑅ଶሿሺ𝑃𝑟𝑒𝑦௥ଵ െ 𝑃𝑟𝑒𝑦௥ଶሻ,𝑅ଶ ൐ 0.2

 (14) 

where Y is the binary vector with arrays including 0 and 1. 𝑅ଶ is a uniform random number in [0,1]. 
𝑃𝑟𝑒𝑦௥ଵ and 𝑃𝑟𝑒𝑦௥ଶ denote two individuals randomly selected from the prey matrix. The pseudo-code 
for MPA is as follows (Algorithm 1). 

Algorithm 1 

1 Initialize search agents (Prey) populations i = 1,...,n 

2 While termination criteria are not met 

3 Calculate the fitness and construct the Elite matrix 

4 If 𝐼𝑡𝑒𝑟 < 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟/3 

5 Update prey based on Eq (9) 

6 Else if 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟/3 < 𝐼𝑡𝑒𝑟 < 2* 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟/3 

7 For the first half of the populations (i = 1, ..., n/2) 

8 Update prey based on Eq (10) 

9 For the other half of the populations (i = n/2, ..., n) 

10 Update prey based on Eq (11) 

11 Else if 𝐼𝑡𝑒𝑟 > 2* 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟/3 

12 Update prey based on Eq (13) 

13 End (if) 

14 Accomplish memory saving and Elite update 

15 Applying FADs effect and update based on Eq (14) 

16 Accomplish memory saving and Elite update 

17 End while 

3.2. IMPA 

In this part of the study, an IMPA is provided, using refracted OBL, SCA and GCM. Initializing 
MPA with random factors reduces optimization efficiency and robustness, while refracted OBL is used 
to generate a more widely distributed initial population, which may increase the speed of convergence 
in the initial search. In the intermediate stages of optimization, the pace of population movement limits 
the population exchange, thereby reducing the search area, and the SCA helps to achieve a smoother 
step transition in the balance phase. If the prey succeeds in foraging, it becomes a predator, leading the 
population to a local optimum. When the algorithm stagnates, Gaussian-Cauchy mutation is utilized 
to increase the diversity of the population and make the algorithm be out of the local optimum. 
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3.2.1 Refracted OBL 

OBL is an optimization strategy proposed by Tizhoosh [35]. The basic idea is to consider the 
current solution and its opposite solution in order to obtain optimal solution acquisition, which is 
calculated as follows: 

𝑥∗ ൌ 𝑙 ൅ 𝑢 െ 𝑥 (15) 

where l and u are, respectively, the lower and upper bounds. x* represents the opposite solution of x. 
OBL is a common means of improving population initialization [36]. It is a simple approach, but low 
flexibility makes it detrimental to handling dynamic changes in the population. To improve the 
performance of OBL, the refraction law of light is added to obtain refraction opposition-based learning 
(ROBL) [37]. It can help generate high-quality populations and increase population diversity, thus 
avoiding blind search in the initial iterations and accelerating early convergence. The principle of 
ROBL is shown in Figure 2, and the mathematical model is described as follows: 

൞
sin𝛼 ൌ ሺ

𝑙 ൅ 𝑢
2

െ 𝑥ሻ/ℎ

sin𝛽 ൌ ሺ𝑥∗ െ
𝑙 ൅ 𝑢

2
ሻ/ℎ∗

 (16) 

Then, the refractive medium rate z can be obtained as 

𝑧 ൌ
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 (17) 

Let the scaling factor be 𝑞 ൌ ௛

௛∗
, and Eq (17) is changed to 
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 (18) 

Equation (13) can extend to the d-dimensional space of the MPA to get the refracting solution as 
follows: 

𝑃𝑟𝑒𝑦௜,௝
∗ ൌ

𝑙௝ ൅ 𝑢௝
2

൅
𝑙௝ ൅ 𝑢௝

2𝑞
െ
𝑃𝑟𝑒𝑦௜,௝
𝑞

 (19) 

where 𝑙௝  and 𝑢௝  are the minimum and maximum of the j-th dimension in the current population, 
respectively. 𝑃𝑟𝑒𝑦௜,௝  represents the value of the j-th dimension of the i-th particle in the current 
population. 𝑃𝑟𝑒𝑦௜,௝

∗  is the refracting solution of 𝑃𝑟𝑒𝑦௜,௝. 

 

Figure 2. Refraction reverse learning schematic. 
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3.2.2. SCA 

Based on the position update equations of MPA described in Eqs (10) and (11), MPA 
converges in advance during optimization iteration without fully exploring the search space. In 
addition, giant steps may occur in alternating Brownian and Lévy motions for optimization, 
traversing the optimal solution during the search process. The SCA is introduced in this paper to 
improve the performance of the MPA. SCA is a new intelligent algorithm proposed in 2016 by 
Mirjalili [38] which uses the oscillation switching characteristics of sine and cosine functions to 
find the optimum solution. This algorithm has the advantages of fast optimization and strong 
robustness. At the core of SCA is the location updating method, and its mathematical model of 
location updating is shown Eq (20): 

𝑃𝑟𝑒𝑦௜ ൌ ൜
𝑃𝑟𝑒𝑦௜ ൅ 𝑟ଵ ൈ sin 𝑟ଶ ൈ |𝑟ଷ ൈ 𝐵 െ 𝑃𝑟𝑒𝑦௜|,   𝑟ସ ൏ 0.5
𝑃𝑟𝑒𝑦௜ ൅ 𝑟ଵ ൈ cos 𝑟ଶ ൈ |𝑟ଷ ൈ 𝐵 െ 𝑃𝑟𝑒𝑦௜|,   𝑟ସ ൒ 0.5

 (20) 

𝑟ଵ ൌ 1 െ
𝐼𝑡𝑒𝑟

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
 (21) 

where 𝑟ଶ ∈ ሾ0,2𝜋ሿ, 𝑟ଷ ∈ ሾ0,2ሿ, 𝑟ସ ∈ ሾ0,1ሿ, and 𝐵 is the target position, the global optimal position in 
SCA. The most critical parameter is 𝑟ଵ , which controls the balance between the exploration and 
exploitation of the algorithm. 𝑟ଵ is a linearly decreasing function, and the change of function is unique 
and needs to be more flexible. For this purpose, the non-linear decreasing function 𝑟ଵ expression in [39] 
is used as follows: 

𝑟ଵ ൌ 2𝑒ି
಺೟೐ೝ

ಾೌೣ_಺೟೐ೝ (22) 

Since CF is a non-linear descent curve, the rate of the population with Brownian motion decreases 
with the number of iterations, which follows the standard iteration law. So, only the population with 
Lévy motion is required to improve the search strategy. Then, the new predator position update 
equation is obtained as 
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1
3
𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 ൏ 𝐼𝑡𝑒𝑟 ൏

2
3
𝑀𝑎𝑥_𝐼𝑡𝑒𝑟  

𝑃𝑟𝑒𝑦௜ ൌ ൜
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𝑃𝑟𝑒𝑦௜ ൅ 𝑟ଵ ൈ 𝑐𝑜𝑠𝑟ଶ ൈ |𝑟ଷ െ 𝐵 െ 𝑃𝑟𝑒𝑦௜|, 𝑟ସ ൒ 0.5

𝑖 ൌ 1, … ,
𝑛
2

 (23) 

3.2.3. GCM 

In order to solve the problems of low accuracy and easily falling into a local optimum, MPA needs 
to incorporate a variational strategy. To this end, the GCM [40] strategy is adopted. The Gauss and 
Cauchy distributions are shown in Figure 3. 



7088 

Electronic Research Archive  Volume 31, Issue 11, 7078–7103. 

 

Figure 3. SCA schematic diagram. 

The Cauchy distribution is small in the middle and large at both ends, having a larger search step 
and expanding the search range. The Gaussian distribution is highest in the middle and lowest at both 
ends, having a smaller search step and improving the ability to search locally. The GCM strategy is 
outlined as follows: 

We have a Gaussian distribution with mean zero (𝜇 ൌ 0) and unit variance (𝜎ଶ ൌ 1). We have a 
Cauchy distribution with position parameter (𝑥଴ ൌ 0 ) and scale parameter (𝛾 ൌ 1 ). Therefore, the 
GCM strategy is used in MPA to improve accuracy, which is described as follows: 
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 (25) 

where R3 is a random number uniformly distributed between 0 and 1. 𝐶ሺ1,0ሻ is a random variable 
based on the Cauchy distribution, and Gሺ1,0ሻ  is based on the Gaussian one. 1 െ 𝐼𝑡𝑒𝑟/𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 
decreases with increasing 𝐼𝑡𝑒𝑟. In the early iterations, the value of 𝐼𝑡𝑒𝑟 is small, and the predator 
performs a Cauchy distribution to expand the search. Later in the iteration, the value of 𝐼𝑡𝑒𝑟 increases, 
and 1 െ 𝐼𝑡𝑒𝑟/𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 becomes smaller for the Gaussian distribution. The two variant strategies are 
used alternately, which amounts to an adaptive dynamic parameter that increases with the number of 
iterations. It increases the opportunity that the algorithm will jump out of its stagnation and accelerate 
its convergence later. The pseudo-code of IMPA is as follows (Algorithm 2): 
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Algorithm 2 

1 Initialize the population to construct the Prey matrix, determine the relevant parameters, 
and calculate the individual fitness 

2 Apply the ROBL to generate the opposite prey position and calculate the individual fitness 

3 Compare the fitnesses and sort them from small to large, and choose the top half 
corresponding population positions to construct the Prey matrix 

4 While (𝐼𝑡𝑒𝑟 < 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟) 

5 calculate the fitness of each agent 

6 construct the Elite matrix and accomplish memory saving 

7 for each agent 

8 If 𝐼𝑡𝑒𝑟 < 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 /3 

9 update prey based on Eq 9 

10 else if 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 /3 < 𝐼𝑡𝑒𝑟 < 2* 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 /3 

11 if i <= n/2 

12 update prey based on Eq 23 

13 else if n/2 < i< n 

14 update prey based on Eq 11 

15 end if 

16 else if 𝐼𝑡𝑒𝑟 > 2* 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 /3 

17 update prey based on Eq (13) 

18 end if  

19 applying GCM and update based on Eq 25 

20 calculate the fitness and update the Elite matrix 

21 accomplish memory saving 

22 applying FADs effect and update based on Eq 14 

23 𝐼𝑡𝑒𝑟 = 𝐼𝑡𝑒𝑟 +1 

24 End while 

3.3 Overall scheme of AC-IMPA 

In summary, for the AC-IMPA method, after iterative optimization of the algorithm, the position 
vector that best fits the fitness function is selected as the cluster center representing a specific cluster 
number. According to the effective clustering centroid obtained, a better cluster grouping can be 
obtained. Figure 4 shows the flow chart of AC-IMPA, visually showing the whole process. 
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(a) (b) 

Figure 4. (a) Overall flow diagram of automatic clustering. (b) Overall flow diagram of IMPA. 

4. Experimental results and discussion 

This section is divided into two parts. One is the result of IMPA in test functions, and the other is 
the application of AC-IMPA in common datasets and rotating fault datasets. The simulation results and 
discussion of the proposed algorithm are introduced and compared with other results in the literature. 
The experimental running environment is a 64-bit Windows 11 operating system, the CPU is an Intel(R) 
Core (TM) i7-12650H, and the main frequency is 2.3 GHz. The algorithm is written based on 
MATLAB R2021b. 

4.1. Test functions 

This section uses test functions to evaluate the performance of the proposed IPA model. The 
experiments were performed on 10 standard benchmark functions, including unimodal, multimodal, 
and fixed dimension multimodal. The unimodal test functions (F1–F4) are used to test the exploitation 
ability of the algorithm, while multimodal functions (F5–F19) are used to evaluate the exploration 
performance. The fixed dimension test function (F10) shows the exploration capability in low 
dimensions [41]. The detailed descriptions and related information are given in Table 1. To ensure 
fairness of the comparison between algorithms, the basic parameters of the algorithms are set to the 
same values, including the population size n = 30, the maximum number of iterations 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 ൌ
500, and the dimensionality of the test functions d =30. 

To verify the overall performance of IMPA, six algorithms are selected for comparison, including 
the basic MPA, the nonlinear marine predator algorithm (NMPA) [42], the quasi-opposition learning 
and the Q-learning based marine predators algorithm (QQLMPA) [43], WOA [44], the pelican 
optimization algorithm (POA) [45] and particle swarm optimization (PSO) [46]. The internal 
parameters of each basic algorithm are set as shown in Table 2. All improved MPA algorithms have 
the same parameters as MPA. 
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Table 1. The benchmark functions. 

Fun No. Name Dim Range Optimal Value 

F1 Sphere 30 [−50,100] 0 
F2 Schwefel 2.22 30 [−10,7] 0 
F3 Rosenbrock 30 [−30,30] 0 
F4 Quartic 30 [−1.28,1] 0 
F5 Rastrigin 30 [−10,5.12] 0 
F6 Ackley 30 [−32,50] 0 
F7 Griewank 30 [−600,500] 0 
F8 Alpine 30 [−10,40] 0 
F9 Penalized 30 [−50,100] 0 
F10 Schaffer 2 [−10,10] 0 

*Note: See Appendix for the specific formula 

Table 2. Algorithm parameter setting. 

Algorithm Parameter Value 

MPA 
constant number P 0.5 
the probability of FADs effect on the optimization process FADs 0.2 

IMPA refractive index q 1000 
NMPA topology fully connected Inertia factor 0.5 
QQLMPA Discount factor 0.8 

POA 
constant R 0.2 
random number I 1 or 2 

WOA Convergence constant a [2,0] 

PSO 
constriction factor c1 = c2 1.496 
inertia weight w 0.9 

K-MEANS distance 
Euclidean 
distance 

SSA 
the alarm value [0,1] 
the safety threshold [0.5,1] 

Table 3 shows the comparison results of 7 algorithms such as IMPA, MPA, QQLMPA on the 
benchmark functions. Figure 5 shows the convergence curves of these meta-heuristic algorithms. 
According to the experimental results in Table 3 and Figure 5, it can be seen that IMPA and NMPA can 
achieve the theoretically optimal value in three different evaluation metrics for two unimodal test functions 
F1–F2 and one multimodal function F8. As seen from the figure, IMPA can reach the ideal value 
before 150 iterations, indicating the effectiveness of the ROBL strategy. However, for F3 and F4, it is 
pretty challenging to find the global optimal solution. F3 is known as the banana-type valley function, and 
the shape of F4 is parabolic. They both have many local optimizations, which can easily lead the algorithm 
to falling into local optima and stagnate the optimization search. In F5 and F8, all three metrics of the 
algorithm are 0 except for WOA and PSO. F6 is characterized by an almost flat outer region with a large 
hole in the center. This function poses a risk for optimization algorithms to be trapped in one of its many 
local minima. All three improved MPA algorithms have a mean value of 8.88 × 10−16 and a mean difference 



7092 

Electronic Research Archive  Volume 31, Issue 11, 7078–7103. 

of 0. However, IMPA can approach the ideal optimum faster in early iterations. There are two round spikes 
outside the optimal value of F10, and the result is a large fluctuation between the locally optimal position 
and the globally optimal position. IMPA can find the optimal point for F12 quickly. Generally, for other 
different types of test functions, IMPA is at the bottom of its iterative curve most of the time. It shows high 
convergence efficiency and verifies the effectiveness of the algorithm optimization strategy. 

Table 3. Results of comparison with other basic algorithms. 

Fun No.  MPA IMPA NMPA QQLMPA POA WOA PSO 

F1 

Best 1.09 × 10−24 0 0 1.27 × 10−110 2.21 × 10−116 2.30 × 10−87 2.30 × 10−02 

Ave 4.86 × 10−23 0 0 2.76 × 10−76 3.28 × 10−99 9.93 × 10−69 6.84 × 10−02 

Std 9.74 × 10−23 0 0 4.30 × 10−76 1.71 × 10−98 5.44 × 10−68 2.82 × 10−02 

F2 

Best 1.07 × 10−14 0 0 5.53 × 10−56 4.07 × 10−59 2.87 × 10−56 4.89 × 10−01 

Ave 4.56 × 10−13 0 0 8.33 × 10−41 7.45 × 10−51 1.49 × 10−51 7.75 × 10−01 

Std 4.00 × 10−13 0 0 1.70 × 10−40 3.50 × 10−50 3.91 × 10−51 2.21 × 10−01 

F3 

Best 2.45 × 10+01 2.37 × 10+01 2.44 × 10+01 2.43 × 10+01 2.64 × 10+01 2.72 × 10+01 2.92 × 10+01 

Ave 2.53 × 10+01 2.47 × 10+01 2.51 × 10+01 2.57 × 10+01 2.80 × 10+01 2.79 × 10+01 1.03 × 10+02 

Std 4.34 × 10−01 6.78 × 10−01 6.95 × 10−01 7.39 × 10−01 7.84 × 10−01 4.24 × 10−01 1.01 × 10+02 

F4 

Best 1.19 × 10−04 1.41 × 10−06 4.07 × 10−07 1.13 × 10−04 3.42 × 10−05 1.35 × 10−04 7.87 × 10−02 

Ave 1.31 × 10−03 5.55 × 10−05 1.29 × 10−04 4.96 × 10−04 1.95 × 10−04 1.98 × 10−03 1.74 × 10−01 

Std 7.97 × 10−04 4.60 × 10−05 1.16 × 10−04 2.59 × 10−04 1.07 × 10−04 1.64 × 10−03 7.56 × 10−02 

F5 

Best 0 0 0 0 0 0 3.96 × 10+01 

Ave 0 0 0 0 0 0 6.91 × 10+01 

Std 0 0 0 0 0 0 1.93 × 10+01 

F6 

Best 2.53 × 10−13 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.74 × 10+00 

Ave 1.33 × 10−12 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 3.61 × 10−15 4.80 × 10−15 1.35 × 10+01 

Std 8.76 × 10−13 0 0 0 1.53 × 10−15 3.00 × 10−15 1.74 × 10+00 

F7 

Best 0 0 0 0 0 0 1.49 × 10+01 

Ave 0 0 0 0 0 0 3.93 × 10+01 

Std 0 0 0 0 0 0 2.01 × 10+01 

F8 

Best 0 0 0 0 0 0 1.49 × 10+01 

Ave 0 0 0 0 0 0 3.93 × 10+01 

Std 0 0 0 0 0 0 2.01 × 10+01 

F9 

Best 3.28 × 10−09 5.02 × 10−07 9.68 × 10−05 1.15 × 10−04 5.92 × 10−02 4.54 × 10−03 7.85 × 10+00 

Ave 5.83 × 10−05 9.12 × 10−06 8.37 × 10−03 1.12 × 10−02 1.82 × 10−01 2.60 × 10+02 1.48 × 10+01 

Std 2.88 × 10−04 1.38 × 10−05 6.56 × 10−04 8.61 × 10−03 1.09 × 10−01 2.57 × 10−02 5.36 × 10+00 

F10 

Best 0 0 0 0 0 0 3.33 × 10−16 

Ave 1.95 × 10−08 0 0 0 0 4.21 × 10−03 6.48 × 10−03 

Std 1.06 × 10−07 0 0 0 0 4.90 × 10−03 4.66 × 10−03 
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Figure 5. Convergence curves of IMPA and other metaheuristic algorithms. 

The Wilcoxon signed rank test is used to demonstrate the validity of the improved algorithm. Let 
the best algorithm be IMPA. Paired comparisons are made between RSGMPA and MPA, POA, WOA, 
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PSO, NMPA and QQLMPA with the significance level of p = 5%. The symbols “+”, “−”, and “=” 
indicate that IMPA performs better, worse and equivalent. As shown in Table 4, most of the p values 
among the 10 benchmark functions are less than 5%. This shows that the superiority of the algorithm 
is statistically significant. In other words, the convergence accuracy of the IMPA algorithm is higher 
than other algorithms [47]. 

Table 4. p Values for Wilcoxon signed rank test. 

Fun. No. MPA NMPA QQLMPA POA WOA PSO 

1 1.26 × 10−83 1.89 × 10−41 1.26 × 10−83 1.26 × 10−83 1.26 × 10−83 1.26 × 10−83 

2 1.26 × 10−83 4.36 × 10−52 1.26 × 10−83 1.26 × 10−83 1.26 × 10−83 1.26 × 10−83 

3 8.04 × 10−59 1.26 × 10−83 1.26 × 10−83 1.26 × 10−83 1.26 × 10−83 1.26 × 10−83 

4 1.26 × 10−83 1.26 × 10−83 1.26 × 10−83 1.24 × 10−83 1.26 × 10−83 1.26 × 10−83 

5 1.12 × 10−27 7.91 × 10−29 2.30 × 10−26 6.32 × 10−22 1.88 × 10−50 1.26 × 10−83 

6 1.16 × 10−83 1.20 × 10−29 1.52 × 10−45 3.49 × 10−90 6.56 × 10−85 1.26 × 10−83 

7 1.69 × 10−28 1.58 × 10−26 1.48 × 10−24 1.28 × 10−19 1.20 × 10−39 1.26 × 10−83 

8 1.26 × 10−83 6.35 × 10−52 1.26 × 10−83 1.26 × 10−83 1.26 × 10−83 1.26 × 10−83 

9 8.60 × 10−07 2.55 × 10−29 6.74 × 10−63 1.26 × 10−83 3.34 × 10−25 1.26 × 10−83 

10 1.26 × 10−83 5.62 × 10−30 1.86 × 10−19 2.49 × 10−65 1.25 × 10−83 1.26 × 10−83 

+/–/= 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 10/0/0 

In addition, in order to make the statistical test results more convincing, we performed Friedman 
tests on the mean values of seven algorithms calculated on 10 benchmark functions. This method is 
mainly used to detect whether there are differences in the performances of different algorithms. The 
significance level was set to 0.05. When the p-value is less than 0.05, several algorithms can be 
considered to have statistically significant differences. Conversely, there is no statistically significant 
difference between algorithms [48]. According to the calculation results in Table 5, the p-value are less 
than 0.05, indicating that there is a significant difference between the seven algorithms. 

Table 5. Friedman tests. 

Algorithm Rank Mean Rank 

MPA 4.5909 5 

IMPA 1.7727 1 

NMPA 2.2273 2 

QQLMPA 3.9091 4 

POA 3.8182 3 

WOA 4.9091 6 

PSO 6.7727 7 

p 2.86 × 10−08  

4.2. Datasets 

To verify the overall performance of AC-IMPA, six algorithms were selected for comparison, 
including K-means, FCM [49], basic MPA, PSO, WOA and SSA [50]. To ensure the fairness of the 
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comparison between the meta-heuristic algorithms, the basic parameters of the algorithms are set to 
the same values, population size n = 30, and maximum number of iterations 𝑀𝑎𝑥ூ௧௘௥ ൌ 100. 

A total of 7 datasets were used, including 1 Labor dataset and 6 UCI datasets. Table 6 gives the summary 
of the 7 datasets, showing the data type, data set dimension, number of data points and number of clusters. 
UCI data sets are real classical data sets from different fields, and the selected data dimensions are different. 

Table 6. Data set details. 

Data Type Data Data dimension Amount of data Number of clusters Citations 

Labor Data 1 2 299 3 [139,99,61] 

UCI 

Wine 13 178 3 [59,71,48] 

Balance scale 4 625 3 [49288288] 

Cancer 9 683 2 [444239] 

Jain 2 373 2 [276,97] 

Thyroid 5 215 3 [150,35,30] 

Haberman 3 306 2 [225,81] 

Tables 7 and 8 show the results of 50 independent runs of these algorithms based on CS. Table 6 
shows the average and standard deviation of CS measurements, and Table 7 shows the cluster numbers 
and standard deviations determined by CS. Figure 6 shows the clustering results of MPA and IMPA on 
data 1. The data is shaped like two moons, representing the actual classifications. For the data at the 
intersection of two moons, IMPA has a better classification effect. In this paper, cluster numbers are 
compared first, followed by CS values. In the Cancer dataset, the numbers of clusters of K-means and 
AC-IMPA match the actual and are highly stable. In the Jain dataset, AC-IMPA and AC-MPA have the 
best cluster numbers. In the remaining 5 datasets, AC-IMPA performed best. For the values of CS table, 
AC-IMPA has the best average value in four datasets, Cancer, Jain, Thyroid, Haberman, and the other 
datasets rank high, indicating AC-IMPA’s superior performance. 

Table 7. Number of clusters. 

  K-MEANS AC-MPA AC-IMPA AC-WOA AC-SSA AC-PSO FCM 
Data 1 Ave 3 3.04 3 2.9 3.22 3.08 6.4 

SD 0 0.20 0 0.36 0.89 0.27 0.55 
Wine Ave 8.54 3.7 3.12 5.62 4.38 3.36 7.8 

SD 1.18 1.11 0.48 1.61 1.89 0.94 0.84 
Balance 

scale 
Ave 8.96 3.32 2.78 5.74 6.8 8.66 8.8 
SD 0.97 2.24 1.25 3.51 2.89 0.87 1.79 

Cancer Ave 2 2.1 2 2.02 2.86 2.08 2 
SD 0 0.30 0 0.14 1.98 0.44 0 

Jain Ave 7.86 2.34 2 2 3.32 5.42 8.4 
SD 0.83 0.87 0 0 1.43 1.94 0.55 

Thyroid Ave 8.58 3.16 3.08 2.54 2.76 3.84 8 
SD 1.37 0.47 0.40 1.09 1.04 1.04 0 

Haberman Ave 7.78 2 2 4.3 3.52 4.86 4 
SD 1.54 0 0 2.13 1.50 1.812 0 
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Table 8. CS values. 

  K-MEANS AC-MPA AC-IMPA AC-WOA AC-SSA AC-PSO FCM 

Data 1 
Ave 0.6059 0.6057 0.6059 0.6428 0.6059 0.6062 1.2030 

SD 0 1.04 × 10−03 0 6.05 × 10−02 0 2.29 × 10−03 3.17 × 10−02 

Wine 
Ave 0.6095 0.3947 0.3960 0.4527 0.3976 0.3977 0.7313 

SD 1.27 × 10−01 2.55 × 10−03 1.53 × 10−03 2.52 × 10−02 9.81 × 10−03 7.43 × 10−03 1.20 × 10−02 

Balance scale 
Ave 1.35078 1.0058 0.9694 1.1229 1.1121 1.3558 1.7521 

SD 3.22 × 10−02 1.83 × 10−01 1.54 × 10−01 2.72 × 10−01 2.10 × 10−01 3.52 × 10−02 1.22 × 10−01 

Cancer 
Ave 1.0973 0.9592 0.9166 1.02334 0.9617 1.0855 1.0906 

SD 4.99 × 10−04 1.23 × 10−01 1.60 × 10−01 1.19 × 10−01 1.35 × 10−01 7.88 × 10−02 0 

Jain 
Ave 0.8725 0.6413 0.6547 0.65467 0.6481 0.7013 0.8764 

SD 1.47 × 10−02 3.56 × 10−02 5.83 × 10−16 5.61 × 10−16 1.95 × 10−02 4.98 × 10−02 6.23 × 10−03 

Thyroid 
Ave 0.8873 0.2927 0.2924 0.3177 0.30189 0.3025 1.1892 

SD 8.13 × 10−02 4.75 × 10−03 6.15 × 10−03 2.87 × 10−02 9.15 × 10−03 2.22 × 10−02 0 

Haberman 
Ave 1.1072 0.4674 0.4674 0.5620 0.4825 0.524 1.4517 

SD 7.44 × 10−02 5.62 × 10−16 5.62 × 10−16 9.09 × 10−02 3.89 × 10−02 5.59 × 10−02 0 

 

  

(a) MPA (b) IMPA 

Figure 6. Clustering results of MPA and IMPA on Data 1. 

The Wilcoxon signed rank test is used to demonstrate the validity of the improved algorithm. Let the 
best algorithm be AC-IMPA. Paired comparisons are made between AC-IMPA and AC-MPA, AC-WOA, 
AC-SSA and AC-PSO with the significance level of p = 5%. As shown in Table 9, most of the p values among 
the 7 datasets are less than 5%. This shows that the superiority of the algorithm is statistically significant. 

Table 9. p Values for Wilcoxon signed rank test. 

 AC-MPA AC-WOA AC-SSA AC-PSO 
Data 1 4.78 × 10−09 4.55 × 10−19 1.21 × 10−05 3.10 × 10−18 
Wine 1.33 × 10−02 3.28 × 10−18 2.71 × 10−07 3.78 × 10−18 
Balance scale 2.71 × 10−17 1.67 × 10−02 2.53 × 10−05 3.90 × 10−18 
Cancer 1.17 × 10−17 1.14 × 10−17 5.00 × 10−03 3.90 × 10−18 
Jain 2.19 × 10−11 1.22 × 10−01 1.02 × 10−02 3.90 × 10−18 
Thyroid 1.06 × 10−04 3.82 × 10−18 5.04 × 10−14 3.88 × 10−18 
Haberman 7.23 × 10−04 3.74 × 10−18 4.22 × 10−18 3.88 × 10−18 
+/−/= 7/0/0 6/1/0 7/0/0 7/0/0 
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4.3. XJTU-SY rolling bearing accelerator life data set of Xi’an Jiaotong University 

The bearing experiment data set of Xi’an Jiaotong University was used as the data [51]. In the 
experiment, the sampling frequency was set at 25.6 kHz, the sampling interval was set at 1 min, and 
the sampling duration was set at 1.28 s each time. The bearing speed is 2100 r/min, and the radial force 
is 12 kN. Bearing1_1, Bearing1_4, and Bearing1_5 in the data set are used. The detailed data are 
described in Table 10. 

Table 10. Bearing data information. 

Data set sample total actual lifetime failure location 
Bearing1_1 123 2 h 3 min External ring 
Bearing1_4 122 2 h 2 min Cage 
Bearing1_5 52 52 min External ring, Inner ring 

Table 11 shows the adaptive cluster values and CS values of 7 algorithms on the XJTU-SY rolling 
bearing data set. It can be seen from the table that only the cluster numbers of AC-MPA, AC-IMPA 
and AC-SSA algorithms are close to the optimal category number of the data set. When K = 3, the 
change curves of the fitness functions of the three algorithms are shown in Figure 7, which once again 
verifies that the improved algorithm has a relatively high degree of accuracy in solving. Meanwhile, 
in order to demonstrate the effectiveness of the proposed algorithm, when K = 3, the three algorithms 
are run independently 10 times, and the recognition rates of all samples are shown in Table 12. It can 
be seen that AC-IMPA has the highest recognition rate for cluster analysis of such complex data. 
Although the overall recognition rate of AC-MPA algorithm is also up to 83.33%, which is close to 
this, the results of 10 runs show that its recognition results are less stable than the algorithm proposed 
in this paper. 

Table 11. Clustering result. 

  K-MEANS AC-MPA AC-IMPA AC-WOA AC-SSA AC-PSO AC-FCM 

clusters 
Ave 9.44 3 2.98 2.02 2.9 6.04 9.6 

SD 0.81 0.95 0.47 0.14 1.90 2.15 0.52 

CS 

values 

Ave 1.5089 0.6595 0.6335 0.7602 0.7277 0.9168 1.6050 

SD 
3.51 × 

10−02 

7.42 × 

10−02 

5.72 × 

10−02 

1.82 × 

10−02 

4.25 × 

10−02 

9.08 × 

10−02 

1.66 × 

10−02 

Table 12. Comparison of recognition rate results of the three algorithms. 

category 
algorithm 

AC-MPA AC-IMPA AC-SSA 

Fault 1 13/16 = 0.8125 16/16 = 1 9/16 = 0.5625 

Fault 2 16/16 = 1 16/16 = 1 2/16 = 0.125 

Fault 3 11/16 = 0.6875 16/16 = 1 13/16 = 0.1875 

Entirety 83.33% 100% 56.94% 
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Figure 7. Convergence images of the three algorithms. 

5. Conclusions and future research directions 

In order to solve the clustering problem of bearing fault datasets more effectively, a new automatic 
clustering algorithm (AC-IMPA) based on improved MPA and K-means algorithm is proposed. In this 
algorithm, the improved MPA algorithm aims to provide a better initial center of mass for the K-means 
algorithm, that is, the predator is closer to the center of the data and is able to use this information to 
move faster and find a better solution than the original predator’s movement. For validation, the 
proposed AC-IMPA algorithm is tested using some benchmark datasets and compared with some 
automatic clustering meta-heuristic algorithm algorithms, AC-MPA, AC-SSA, FCM, K-MEANS and 
AC-WOA. The results show that AC-IMPA can obtain better and more stable results in cluster number. 
Finally, AC-IMPA is applied to the problem of automatic classification of bearing fault, and it is found 
that the number of clusters obtained by the proposed new method is closer to the true facts. 

Although the proposed automatic clustering method AC-IMPA shows advantages in the 
experiment, it also has some weaknesses. First, the advantage of cluster quality is not obvious on high 
cluster number data sets, because the number of clusters is small, and once the data has errors, it is 
easy to limit the performance of the algorithm. Another is that the clustering stability of AC-IMPA is 
not strong enough. In addition, in future research, more, other clustering effectiveness indicators can 
be attempted for automatic clustering to make the clustering effect better. Therefore, AC-IMPA 
provides a new and effective automatic clustering mode, but it still needs in-depth analysis and further 
improvement. 
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